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Accurately delimiting phylogenetic relationships and taxonomic status

is important for understanding species diversity and distributions and

devising effective strategies for biodiversity conservation. However, species

delimitation is controversial in Gymnocypris eckloni, a schizothoracine fish

endemic to the Qinghai–Tibetan Plateau. The aim of this study is robustly

identifying the phylogeny of G. eckloni in the Yellow River (YR) population

and Qaidam basin (QB) population. The specific-locus amplified fragments

sequencing (SLAF-seq) is employed with comprehensively sampling of

schizothoracine fishes. In total, 350,181,802 clean reads and 5,114,096

SNPs are identified from SLAF-seq. Phylogenetic analysis recovers a non-

monophyletic population of G. eckloni between YR and QB populations,

representing an independent phylogenetic relationship between the two

populations. Species delimitation analyses by SNAPPER and GMYC methods

using the genome-wide SNP data confirm that their taxonomic statuses

are separated. This study highlights the importance of further reconsidering

clearer taxonomy, which would improve the genetic diversity conservation of

Tibetan highland fishes.

KEYWORDS

genetic diversity conservation, non-monophyletic, population phylogeny structure,
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Introduction

The Gymnocypris eckloni Herzenstein (Teleostei:
Cyprinidae) is a schizothoracine fish endemic to the Qinghai–
Tibetan Plateau. This species includes two geographical
populations, the Yellow River population (YR) and the
Qaidam basin (QB) population. The holotype of G. eckloni
was described in 1891 by a specimen from the QB population
(Herzenstein, 1888).

The phylogenetic relationship between the YR and QB
populations was a controversial topic. Some studies reported
that (Wu and Wu, 1992; Li et al., 2020) the morphological
and phenotypic characteristics were generally the same between
the YR and QB populations of G. eckloni. Based on a single
mitochondrial cytochrome b gene, the previous phylogenetic
study (He and Chen, 2007) indicated that the two populations
formed monophyly (Wu and Wu, 1992; He and Chen, 2007;
Li et al., 2020). On the contrary, by increasing species,
sample sizes, and the number of informative genetic markers,
our previous studies (Zhao et al., 2005, 2009; Zhang et al.,
2020) accidentally found that YR and QB populations were
clustered into two lineages. The opposite findings might
result from the limited information provided by a single
mitochondrial cytochrome b gene (Cummings et al., 1995;
Zou and Ge, 2008).

Specific locus amplified fragment sequencing (SLAF-seq)
is a newly developed simplified deep genome sequencing
technology for large-scale single nucleotide polymorphism
(SNP) discovery and genotyping, with advantages of low
cost, high accuracy, specificity, and repeatability (Chen et al.,
2013; Jiang et al., 2015; Liu et al., 2018; Jing et al.,
2020). To illustrate the taxonomic status of YR and QB
populations of G. eckloni, we thus adopted this advanced
method with a comprehensive sampling of schizothoracine
fishes (Figure 1), which reached a convincing result based on
nuclear markers.

Materials and methods

Sample collection

The G. eckloni samples were collected in the Yellow
River and Qaidam basin. Samples were net-captured to
contain pelvic fin and stored immediately in liquid nitrogen
for DNA extraction. The Qinghai Provincial Bureau of
Fishery approved and supervised field investigations. All the
animal experiments were conducted according to procedures
described in “Guidelines for Animal Care and Use” and
approved by the Animal Care and Use Committee at the
Northwest Institute of Plateau Biology, Chinese Academy
of Sciences.

Library construction and data
processing

Genomic DNA was isolated from the fin using a standard
phenol–chloroform method (Sambrook et al., 1989). DNA
quality and concentration were assessed by a NanoDrop 2000
spectrophotometer (Nanodrop Technologies, Wilmington, NC,
USA) and gel electrophoresis. The preparations of SLAF
sequencing libraries were according to the description by
Tang et al. (2019). Briefly, genomic DNA was digested by
RsaI and HaeIII enzymes, respectively, and then ligated to
Duplex Tag-labeled sequencing adapters with T4 DNA ligase
(Life Technologies, Carlsbad, CA, USA) (Kozich et al., 2013).
PCR reactions were performed using diluted restriction-ligation
samples, dNTP, Q5

R©

High-Fidelity DNA Polymerase (NEB
China, Beijing, China), and then purified using Agencourt
AMPure XP beads (Beckman Coulter, High Wycombe, UK).
The 300–700 bp fragments were selected and purified with
QIAquick Gel Extraction Kit. According to the manufacturer’s
recommendations, the SLAF library was sequenced in the
Illumina HiSeq 2500 system (Illumina, Inc., San Diego, CA,
USA).

