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Urban ozone (O3) pollution has become a prominent environmental threat to

public health while the relationship between O3 formation and driving factors

remains elusive, particularly for megacities in the Shandong Peninsula of

China. In this study, we use intensive ambient measurements of trace gases to

comprehensively investigate the magnitude of O3 pollution in Jinan city from

2013 to 2020. Further, emission inventory and OMI NO2 columns are used for

probing changes in precursor emissions. Ground-level measurements indicate

degraded O3 air quality afterward in 2015 and depict city-wide elevated O3

levels (higher than 140 µg/m3 in the warm season). For precursor emissions, it

is found that NOx emissions have decreased more than 30% due to successful

regulation e�orts, which is in excellent agreement with NO2 columns from

OMI. The method of objective synoptic weather pattern classification [T-Mode

principal component analysis (PCT)] is adopted to distinguish the associated

meteorological parameters under various synoptic patterns which govern

the variability in regional O3 levels. Among identified synoptic patterns, Type

2 and Type 8 featured by low sea level pressure (SLP), high temperature,

and strong ultraviolet radiation are the most prevalent synoptic patterns in

spring and summer, respectively, which are prone to the occurrence of O3

exceedances. This work provides a detailed view of long-term O3 levels and

the relationship between precursors andmeteorological conditions in a typical

densely populated city in northern China, showing implications for developing

O3 mitigation strategies.
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Introduction

Ozone (O3) is a criteria air pollutant that forms by

photochemical reactions of precursors [NOx and volatile

organic compounds (VOCs)] under the presence of sunlight.

Exposure to elevated O3 levels could induce a variety of adverse

impacts on human health (Cromar et al., 2019; Lin et al.,

2019; Yang et al., 2021) and affect the productivity of sensitive

vegetation (Vlachokostas et al., 2010; Dong et al., 2021; Li

et al., 2021a). With the rapid industrialization and urbanization

in China, severe O3 pollution has emerged as a pressing

environmental concern in densely populated areas (Chan and

Yao, 2008; Li and Huang, 2019; Dai et al., 2021; Li et al., 2021b;

Xiong et al., 2021; Zhao et al., 2021), which is contrary to

the steadily improved particle matter (PM) pollution over the

past decade. In particular, Beijing-Tianjin-Hebei (BTH), Yangtze

River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin

(SCB) are recognized as the most polluted city clusters in China.

Given the urgent demand to mitigate urban O3 pollution, it

is crucial to characterize O3 variations and identify dominant

factors that influence O3 formation over major city clusters.

The fate, transport, and removal of O3 in the atmosphere

are largely determined by meteorological conditions (Wang

et al., 2010; Pawlak and Jarosławski, 2014). Synoptic patterns

act as the crucial factor which governs the variations of O3

levels induced by meteorological processes. Prior studies have

investigated the relationship between various synoptic patterns

and associated O3 changes in China through both modeling

and statistical studies. Using a circulation classification method,

Shu et al. (2016) found that the circulation pattern featured

by stable western Pacific subtropical high could enhance O3

production over the YRD and indicated that the frequency of

this meteorological phenomenon showed a strong relationship

with O3 exceedance events. Wang et al. (2021) reported that

synoptic forcing dominated by sea-land breeze contributed

significantly to O3 formation in PRD. Yang et al. (2020)

distinguished two typical synoptic patterns which triggered O3

episodes in the SCB based on the WRF-CMAQmodel. Previous

studies assessing the impacts of synoptic patterns on O3 have

been restricted to several typical O3 episodes andmainly focused

on BTH, YRD, PRD, and SCB, while little attention has been paid

to megacities within these city clusters.

Jinan, the capital of Shandong Province, is recognized as

one of the “2+26” cities of the channel of the BTH city

cluster. While there have been considerable efforts in reducing

air pollutants emissions, O3 levels have increased by 17.3%

in 2019 compared with 2013 in Jinan, posing a challenge to

environmental management. The statistical assessment reported

that O3 exceedance is the major pollutant in 2020, accounting

for 42.2% of air quality non-attainment in Jinan. The recent

analysis by Lyu et al. (2019) demonstrated that O3 episodes in

Jinan are closely related to synoptic-driven dynamics. Therefore,

a better understanding of dominant processes that affect O3

levels in Jinan is required to design and implement effective O3

regulation policies.

In this work, ambient measurements of trace gases from

2013 to 2020 are used to determine the magnitude of O3

pollution in Jinan. Historical O3 levels and occurrence of

exceedance events in Jinan are revealed. Further, the trend of

NOx emissions is inferred from bottom-up emission inventory,

as well as satellite observations, aimed at probing precursor

emission changes from 2013 to 2020. Daily synoptic patterns are

classified based on the objective T-Mode principal component

analysis (PCT)method then combine with ground-level ambient

measurements for examining the influence of different synoptic

patterns onO3 levels in Jinan. The findings of this study not only

help understand long-term variations of O3 levels but also have

strong implications for designing and implementing effective

regulatory policies in Jinan.

