
fevo-10-943865 June 10, 2022 Time: 14:50 # 1

BRIEF RESEARCH REPORT
published: 16 June 2022

doi: 10.3389/fevo.2022.943865

Edited by:
Yusen He,

Grinnell College, United States

Reviewed by:
Waseem Akram,

Lovely Professional University, India
Jaspreet Singh,

I. K. Gujral Punjab Technical
University, India

*Correspondence:
Tao Wang

taow1234@163.com

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Ecology and Evolution

Received: 14 May 2022
Accepted: 26 May 2022

Published: 16 June 2022

Citation:
Wang T, Guo X, Long G and Liu X
(2022) Evaluation and Analysis of
Bridge Modal Parameters Under

Intelligent Monitoring Environment.
Front. Ecol. Evol. 10:943865.

doi: 10.3389/fevo.2022.943865

Evaluation and Analysis of Bridge
Modal Parameters Under Intelligent
Monitoring Environment
Tao Wang1* , Xuelian Guo1, Guanxu Long2 and Xiaodong Liu1

1 Highway School, Chang’an University, Xi’an, China, 2 Shandong Hi-speed Group Co., Ltd., Innovation Research Institute,
Jinan, China

After the bridge is completed, the structural materials will be gradually eroded or aged
under the influence of climate, temperature, and building environment. Under long-term
static and dynamic loads, the structural strength and stiffness of bridge structures,
including bridge deck and bridge support, will decrease with the accumulation of time.
Bridge modal parameter identification is not only the premise and foundation of health
monitoring, but also the main part of bridge structure dynamic identification. Therefore,
this paper proposes a bridge modal parameter identification model based on Bayesian
method. The model fully considers the uncertainty of parameters and the selection
of modal parameters, and identifies more local information through the probability
distribution of model parameters and a posteriori confidence. The reliability of the bridge
is monitored in real time through the Bayesian dynamic model, and the monitoring error
is only 0.01, which can realize high-precision bridge modal parameter identification.

Keywords: bridge structure monitoring, modal recognition, Bayesian method, energy saving, condition
monitoring

INTRODUCTION

Large bridges are not only key facilities on highway and railway transportation lines, but also
key nodes in urban transportation networks (Jahan, 2020). They are usually expensive and have
a long lifespan. Once an accident occurs, it will cause huge economic losses and even casualties.
Therefore, it is necessary to timely understand the health of bridges through appropriate means and
discover hidden dangers that endanger the safety of bridges (Mitsuru and Yuhu, 2019). However,
safety detection of bridges has long been based on manual methods. People either inspect bridges
regularly, or perform inspection and evaluation in special cases (Wu et al., 2020), which is not only
time-consuming and labor-intensive, but also fails to detect many important structural defects in
time, and cannot issue emergency warnings in advance, especially, it is difficult to the safety reserves
and functional degradation paths of bridges are systematically assessed.

Once quality defects such as cracks, pits, and corrosion of steel bars appear in bridge engineering,
the bearing capacity of the structure is often reduced and the improvement of engineering stability
and reliability is restricted. In order to repair these problems in time, it is necessary to take measures
to strengthen bridge modal monitoring and master the correct data processing methods. This
cannot only fully understand the quality of the project, but also make up for the quality problems
existing in the bridge construction, which is conducive to prolonging the service life of the project
and laying a foundation for the smooth passage of vehicles.

In recent years, with the rapid development of sensor technology, data remote transmission
technology, computer software and hardware technology, signal analysis and processing
technology, and artificial intelligence technology, people have begun to research and develop
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automatic, continuous, and even real-time bridge health
monitoring systems. The successful development of bridge health
monitoring technology will play a role in ensuring the safe
operation of bridges and extending the service life of bridges.
At the same time, the early detection of bridge damage can
effectively save the maintenance cost of the bridge, reduce the
waste of resources, and avoid the inconvenience and loss caused
by frequent maintenance (Zhang et al., 2022) and traffic closure.