Raw reads of four samples of G. eckloni from two geographic
populations, together with raw data from 14 schizothoracine
fishes available in the NCBI SRA dataset (Table 1), formed the
dataset for the current study.

The raw data were filtered to generate high-quality clean
reads, increasing the confidence of variant calling. This step was
processed using the FASTQ preprocessor (Chen et al., 2018) in
terms of three stringent filtering standards: (1) removing reads
with ≥10% unidentified nucleotides; (2) removing low-quality
reads (the percentage of bases with quality Phred-scaled quality
score ≤ 20); and (3) removing reads aligned to the barcode
adapter. Based on the genome size and guanine-cytosine content
of G. eckloni, the whole genome sequencing of Gymnocypris
przewalskii (NCBI SRA database Bioproject ID PRJNA664553)
was used as the reference genome. The clean reads were aligned
against that reference genome using the Burrows–Wheeler
Aligner (Abuín et al., 2015; Wanghe et al., 2020) with the setting
“mem 4 -k 32 –M”, where “k” was the minimum seed length and
“-M” was an option used to mark shorter split alignment hits
as secondary alignments (Li and Durbin, 2009). Variant calling
was performed using the GATK’s Unified Genotyper. SNPs were
filtered using GATK’s Variant Filtration with proper standards (-
Window 4, -filter “QD < 2.0 || FS > 60.0 || MQ < 40.0”, -G_filter
“GQ < 20”).

Phylogenetic analysis

The phylogenetic analysis by the maximum likelihood
(ML) method was performed. The ML analyses were
constructed using tree-building software raxmlGUI v1.3.1
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FIGURE 1

Sampling localities of the specimens. The black points are sampling sites, and the numbers in those points refer to the locality numbers in
Table 1.

(Silvestro and Michalak, 2012) under the substitution
GTRGAMMAI model, a graphical interface, and a toolkit for
phylogenetic analyses using RAxML (Silvestro and Michalak,
2012; Edler et al., 2021). The node support estimation was
assessed by 1,000 bootstrap replicates, and the other parameters
were set to default. The option of combining all ML trees
into a single file was selected to generate a consensus tree
(Edler et al., 2021). Oxygymnocypris stewartii was regarded as
the out-group for the phylogenetic analysis. The consensus
tree was viewed and visualized by FigTree v1.4.4 software
(Rambaut, 2009), and the publication-ready figure of the tree
was produced by the Adobe Illustrator CC 2020 software
(Wang et al., 2019).

Species delimitation

Generalized mixed Yule coalescent model
The Generalized Mixed Yule Coalescent (GMYC) model

(Fujisawa and Barraclough, 2013) was implemented to detect
shifts in branching rates between intra- and interspecific

relationships. The GMYC web server at the multiple-threshold
version on https://species.h-its.org/gmyc/ was used to set up
this model. We transformed the initial RAxML tree to a time-
calibrated phylogenetic tree as the input of the GMYC model
by the RelTime method (Tamura et al., 2018). Based on our
previous studies (Wanghe et al., 2017; Tang et al., 2019),
the most recent common ancestor between Schizopygopsis
microcephalus and Schizopygopsis pylzovi set at 1.10–0.70 MA
and between Gymnocypris przewalskii and G. eckloni (YR
population) was set at 0.15 MA.

SNAPPER analyses
SNAPP (SNP and AFLP Package for Phylogenetic analysis)

is a method applied to infer species trees and demographics
from independent biallelic markers such as well-spaced SNPs
in a full coalescent analysis (Bryant et al., 2012). SNAPPER is
a computationally more efficient method compared to SNAPP
(Stoltz et al., 2021). The SNAPPER v1.0.2 package in BEAST
v2.6.7 (Stoltz et al., 2021) was used to implement this analysis.
The parameter of path sampling was set as 48 steps, with
MCMC length = 100,000 and pre-burnin = 1,000, following
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TABLE 1 Taxonomic information, sampling sites, and GenBank
accession numbers of all species used in phylogenetic analysis.

No. Species Accession
no.

Locality (number
in Figure 1)