Materials and methods

Ambient air quality measurements

In this study, gaseous pollutants concentrations are

collected from 14 national ambient air quality monitoring sites

operated by China National Environmental Monitoring

Center (CNEMC) and 11 local ambient air quality

monitoring stations operated by Jinan Eco-environment

Monitoring Center from 2013 to 2020 (locations shown in

Figure 1). To identify variations among different type sites,

ShiJianCeZhan (SJCZ), JiShuXueYuan (JSXY), PaoMaLing

(PML), NongKeSuo (NKS), and ZhongZiCangKu (ZZKU)

are selected for representing O3 levels at urban, industry,

rural, suburb, and near-road (traffic) conditions (marked in

Figure 1).

Here, we use the maximum daily average 8 h

(MDA8) O3 concentration as the metric for assessing

O3 pollution and MDA8 values >160 µg/m3 are

identified as an exceedance day (which corresponds

to National Ambient Air Quality Standards (NAAQS)

(GB 3095-2012) for O3 concentration). Daily average

concentrations of CO, NO2, and NO are calculated from

hourly observations.

ERA5 reanalysis dataset

The ERA5 meteorological reanalysis from the European

Center for Medium-Range Weather Forecasts (ECMWF) is

adopted to represent meteorological phenomena over north

China. The study domain is from 30◦N to 42◦N along the

latitude and from 108◦to 128◦E along the longitude with

a grid resolution of 0.25◦ × 0.25◦. The daily sea level

pressure (SLP) is used to classify the synoptic weather pattern
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FIGURE 1

Locations of ambient air quality monitoring stations in Jinan city.

at 08:00 local solar time (LST) from 2013 to 2020 over

North China (Li et al., 2017). Other meteorological factors

include 2m temperature (T2M), relative humidity at 1,000 Pa

(RH), downward ultraviolet radiation (UVB), and 10m of

wind fields.

Objective synoptic pattern classification

The obliquely rotated principal components analysis (PCA)

in T-mode (PCT) is a mathematical method based on data

similarity and variance maximization (Huth, 1996; Huth

et al., 2008). This method decomposes the original high-

dimensional data into the principal component matrix and

the loadings matrix then selects several principal components

with large variance contributions and further rotates them

obliquely. Finally, the classification of synoptic patterns is

performed for each time period according to the calculated

loadings. The synoptic classification software (http://www.

cost733.org) (Philipp et al., 2010) is provided by the COST

action 733, so as to obtain more accurate and stable

synoptic patterns.

Anthropogenic emission inventory

The Multi-resolution Emission Inventory for China (MEIC)

is a bottom-up inventory that has been widely used in

quantifying anthropogenic emissions and chemical transport

modeling (Wu et al., 2020; Yang et al., 2020; Wang et al.,

2022). It provides monthly human-induced emissions across

China, with a spatial resolution of 0.25◦ × 0.25◦ (Zheng et al.,

2018). Anthropogenic sectors in MEIC include power plants,

agriculture, industrial, transportation, and residential.
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FIGURE 2

Probability distributions of MDA8 O3 concentration in 12 months during 2013–2020 in Jinan city.

TABLE 1 O3 exceedance events and annual average MDA8 O3

concentrations from 2013 to 2020 in Jinan city.

Year O3 exceedance Proportion of Annual average

days O3 alert day % O3 (µg/m
3)

2013 63 17.3 98.0

2014 81 22.2 106.6

2015 66 18.1 102.5

2016 71 19.4 105.2

2017 69 18.9 108.4

2018 92 25.2 114.2

2019 94 25.8 114.5

2020 73 20.0 111.5

OMI NO2 columns

Ozone Monitoring Instrument (OMI) is an ultraviolet-

visible spectrometer onboard the NASA Aura satellite, with

a sun-synchronous orbit that crosses the Equator at around

13:45 local time (Levelt et al., 2006; Boersma et al., 2011). It

has a 2,600 km cross-track swath length which enables daily

TABLE 2 Average concentration of MDA8 O3 over Jinan city during

warm season (April–September) from 2013 to 2020.