The results of some environmental stimulation tests at this
stage show that the changes of modal parameters caused by
environmental factors are very significant, far greater than the
changes caused by structural damage. Researchers at home and
abroad have done a lot of work in this area. Kaloop et al. (2015),
wavelet principal component analysis (WPCA) and spectral
analysis methods were used to establish the time and frequency
domains of bridge deformation, and to analyze the behavior
and motion of bridges under working traffic loads. Peeters and
Roeck (2001) studied the monitoring data of the Z24 Bridge in
Switzerland for 1 year. The results show that the annual relative
change rate of the first fourth-order modal frequencies of the
structure caused by environmental changes is about 14–18%. It
is considered that temperature is the main factor affecting the
modal parameters, and the relationship between temperature and
frequency is basically bilinear. Min et al. (2009) processed the
1-year structural condition monitoring data of Donghai Bridge,
main channel, and cable-stayed bridge. According to the analysis
of coherence and correlation analysis, it is considered that the
ambient temperature and structural vibration level are the main
factors affecting the modal frequency of the bridge in the 1-year
analysis period. Wiberg (2006) prepared a reliable 3D Bernoulli-
Euler girder finite element model for the new RSTA railway
bridge for a comprehensive dynamic analysis using on-site bridge
monitoring for correlation analysis (Peeters and Roeck, 2001;
Wiberg, 2006; Min et al., 2009; Kaloop et al., 2015).

At present, there are still many difficulties in the research of
bridge modal monitoring and damage identification technology
based on environmental impact (Shull et al., 2015). How to
distinguish the variability of structural modal parameters caused
by environmental factors and structural damage, and quantify the
impact of environmental factors on structural modal parameters
is one of the most noteworthy difficulties. This paper mainly
explores the influence of environmental factors on the modal
parameters of the structure, and deeply reveals the influence
mechanism of the environment on the modal parameters of the
structure. Dynamic prediction of bridge performance is done
through Bayesian dynamic linear models (Wang et al., 2010). The
dynamic linear model cannot only monitor information, but also
make real-time online prediction of bridge structural reliability.

CURRENT STATUS OF BRIDGE MODAL
MONITORING

With the development of science and technology and the
improvement of people’s aesthetic requirements for bridge
construction, bridge construction has put forward new
requirements and challenges to bridge engineers in my country

(Asadollahi and Jian, 2016). On the one hand, modern bridges
require large spans, new materials, strong coordination with
the environment, and practicality and beauty. On the other
hand, our bridge builders need to start with bridge design,
engineering, construction, operation, and maintenance to keep
our bridges safe.

Throughout the bridge safety accidents at home and abroad,
the reasons are many, mainly including: poor dynamic design
of bridge structures, lack of strict control during construction,
cutting corners (Hamdi et al., 2021), inadequate maintenance
and management during operation, The real-time monitoring
technology is immature and bears instantaneous loads. Many
bridge collapse accidents have caused widespread concern in the
society. How to ensure the construction safety and operation
safety of the bridge, how to realize the real-time monitoring of
the bridge structure, how to improve the service life of the bridge
(Maity et al., 2022), are a major social issue at present.

At present, the main means of bridge real-time monitoring
is to establish an effective bridge structural health monitoring
system. The health monitoring system is mainly composed
of a sensor system, a signal transmission system, a computer
hardware system, a computer software system, and a signal
analysis and processing system (Wang and Liu, 2018). The health
monitoring system installed on the bridge structure can monitor
the overall and local operation of the bridge structure in real time,
and through the system to measure the key indicators affecting
the operation of the bridge structure, to achieve qualitative
analysis, location analysis and quantitative analysis of bridge
structure damage, and give an early warning when the operating
conditions of the bridge are abnormal to prevent problems before
they occur. At the same time, the static and dynamic behavior
of the actual bridge structure obtained by the bridge health
monitoring system (Franken, 2017) can verify the rationality
of the structural finite element analysis model, various basic
assumptions, design standards and design methods, and provide
decision-making and guidance for maintenance. Based on this, an
in-depth study on the maintenance and management of bridges,
the unknown areas and uncertainties of large and complex
bridges in the process of bridge operation is carried out to provide
a reliable basis for future design and construction.