1 Chuanchia labiosa SRR7628160 Gande, Qinghai (0)

2 Chuanchia labiosa SRR7628161 Gande, Qinghai (0)

3 Gymnocypris chilianensis SRR7628111 Wuwei, Gansu (1)

4 Gymnocypris chilianensis SRR7628131 Wuwei, Gansu (1)

5 Gymnocypris eckloni (YR) PRJNA842780 Golmud, Qinghai (13)

6 Gymnocypris eckloni (YR) PRJNA842780 Golmud, Qinghai (13)

7 Gymnocypris eckloni (QB) SRR7628145 Tongde, Qinghai (2)

8 Gymnocypris eckloni (QB) SRR7628148 Tongde, Qinghai (2)

9 Gymnocypris namensis SRR7628119 Damxung, Tibet (3)

10 Gymnocypris namensis SRR7628155 Damxung, Tibet (3)

11 Gymnocypris potanini SRR7628133 Songpan, Sichuan (4)

12 Gymnocypris potanini SRR7628117 Songpan, Sichuan (4)

13 Gymnocypris przewalskii SRR7628112 Haiyan, Qinghai (5)

14 Gymnocypris przewalskii SRR7628113 Haiyan, Qinghai (5)

15 Oxygymnocypris stewartii SRR7628120 Zhongba, Tibet (6)

16 Oxygymnocypris stewartii PRJNA842780 Zhongba, Tibet (6)

17 Platypharodon extremus SRR7628143 Madoi, Qinghai (7)

18 Schizopygopsis anteroventris SRR7628116 Yushu, Qinghai (8)

19 Schizopygopsis anteroventris SRR7628110 Yushu, Qinghai (8)

20 Schizopygopsis chengi SRR7628164 Banma, Qinghai (9)

21 Schizopygopsis chengi SRR7628163 Banma, Qinghai (9)

22 Schizopygopsis kessleri PRJNA842780 Golmud, Qinghai (14)

23 Schizopygopsis kessleri PRJNA842780 Golmud, Qinghai (14)

24 Schizopygopsis kialingensis SRR7628154 Têwo, Gansu (10)

25 Schizopygopsis kialingensis SRR7628153 Têwo, Gansu (10)

26 Schizopygopsis malacanthus SRR7628135 Yushu, Qinghai (11)

27 Schizopygopsis malacanthus SRR7628136 Yushu, Qinghai (11)

28 Schizopygopsis microcephalus SRR7628134 Golmud, Qinghai (12)

29 Schizopygopsis microcephalus SRR7628132 Golmud, Qinghai (12)

30 Schizopygopsis pylzovi SRR7628142 Gande, Qinghai (0)

31 Schizopygopsis pylzovi SRR7628144 Gande, Qinghai (0)

Andrea et al. (Quattrini et al., 2019). Samples were assigned
to the following alternative species model (Figure 2): (1)
run A, lumping by the current taxonomy delimited based
on morphological discrimination, (2) run B, lumping by
morphological discrimination but splitting the two populations
of G. eckloni; (3) run C, lumping by genus; (4) run D, lumping
by GMYC; (5) run E, lumping by basin/habitat; and (6) run
F, lumping by basin but merging the two populations of
G. eckloni. Marginal likelihood estimates (MLE) were obtained
for each different model run in SNAPP analyses. The different
species delimitation models were then ranked using the BFD∗

(Bayes factor delimitation with genomic data) methods (Leaché
et al., 2014). Bayes factor (BF) was calculated between each
alternative model by subtracting the MLE between two models,
then multiplying the difference by two (Eq. 1). A positive BF
value indicates support in favor of model 1, and a negative BF

value indicates support in favor of model 2 (Kass and Raftery,
1995; Leaché et al., 2014). The strength of support from BF
comparisons of competing models can be evaluated using the
framework proposed by Kass and Raftery (1995). The BF scale is
as follows: 0 < BF < 2 is not worth more than a bare mention,
2 < BF < 6 is positive evidence, 6 < BF < 10 is strong support,
and BF > 10 is decisive:

BF = 2 ×
(
model 1−model 2

)
(1)

In Eq. 1, model 1 and model 2 are the MLE values obtained by
two alternative runs of SNAPPER analyses.

Results

Specific-locus amplified fragment
sequencing and single nucleotide
polymorphism discovery

In total, 31 individuals (Figure 1 and Table 1) generated
350,181,802 clean reads, with an average quality score of
96.81%. We identified 5,114,096 SNPs with a MAF ≥ 0.05 and
integrity ≥ 80%. The number of insertions and deletions were
261,371 and 312,411, respectively. All SLAF-seq raw data are
available on NCBI SRA with accession numbers. The detailed
information on the SNP number, index number, raw reads, clean
reads, and mapping the ratio (Supplementary Table 1).

Phylogenetic analyses

Using 5,114,096 high-quality SNPs, 31 accessions from 15
species delimited based on morphological discrimination were
classified into three major clades. A majority of the identified
morphospecies formed well-supported monophyletic clades in
the clades (Run A in Figure 2). While the same genus (Run
C in Figure 2) and the fish species in the same basin/habitat
(Run E in Figure 2) were not grouped with a monophyletic
clade. Interestingly, we found that the YR and QB populations
of G. eckloni were not grouped (Figure 2). YR population and
G. przewalskii were clustered into one lineage and formed a
paraphyletic relationship with the QB populations.