Year Industry Traffic Urban Suburb Rural

2013 137.5 156.1 129.4 117.8 122.0

2014 114.9 148.4 131.5 132.2 152.6

2015 104.6 118.1 123.9 132.6 147.8

2016 126.8 146.6 131.4 133.2 161.4

2017 128.4 140.6 146.7 134.0 131.8

2018 150.5 152.5 146.3 146.0 127.0

2019 162.2 161.9 159.6 149.4 132.0

2020 143.0 153. 7 157.4 145.4 139.8

coverage across the globe. Here, the tropospheric NO2 retrieval

product developed fromQuality Assurance for Essential Climate

Variables (QA4ECV) is used for inferring the trend in NO2

columns and probing the spatial changes in NO2 columns in

Jinan over time (Zara et al., 2018). The development algorithm

of QA4ECV NO2 from OMI involves multi-step processes,

including the calculation of air mass factor (AMF), conversion of

NO2 slant column toNO2 vertical column, and data assimilation

Frontiers in Ecology andEvolution 04 frontiersin.org

https://doi.org/10.3389/fevo.2022.930569
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liang et al. 10.3389/fevo.2022.930569

FIGURE 3

Sector-based anthropogenic NOx emissions derived from MEIC inventory during warm season (April-September) from 2013 to 2020 in Jinan

city.

FIGURE 4

OMI mean tropospheric NO2 vertical column density (VCD) during warm season (April–September) from 2013 to 2020 over Jinan city.
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FIGURE 5

Sea level pressure distribution in 9 synoptic patterns during 2013–2020 in North China.

from global chemical transport model TM5. The accuracy of

QA4ECVNO2 has undergone rigorous validation against global

differential optical absorption spectroscopy (DOAS) instrument

networks (Compernolle et al., 2020).

Results and discussions

Characteristics of O3 pollution in Jinan

As shown in Figure 2, summertime O3 pollution in Jinan

was quite severe which featured numerous O3 exceedances

and a progressively increase in the number of O3 exceedance

days was found over the study period (Table 1). The annual

average MDA8 O3 concentrations in Jinan were 98.0, 106.6,

102.5, 105.2, 108.4, 114.2, 114.5, and 111.5 µg/m3 from 2013

to 2020, respectively. Since 2015, both O3 exceedances and

annual average MDA8 O3 levels gradually increased and spiked

to peak levels in 2019, implying that worsen O3 air quality has

become an emerging environmental concern in Jinan. Table 2

presents average MDA8 O3 concentrations for different types of

ambient monitoring stations during the warm season (April–

September) from 2013 to 2020. Specifically, the trend in O3

variations is broadly consistent among selected typical sites

(industrial, traffic, urban, and suburban), which featured by

descending trends between 2013 and 2015 while degraded O3

levels afterward 2016. It is worth noting that both averaged

MDA8 O3 concentrations at industrial and traffic sites during

the warm season were in excess of the O3 standard (160 µg/m3)

in China’s current National Ambient Air Quality Standards

(NAAQS) in 2019, indicating the severity of O3 pollution

in Jinan.
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FIGURE 6

Air temperature at 2m above the surface in 9 synoptic patterns during 2013–2020 in North China.

Trend of NOx emissions in Jinan

Prior studies have demonstrated that urban O3 formation

is largely determined by the abundance of precursors which

affects the O3-VOCs-NOx sensitivity (Wu et al., 2022). To

probe the variation of O3 precursor emissions in Jinan,

anthropogenic NOx emissions from MEIC inventory for the

warm season (April–September) of 2013–2020 are derived, as

shown in Figure 3. Starting in 2013, theMEIC inventory shows a

continuous pattern of reductions in total NOx emissions due to

the implementation of the Air Pollution Prevention and Control

Action Plan (APPCAP), declining by 30.0% for the 2013–

2020 period, whereas NOx emissions in each anthropogenic

sector exhibit highly variable trend. Specifically, power plant

emissions of NOx have declined more than 50.0% in 2020

compared with 2013, and industrial emissions show marked

declines from 2013 to 2020. On the contrary, residential

emissions persistently increased from 2013 to 2017, followed

by a substantial decrease in 2018, implying the effectiveness

of coal-to-gas initiatives in Jinan. Unlike power plants and

industrial emissions, NOx emitted from traffic sources decreased

from 2013 to 2016 followed by leveling off and even increased

trend of NOx emissions afterward 2016, underlining the urgent

need of taking action on regulating traffic NOx emissions

in Jinan. It is worth mentioning that NOx emissions in

2020 significantly decreased compared with 2019, which could

be linked to the reduced mobility attributed to COVID-19

lockdown measures (Zheng et al., 2021). In general, reductions

in NOx emissions in Jinan from 2013 to 2020 are mainly

contributed by regulation efforts on industrial and power
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FIGURE 7

Downward UV radiation at the surface in 9 synoptic patterns during 2013–2020 in North China.

plant emissions, while traffic NOx emissions warrant further

strict control.

Figure 4 presents tropospheric NO2 columns from

OMI during the warm season (April-September) from

2013 to 2020 over Jinan. For 2013, OMI depicts region-

wide NO2 spots, with peak levels higher than 14 × 1015

molec/cm2. Interestingly, satellite observations indicate

that emission control on NOx introduced by APPCAP

leads to substantial reductions in NOx emissions over

urban and suburban areas. As a result, NO2 columns

over urban areas of Jinan were even lower than 8 ×

1015 molec/cm2 for 2020. Compared with NOx emissions

estimated by MEIC, OMI NO2 columns exhibit broadly

consistent year-by-year changes and reduction magnitude.