Because the identification of bridge modal parameters in
the environment is extremely important, scholars at home and
abroad have done a lot of research on it, and have made great
progress. At present, some influential research results are as
follows: Qiyuan (2009) focuses on the identification of modal
parameters of large structures based on modern time-frequency
analysis theory, focusing on the identification of environmental
modal parameters based on continuous wavelet transform and
Hilbert-Huang transform. Simulation analysis and engineering
example analysis show that the method can be applied in practical
engineering. Ubertini et al. (2013) proposed an automatic mode
recognition method. The basic idea of this method is to use SSI to
identify the modal parameters of the system, and then introduce
the pedigree clustering analysis method into the modal parameter
screening process. Engineering examples show that the method
can automatically identify the modal parameters of the system
(Qiyuan, 2009; Ubertini et al., 2013).
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After decades of development, researchers at home and abroad
have made great progress in the identification of structural
modal parameters. Comprehensive analysis of the research
results of domestic and foreign scholars, it can be seen that
SSI has its unique advantages in the identification of structural
modal parameters under environmental conditions, which are
mainly reflected in: SSI does not need to convert time domain
data when identifying structural modal parameters, and can
directly For time domain data without frequency resolution
error. It has strong anti-interference ability to output noise,
and has good identification accuracy to structure frequency,
mode shape and damping. Based on this, the modal parameter
identification method of SSI structure is widely favored by civil
engineering researchers at home and abroad (Yang et al., 2014),
and has become a commonly used structural modal parameter
identification algorithm.

Although researchers at home and abroad have made great
achievements in the identification method of structural modal
parameters based on SSI (Snaebjörnsson et al., 2016), there
are still a series of problems: How to automatically determine
the system order, how to realize the automatic screening of
physical mode and pseudo mode, avoid the subjectivity of manual
screening, and how to solve the numerical control identification
error caused by the interference of environmental factors in the
identification of time-varying structure modal parameters. In
order to improve the efficiency and accuracy of modal parameter
identification, the above problems still need further research.

Based on the shortcomings of the previous analysis, this paper
makes up for the previous shortcomings. Therefore, this paper
mainly studies how to apply Bayesian reasoning to the correlation
analysis of the relationship between bridge modal parameters
and environmental factors, such as ambient temperature,
relative humidity, wind speed and traffic flow, establish the
probability mapping relationship between modal parameters
and environmental factors representing the structural system,
realize the uncertainty quantification of model parameters and
prediction residuals, and realize the bridge modal parameters
and the overall condition of the structure early warning,
assessment and analysis.

BAYESIAN MODEL ANALYSIS

Bayes’ theorem is the core tool of Bayesian reasoning (Le et al.,
2021). Its function is to revise and update beliefs about unknown
parameters based on observed sample data. The calculation of
Bayesian inference requires the introduction of Bayes’ theorem,
so it is necessary to introduce Bayes’ theorem.

The event form of Bayes’ theorem is first introduced:
suppose A1, A2, · · ·, An is an incompatible event,

⋃n
i=1 A is an

unavoidable event, and any event B has:

P (Ai |B ) =
P (Ai) P (B |Ai )∑n
j P
(
Aj
)

P
(
B
∣∣Aj
) (i = 1, 2, · · ·n) (1)

where P (Ai) is the prior probability of event Ai, P (B |Ai ) is the
conditional probability of event B under the premise of event Ai,
and P (Ai |B ) is the posterior probability of event Ai.

From the point of view of conditional probability, P (Ai |B )
is the conditional probability of event Ai when event B occurs.
This situation is common in everyday life: what was considered
impossible is made possible by events, and vice versa. And Bayes’
theorem describes this change mathematically.

If P (B |Ai ) is viewed as a forward probabilistic reasoning
(positive problem) from Ai to B, then P (Ai |B ) can be viewed
as an inverse probabilistic reasoning (inverse problem) from
B to Ai. The inverse problem is usually more difficult to
solve than the corresponding positive problem. In practical
applications, the observation data inevitably contains noise, and
there will be accumulated errors in the calculation process,
which makes the solution of the inverse problem often encounter
difficulties such as non-uniqueness, instability, and non-existence
of the solution. However, Equation (1) directly transforms
the difficult inverse problem solution into the easier forward
problem solution, which also makes Bayesian inference attract
extensive attention in inverse problem research and is applied
to ecosystems, heat conduction, medicine, the universe Inverse
problem solving in various fields such as parameter estimation,
urban environment, etc.

Many scientists and engineering problems are more
concerned with the solution and prediction of uncertain
parameters, which usually appear in the form of random
variables. Discrete events can be obtained in the form of
parameter vectors, and can also be obtained in the form of Bayes’
theorem random variables.

