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Global aquatic habitats are undergoing rapid degradation and fragmentation

as a result of climate change and changes in land use. Understanding the

genetic variability and adaptive potential of aquatic plant species is thus

important for conservation purposes. In this study, we investigated the genetic

diversity and structure of the extant natural populations of Zizania latifolia

from five river basins in China based on 46 microsatellite markers. We tested

isolation by environment (IBE), isolation by resistance (IBR), and isolation by

distance (IBD) patterns using a reciprocal causal model (RCM). Furthermore,

we elucidated the impact of the environment on Z. latifolia genetic diversity

using generalized linear models (GLMs) and spatially explicit mixed models.

Low genetic diversity (HE = 0.125–0.433) and high genetic di�erentiation

(FST = 0.641, Øpt = 0.654) were found. Higher historical gene flow (MH

= 0.212–2.354) than contemporary gene flow (MC = 0.0112–0.0247) and

significant bottlenecks in almost all populations were identified, highlighting

the negative impact of wetland fragmentation. The IBE model was exclusively

supported for all populations and in three river basins. The IBD and IBR models

were supported in one river basin each. The maximum temperature of the

warmestmonth and precipitation seasonality were the plausible environmental

parameters responsible for the observed pattern of genetic diversity. Local

adaptation signatures were found, with nine loci identified as outliers, four of

which were gene-linked and associated with environmental variables. Based

on these findings, IBE is more important than IBD and IBR in shaping the

genetic structure of Z. latifolia.
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Introduction

Migration and adaptation are twomain strategies that plants

use to resist unfavorable climate alterations. The knowledge

about genetic structure and dispersal modes are of important

implications for the fate of plants after migration. The higher

genetic homogeneity among populations, due to frequent gene

exchange, may indicate that individuals are less dependent

on local conditions and may be able to survive in different

areas. On the other hand, some species show obvious genetic

differentiation and develop local adaptations due to selective

pressures associated with particular local habitats (Bischoff et al.,

2006). In this case, plant fitness will be greatly impacted when

environmental changes occur rapidly. Additionally, the adverse

effects of climate change on plant diversity will be exacerbated

by habitat fragmentation from land-use change and excessive

exploitation. Aquatic habitats are often discontinuous and

sandwiched between terrestrial habitats. Furthermore, given that

most aquatic plants persist as meta-populations, their long-term

survival depends on continuous gene flow among populations

(Barrett et al., 1993; Santamaría, 2002). It is conceivable that

the survival of aquatic plants will face more severe tests

with increasing climate warming and habitat fragmentation.

Therefore, investigating the dispersal and adaptability of aquatic

plants will help predict their response to future climatic changes

and formulate reasonable management strategies.

It is important to examine the factors affecting genetic
patterns, especially when the natural environments are changing
at an alarming rate. In discontinuous habitats, the gene flow
is usually not enough to offset the alleles lost through genetic
drift and inbreeding associated with habitat fragmentation.

This situation leads to “isolation by distance,” (IBD) where

geographical distance limits gene flow (Wright, 1943).Migration

involves the physical dispersal of propagules and successful

establishment. However, significant genetic differentiation has

occasionally been found among adjacent populations with

different climates or soil conditions (Zhao et al., 2013). Due

to long-term growth in special habitats, native plants have

developed specific genotypes to adapt to local environments,

which results in unsuccessful colonization for migrant plants.

Thus, the IBD model sometimes underestimates the effects of

environmental variables, and researchers propose the “isolation

by environment” (IBE) model, which considers the contribution

of environmental heterogeneity in shaping the distributions

of spatial genetic variation (Wang and Bradburd, 2014).

Widespread species are often distributed in habitats with distinct

climatic conditions. Selective pressures can lead to strong

differentiation of allele frequencies in some loci which will

deviate from the equilibrium model and are considered to be

potentially adaptive. Outlier loci detection and environmental

association tests allow for the identification of such alleles,

providing further evidence for IBE. The development of

landscape genetics and map theory has made it easier to

obtain landscape features (topographic and environmental

characteristics) of habitats which are used to evaluate dispersal

difficulties through different habitats. Based on this, McRae

(2006) described isolation by resistance (IBR) as where

resistance reflects the difficulty exerted by landscape features on

gene flow.

Although these models (IBD, IBE, and IBR) often work

together in forming genetic differentiation of species, especially

for widespread species, most empirical research on population

genetics has focused on geographical distance and topographical

features as the main drivers, ignoring the contribution of

environmental factors (Orsini et al., 2013).

To identify the most probable models for observed genetic

structure, Cushman and Landguth (2010) introduced an

analytical framework, the reciprocal causal model (RCM), for

competing the three hypotheses simultaneously. The framework

is based on Mantel tests (Mantel, 1967), where partial Mantels

are first performed, and the resultant values are used to build

the RCM. This approach reduces the simple Mantels’ spurious

correlations and false-positive errors. For the identification

of the contribution of specific environmental variables to

genetic diversity, especially in a spatial auto-correlation scenario,

Rousset and Ferdy (2014) proposed an improved spatially

explicit generalized linear mixed modeling (spatial GLMMs)

method, implemented in R package spaMM. This allows for the

accurate comparison of a null model (spatial as the random

effect) vs. a full model (spatial and environmental variable

as random effects), unlike the conventional methods, such as

glmmPQL that do not fit a null model (Rousset and Ferdy, 2014).

For widespread species, genetic differentiation is prevalent

and local adaptation is probable. While IBD is expected in such

populations, the role of unique environment niches could be

overlooked. The inclusion of environmental factors can improve

ecological studies of different organisms and ecosystems while

monitoring their biological implications has application in the

development of environmental-conscious policies (Wu et al.,

2022). Ecological niche models (ENMs) have been used to

explore the role of ecology on the current and future distribution

of aquatic species (Nzei et al., 2021; Ngarega et al., 2022).