Species delimitation

Results of generalized mixed Yule coalescent
The multi-species coalescent thresholds of the GMYC model

were 0.70 and 0.95 MA (Supplementary Figure 1A), indicating
that the time before all nodes reflected speciation events and
after which all nodes reflected coalescent events (Milan et al.,
2020). The GMYC model delimited six primary lineages (Run D
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FIGURE 2

ML tree constructed by SALF-seq, plus a bar named Run D of GMYC results. Bootstrap support values were labeled in each node, and YR and
QB populations of Gymnocypris eckloni were highlighted in red. Outgroup Oxygymnocypris stewartii was excluded from this tree. Remarks:
The bars from Run A to Run F are the alternative species model for SNAPPER analyses. The same code in a bar refers to the same group for an
alternative model. (1) Run A, lumping by the current taxonomy delimited based on morphological discrimination. (2) Run B, lumping by
morphological discrimination but splitting the two populations of G. eckloni. (3) Run C, lumping by genus. (4) Run D, lumping by GMYC. (5) Run
E, lumping by basin/habitat. (6) Run F, lumping by basin/habitat but merging the two populations of G. eckloni.

in Figure 2 and Supplementary Figure 1B) and recovered YR
and QB populations of G. eckloni as separate individual groups.

Results of SNAPPER
The results of species delimitation by SNAPPER (Table 2)

also decisively supported two separate individual groups
between YR and QB populations of G. eckloni. The higher
MLE value indicates a more likely alternative species model.
Run A was the currently defined morphospecies with the
second maximum MLE. The MLE of Run B was the maximum.
Compared with Run A, Run B assumed that the YR and
QB populations of G. eckloni were split into two independent
species. The BF value between Run A and Run B was –644,
which decisively supported in favor of Run B. Compared with
Run E, Run F merged the two populations of G. eckloni, but the
BF [value = (–2,743 – –2759) × 2 = 32] significantly supported
that Run E (i.e., the two populations were separated) was the
more likely alternative scenario.

Discussion

Gymnocypris eckloni is an essential freshwater germplasm
species in the Tibetan Plateau (Li et al., 2020). Clarifying
the phylogeny of this species would play a significant
role in understanding the evolution of highland fishes
and their biodiversity conservation. The previous studies
(Zhao et al., 2005, 2009; He and Chen, 2007) did not agree
on the phylogenetic relationship and taxonomic status of
G. eckloni. In this study, we empirically confirmed that the
phylogenetic relationship between the two populations was
independent and that their taxonomic statuses were separated
by applying the SLAF-seq of available schizothoracine fish.
Those results accorded with our previous studies (Zhao
et al., 2005, 2009), inferring that the YR population of
G. eckloni was a substantially older divergence compared
with the lineage of the QB population. Some related
studies on fish species reported that (Cui et al., 2013;
Tang et al., 2019) the convergent evolution, caused by
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TABLE 2 SNAPPER results for different species delimitation models.

Model Run A Run B Run C Run D Run E Run F

MLE1 –2,088 –1,766 –2,783 –2,299 –2,743 –2,759

BF2 0 –644 1,390 423 1,310 1,343

Rank 2 1 6 3 4 5

1MLE, the marginal likelihood estimate obtained by the SNAPPER analyses.
2BF, the Bayes factor calculated by equation 1 compared with the MLE value of Run A = model 1.

dwelling in the same ecological environment, would produce
an extensive reticulate evolution process, resulting in
morphological similarity within some genetically close
species. The above-discussed research would help explain
the misled taxonomic definition of G. eckloni. Therefore,
we suggested that a more definite taxonomy of G. eckloni
in the Qaidam basin population should be reconsidered
to improve the conservation of genetic diversity for this
endemic fish.

In future studies, genome-wide SNP data would
probably produce some direct evidence (Leaché
et al., 2014; Kim and Roe, 2021). Additionally, the
hidden morphological divergence between the two
populations of G. eckloni needs to be examined by
advanced approaches (Li et al., 2020), such as modern
geometric morphometrics (Wang et al., 2017) and micro-
computed tomography (Li et al., 2020), to test the
unknown species taxon in the Qaidam basin population
(Tang et al., 2016).

Conclusion

This study using SLAF-seq, a newly developed simplified
deep genome sequencing technology for large-scale
SNP discovery and genotyping, provide information for
further understanding of the phylogenetics, adaptation,
and evolution of G. eckloni. Our results emphasized
that the phylogenesis between the YR and the QB
population of G. eckloni was genetically independent.
In summary, the current study underlines the great
significance of G. eckloni in the Qaidam basin in
protecting Tibetan highland fishes, laying the foundation
for reconsidering a more straightforward taxonomy of Tibetan
highland fishes and providing new insights for further
taxonomic study.
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