Assuming that parameter θ is a continuous random variable,
X1, X2, · · ·, Xn is an observable random vector of IID (Li et al.,
2005), x = x1, x2, · · ·, xn is a sample observation, and the joint
density of sample x (Abramowicz et al., 2020) is recorded as
parameter θ of the conditional density f (x |θ ) of sample x, It
represents the conditional distribution of a random variable when
the random variable θ is given a certain value. Then for the
observed sample x, the value of the parameter θ is:

f (θ |x ) =
f (θ) f (x |θ )∫

χ
f (θ) f (x |θ ) dθ

(2)

In the formula, f (θ) is the prior probability density function
of the parameter θ, which represents the distribution law
of the parameter θ before the sample data is obtained,
and f (θ) is generally determined according to scientific and
engineering experience.

f (x |θ ) = f (x1, x2, · · ·, xn |θ ) =

n∏
i=1

f (xi |θ ) (3)

The above formula expresses the likelihood function after
a given parameter θ, and expresses how well the model fits
the observed data, where each observed data xi (i = 1, 2, · · ·, n)
is independent of each other. χ is the parameter space, and
different θ correspond to different distributions. f (θ |x ) is the
posterior probability density function of the parameter θ, which
integrates the prior information of the parameter θ and the
information about θ provided by the sample x. Therefore, it
can be understood that after obtaining the sample observation
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x = x1, x2, · · ·, xn, it integrates the prior information and data
information to obtain a more realistic distribution. It can also
be understood as the posterior distribution obtained by updating
the prior distribution, that is, the θ distribution obtained by
improving the understanding of θ.

Classical statistics treats the parameter θ as a definite unknown
constant rather than a random variable. In Bayes’ theorem, the
parameter θ is not a constant, but a random variable, which can
take on different values. The uncertainty of the value of θ can be
represented by a distribution, and f (θ) represents the confidence
of the parameter value. For example, the defective rate p-value
of products produced by a factory per day can be estimated by
testing all products produced on a given day or by sampling some
products (Pingfan, 2013). On a certain day, p is an unknown
constant, but over a long period of time, there is a defect rate
every day whose value fluctuates under the influence of random
factors. Therefore, the defect rate on a given day can reasonably
be regarded as one possible value of the random variable p. If
the inspection record is long, the probability distribution of p
can be determined.

The posterior probability density function of parameter θ is
f (θ |x ), which is determined after observing the data and can
be understood as the updated confidence distribution of the
unknown parameter. For example, p is the reject rate of factory
products. Before sampling, one can assume that p is uniformly
distributed between the interval [0, 1], that is, one knows very
little about p, and assume that p is equally likely to take on
different values. When n products are selected for inspection and
m substandard products are found, the understanding of p can be
corrected. p can still take any value in the interval [0, 1], but the
chance sizes are no longer equal everywhere. Conversely, it can
be argued that p is more likely to be close to m/n and less likely
to be close to 0 or 1.

The denominator
∫
χ

f (θ) f (x |θ ) dθ of formula (2) only
depends on the sample observation value xi (i = 1, 2, · · ·, n),
and has nothing to do with the parameter θ. It only acts as a
regularization factor when computing θ. Therefore, formula (2)
can be simplified to:

f (θ |x )∞f (θ) f (x |θ ) (4)

where ∞ is the scale number, which means there is only one
constant factor on both sides independent of θ, and f (θ) f (x |θ )
is called the kernel of the posterior distribution f (θ |x ). The
corresponding constant can be determined by integrating the
kernel of the distribution density over the entire space. Therefore,
the key to obtaining the distribution density function of random
variables is to obtain the kernel of the distribution density.

BAYESIAN-BASED INTELLIGENT
MONITORING BRIDGE MODAL
PARAMETER EVALUATION

Bayesian dynamic linear models build a dynamic model by
combining subjective and objective information. The model is
tested with the detected structural information so that the final

result is close to the actual situation. Bayesian dynamic linear
models have many advantages. For example, stability is not
assumed, and at the same time, real-time online predictions can
be made based on prior knowledge and sample data. At present,
Bayesian dynamic linear models have been successfully applied in
the fields of bridge evaluation and dam deformation.