This phenomenon further confirms that control measures

toward cutting NOx emissions are effective for Jinan city from

2013 to 2020.

Relationship between synoptic patterns
and ozone pollution

The synoptic weather pattern was classified into nine types

by SLP based on the PCTmethod in North China (30◦ N−42◦N,

108◦E−128◦E) from 2013 to 2020. Figure 5 depicts the spatial

map of SLP among the identified 9 synoptic patterns. The spatial

distribution of other key meteorological factors is presented in

Figures 6–8. Furthermore, Table 3 lists monthly O3 exceedances

for Types 1–9 over the study period. Evidently, both the number

of exceedance and the average MDA8 O3 concentration in Type
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FIGURE 8

The 10-m wind in 9 synoptic patterns during 2013–2020 in North China.

8 is highest among identified synoptic patterns. In this cluster,

the Shandong Peninsula, especially Jinan city, is situated in

the center of the low-pressure system and is featured by low-

pressure gradient and stagnant weather conditions, which are

conducive to the accumulation of O3 precursors. Furthermore,

meteorological conditions in Type 8 are characterized by high

temperatures (regional average higher than 30◦C) and intense

ultraviolet radiation. The combination of the abovementioned

phenomenon modulated by synoptic patterns leads to severe O3

pollution in Type 8. It is important to note that O3 exceedances

in the summer season (particularly June and July) largely

correspond to the occurrence of Type 8.

Similarly, elevated O3 levels are also depicted under the

circulation pattern of Type 2. It can be clearly seen that this

pattern is characterized by strong ultraviolet radiation and

protracted higher temperature across Jinan and surrounding

areas, which primes the landscape of O3 formation. However,

the strong southerly wind fields could carry some pollutants to

downwind regions, which may enhance the ventilation across

the study domain. Contrary to Type 8, the occurrence of Type

2 is mainly concentrated in the spring season. To a lesser extent,

it can be clearly seen that Types 1, 4, and 5 also contribute to O3

exceedances in summer. A detailed analysis shows that synoptic-

driven weak wind fields in conjunction with stagnant conditions

act as the governing factor in leading to the exceedances.

Conclusion

In this study, we adopt continuous ambient measurements

from 2013 to 2020 for identifying variability in O3

concentrations over Jinan city in Shandong Province. It is

found that deteriorated O3 pollution has emerged as a dominant

environmental concern in the megacity, with a continuous

increase in average MDA8 O3 concentrations and exceedances

events since 2015. Elevated O3 levels are depicted across typical
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TABLE 3 O3 exceedance events in each month for Types 1–9 during 2013–2020.

Month Type1 Type2 Type3 Type4 Type5 Type6 Type7 Type8 Type9

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 2 0 0 0 1 0 0 0

4 4 15 3 0 1 5 1 4 0

5 16 34 4 2 13 10 15 15 4

6 21 21 10 12 18 12 19 41 9

7 14 2 9 11 16 8 4 43 2

8 6 0 10 26 22 0 4 13 6

9 15 10 14 11 14 4 4 2 5

10 3 8 2 2 1 2 4 0 0

11 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

monitoring stations in each type, suggesting city-wide degraded

O3 air quality.

For precursor emissions, NOx emissions from power plants

(55%) and industrial (36%) sources substantially decreased

over time due to the implementation of control strategies.

However, traffic NOx emissions remain a prominent concern

which still maintains high levels of emissions. A persistent

decrease of NO2 columns is observed by OMI, adding support

to the findings from the MEIC emission inventory. Given the

continuous efforts on cutting NOx emissions, quantification

of VOCs emissions and joint regulation on NOx and VOCs

warrant further study.

Analysis of synoptic patterns shows that Type 2 and

Type 8 are associated with higher O3 concentrations, which

correspond to a meteorological phenomenon, including low

SLP, high temperature, and strong ultraviolet radiation.

Under the influence of stagnant conditions in combination

with meteorological conditions modulated by the synoptic

pattern, these weather patterns govern the occurrence of

exceedance events in spring and summer over Jinan from 2013

to 2020.

Overall, the characteristics and the influence of precursors

and meteorological conditions on ozone in Jinan city

were analyzed based on the mathematical models using

the data of meteorological measurements and pollutant

monitoring. This work provides insights into the magnitude

of O3 pollution in Jinan over time and distinguishes the

trend of NOx emissions through emission inventory and

satellite data, which shapes a clear view of long-term O3

variations. The classification of synoptic patterns clearly

points to the relationship between O3 pollution and distinct

meteorological conditions driven by synoptic patterns,

which shed light on the regulation of ambient O3 in

Jinan city.
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