The dynamic linear model can be used to describe how the
observed variable depends on the state variable (Zhu et al., 2012)
and how the state variable changes with time, which mainly
represents random disturbances and dynamic state changes
inside the system. Assuming that the state variables and observed
variables obey a normal distribution, this model can be regarded
as a normal linear model, and its observation equation can be
expressed as follows:

yt = Ft
T + vt, vt ∼ N [0, vt] (5)

θt = Gtθt−1 + ωt, ωt ∼ N [0, ωt] t = 1, 2, · · ·, T (6)

(θt−1 |Dt−1 ) ∼ N [mt−1, Ct−1] (7)

In the formula: yt observation variable; θt state variable, both
are normal random variables. vt observation error vector; ωt
state error vector, the same as a zero-mean normal random
variable; Dt−1 − (t − 1) and all its previously valid information.
The model pair has a quaternion element combination
{F, G, V, W}t = {Ft, Gt, Vt, Wt} at each time t, where Ft is the
known moment matrix; Gt is the known state transition moment
matrix; Vt is the squared difference matrix, with known and
unknown two kinds Case; Wt known variance matrix, which
mainly represents the uncertainty in the whole process from time
(t − 1) to time t. vt and wt represent observation error and state
error, respectively, and they can be assumed to be independent.
From formulas (5) to (7), the relationship between observation
and state variables can be deduced:(

yt |θt
)
= N

[
FT

t θt, V
]
, (θt |θt−1 ) = N [Gtθt−1, Wt] (8)

If yt represents the observed value of resistance to degradation
at timet, xt represents the mean value at time t (anti-degradation;
Sinsamutpadung and Sasaki, 2019; Li et al., 2021a,b), and vt
represents the observation error, the established observation
equation is:

yt = xt + βt + vt, vt ∼ N [0, Vt] (9)

Equation (9) corresponds to (5), then there is Ft =

(
1
0

)
In fact, the average value of resistance levels changes over time.

βt shows the actual change in the mean resistance level at time
t. State variables mainly include the mean value of resistance
and its changes. The degradation resistance state equation can be
expressed as:

xt = xt−1+βt−1 + ωt1, ωt1 ∼ N [0, ωt1] (10)

βt = βt−1 + ωt2, ωt2 ∼ N [0, ωt2] (11)
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Equations can be established from (10) to (11):(
Xt
βt

)
=

[
1 1
0 1

](
Xt−1
βt−1

)
+

[
ωt1
ωt2

]
(12)

Substitute into (6), we can get:

Gt =

[
1 1
0 1

]
, θt =

(
Xt
βt

)
, ωt =

[
ωt1
ωt2

]
(13)

In the formula, ωt1 and ωt2 are state variables, mainly referring
to the state uncertainty in the process from time (t − 1) to time
t. The state uncertainty value can represent a normal random
variable. From the above formula, we can derive the equation of
state:

yt = Ft
Tθ+ vt, vt ∼ N [0, vt] (14)

θt = Gtθt−1 + ωt, ωt ∼ N [0, wt] t = 1, 2, · · ·, T (15)

In the formula : Ft =

(
1
0

)
, G1 =

[
1 1
0 1

]
, θt =

(
Xt
βt

)
,

ωt =

[
ωt1
ωt2

]
, W =

(
σ2

X 0
0 σ2

β

)

The above is that we intelligently monitor and analyze bridge
modal parameters through Bayesian method, and monitor bridge
parameters in real time to ensure stability and safety (He and
Kusiak, 2017; Cui et al., 2021; Li et al., 2021a,b, 2022; Zhou et al.,
2021; Li, 2022a,b).

SIMULATION

For a reinforced concrete bridge with a span of 192.3 m, the
numerical control real-time monitoring is shown in Table 1.

TABLE 1 | Real-time monitoring data.

Time/d Endurance/MPa Time/d Endurance/MPa

1 20.60 16 24.23

2 19.37 17 21.03

3 23.25 18 22.56

4 18.64 19 17.58

5 22.30 20 18.12

6 19.78 21 24.07

7 22.10 22 22.09

8 22.34 23 18.92

9 20.59 24 24.53

10 27.64 25 21.67

11 21.91 26 29.16

12 30.43 27 24.32

13 20.41 28 19.87

14 19.67 29 16.76

15 22.15 30 24.20

Bridge monitoring programs include resistance and strain
assessments of specific components of the structure, as well as
long-term safety assessments of the entire bridge structure. The
monitoring data only consider the stress changes caused by
vehicle load, temperature, shrinkage and creep and structural
changes, and do not include the stress information caused
by the dead load of steel plates and concrete. Set the bridge
location to crack.

According to the monitoring data and the above formula, the
prediction equation is established as follows:

yt = mt + vt, vt ∼ N [0, V] (16)

The equation of state is:

mt = mt−1 − 0.0321+ ωt, ωt ∼ N [0.Wt] (17)

The initial information is as follows:

mt−1 |Dt−1 ∼ N
[
24.5102, 4.56152] , LN

[
3.1812, 0.18612]

(18)
In the formula, yt is the monitoring limit resistance at

time t. mt is the state value at t. V can be approximated by
using stochastic information from monitoring extreme data and
smoothing trend terms.

It can be approximated by formula (18):

Wt = −Ct−1 + Ct−1/δ (19)

N [·] is the normal probability distribution and LN [·] is the
log-normal probability distribution.

As shown in Figure 1, the lower structure of the bridge
is the first and second parts in the figure, and the structure
mainly includes the pier part. The temperature around the
bridge pier changes greatly, and it is eroded and worn for a
long time, and the foundation settlement is uneven, resulting
in the shrinkage and expansion of the concrete. For a long
time, the pier part will appear cracks, corrosion, falling off
and so on. The superstructure is shown in the Figure 1(3–
5) parts are bridge supports, Figure 1(6) parts are bridge
hangers and Figure 1(7) parts are bridge deck structures. The
cracks in the upper part of the bridge are mainly caused by
improper design of the bridge deck web size, unreasonable

FIGURE 1 | Simple diagram of bridge damage.
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specifications and quantity of steel bars, unsatisfactory concrete
mix ratio, and overloaded vehicles. The damage of the bridge
support is caused by the poor manufacturing process of the
bridge bottom plate and the wet environment around the
bridge deck steel bars, resulting in uneven resistance on the
support and changes in the bearing capacity of the bridge.
The main reason for the corrosion of the boom is that
the boom is exposed to the atmospheric environment for
a long time, the oxidation reaction occurs, the protective
layer on the surface of the boom is damaged, and the
maintenance of the boom is not timely, resulting in serious
corrosion of the boom.

By observing Figure 2A, it can be seen that there is a
measurement error at point 2, which is 0.01 different from the

FIGURE 2 | Intelligent monitoring bridge damage curve and signal fluctuation
frequency. (A) Comparison between actual damage and measured damage in
this paper. (B) Monitoring signal fluctuation frequency.

actual damage position, and the monitoring errors at points
6 and 7 are 0.005 and 0.01; Bias, but the error is small,
relatively speaking, the accuracy is high. It can be seen from
Figure 2B that during monitoring, the damage location has
obvious frequency fluctuations, up to 45 Hz, and the fluctuation
is irregular, indicating that the parameters of the bridge have
changed in the intelligent monitoring environment, and the
damage location has obvious fluctuations, so that we can clearly
know The damage location tends to be consistent with the
actual damage location, which can monitor the problem well,
reduce the degree of bridge damage, reduce economic losses, and
ensure the safety of the masses. From the analysis results and
the actual situation, it can be seen that some damages of the
bridge have a certain influence on the bearing capacity of the
bridge, but do not affect the load requirements of the bridge. After
intelligent monitoring, the overall strength and stiffness of the
bridge meet the requirements of the basic design specifications,
but the deflection coefficient of some positions is very close to the
specification value, indicating that its stiffness is weak and there
is a certain risk.

CONCLUSION

During the operation of bridge engineering, due to the
quality defects of the project itself, coupled with the
influence of vehicle load and natural environment, it may
cause problems such as cracks, settlement, corrosion of
steel bars, reduce the quality of the project, and have an
adverse impact on vehicle traffic. In order to achieve timely
repair and treatment of these problems, it is necessary
to take measures to strengthen bridge monitoring and
master the correct data processing methods. Correct bridge
monitoring methods can help to deeply understand the quality
of bridge engineering and promote the improvement of
monitoring level.

This paper proposes a Bayesian-based bridge modal
parameter identification model. The uncertainty of model
parameters and model selection can be fully considered, and
the posterior probability distribution and posterior confidence
of model parameters can be obtained. Compared with the
traditional parameter monitoring method, this method
overcomes the defects in the static model, contains more
information, has better application value, and can better
provide the basis for the subsequent monitoring of bridge
modal parameters. In the actual engineering application
process, the Bayesian dynamic model can be used to monitor
the bridge reliability in real time to further improve the
parameter accuracy.

The future research directions of intelligent monitoring
of bridge modal parameters mainly include four aspects.
One is to effectively control the influence of noise
and unstable factors. The second is to improve the
accuracy of bridge damage diagnosis methods. The third
is to develop a low-cost and practical bridge health
monitoring system and the fourth is to actively identify the
degree of damage.
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