Traditional ENMs assumed that populations of a species are

genetically uniform and share the same niche, ignoring the

possibility of local adaptation, especially for widespread species

(Wiens et al., 2009). Evidence for environment-associated gene-

linked loci in a widespread species could be an indication of

local adaptation. When an IBE pattern is also found, genetically-

informed ENMs (gENMs) can be used to supplement this

evidence through the investigation of niche differentiation

(divergence or conservatism) (Ikeda et al., 2017; Bothwell et al.,

2021).

Zizania latifolia (Griseb.) Turcz. Ex Stapf, a perennial

aquatic grass commonly known as the Chinese wild rice, belongs

to the family Poaceae, tribe Oryzeae. It is a partially clonal

species that is an important ecological and genetic resource in
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China (Liu et al., 1999, 2007; Yu et al., 2006; Zhou et al., 2007;

Shen et al., 2011; Peng et al., 2013; Wang et al., 2013). Natural

populations of Z. latifolia are distributed in the East of China

along a wide stretch of latitudinal zones (21◦-50◦N). This region

spans five major eco-geographic regions with varying biotic and

abiotic factors that could influence species gene flow and local

adaptation (Wu et al., 2003). To date, the genetic differentiation

of wild rice across China has been attributed to IBD (Chen

et al., 2017a; Zhao et al., 2018, 2019). This is despite the fact

that the distribution of wetlands in China is characterized

by heterogeneous landscapes and environments, besides being

expansive and patchy. Therefore, such a wetland distribution

pattern presents an opportunity to study the landscape genetics

of a widespread species.

Based on the distribution of Z. latifolia in China, we

hypothesized that IBE would best explain its genetic structure

and that genetic variability is influenced by the environment.

The objective was to test three gene flow models, IBE, IBD,

and IBR using RCM, and the contribution of environmental

variables to genetic diversity patterns using spatial GLMMs.

This study would aid in delineating the impact of human-

and climate-change-induced habitat degradation on the

genetic structure of riparian plants at different spatial and

environmental gradients. Furthermore, the environmental

gradient provides a perfect model for space-for-time

substitution in assessing the long-term aquatic ecosystem

response to the changing environment.

Materials and methods

Study design

Twenty-eight natural populations of Z. latifolia, covering

above 30 latitudes (N 20◦21
′

- 50◦54
′

), were collected across

China from five river basins: Heilongjiang River Basin, Liaohe

River Basin, Huanghe River Basin, Yangtze River Basin, and

Pearl River Basin (Table 1) in the autumn of 2015. For each

population, young and healthy leaves of 20–23 individuals were

collected at intervals of at least 10m to avoid sampling the same

clone. The leaves were dried with silica gel and taken back to the

laboratory for DNA extraction.

Total genomic DNA was extracted from 0.5 g of dried leaves

using a modified cetyltrimethylammonium bromide (CTAB)

protocol with a 3 × CTAB buffer (Doyle and Doyle, 1987).

After screening, 46 simple-sequence repeat (SSR) markers

with polymorphic and clear bands were used in this study,

including 26 genomic SSR (gSSR) (Richards et al., 2007; Quan

et al., 2009; Wang et al., 2015; Wagutu et al., 2020a) and

20 expressed sequence tag SSR (EST-SRR) developed from Z.

latifolia transcriptome data available at NCBI (SRX796501)

following our previous approach (Wagutu et al., 2020b)

(Supplementary Table 1). PCR amplification was performed

following the protocol by Quan et al. (2009), and PCR

products were separated on a 6% denaturing polyacrylamide gel.

Fragments were visualized by silver staining and alleles were

scored in reference to a 25 bp DNA ladder (Promega, Madison,

WI, USA).

GenoDive 2.0 (Meirmans and Van Tienderen, 2004) was

used to identify the clonal structure. To identify multi-

locus genotypes, we tested the commonly used thresholds for

microsatellites (0–4%) (Lo et al., 2010; Gross et al., 2012;

Meirmans, 2020). No significant difference (P < 0.05) was found

between the diversity indices (N/G; where N is the population

sample size, G is the number of clones for each population)

for the thresholds tested. Additionally, considering the facts (1)

we sampled each individual at a 10m radius to avoid collecting

clone mates, (2) we excluded individuals with missing data, and

(3) that a non-zero threshold could lead to the assignment of

individuals with different genotypes into the same clone (James

and McDougall, 2014), threshold 0 was used. At threshold zero,

samples were assigned to their respective clones. The number

of genotypes (G) was calculated, and repeating genotypes were

excluded from further analysis. FreeNA software (Chapuis and

Estoup, 2007) was used to estimate the frequency of putative

null alleles. R package genepop v1.1.7 (Rousset et al., 2020) was

used to calculate the inbreeding coefficient (FIS), deviation from

Hardy-Weinberg equilibrium, and linkage disequilibrium.

Outlier loci test

Different approaches for outlier detection have their

advantages and disadvantages. To minimize the false positive,

three approaches were used to detect outlier loci among all the

28 populations: (i) hierarchical Bayesian method implemented

in BAYESCAN (http://cmpg.unibe.ch/software/bayescan/) with

the parameters set to 10 pilot runs of 5,000 iterations each and

a burn-in of 50,000 iterations. Outliers were identified based on

99% posterior probabilities. (ii) LOSITAN (Antao et al., 2008)

was used to implement the method developed by Beaumont and

Nichols (1996), where FST distribution was evaluated based on

the observed and expected values at a 99% confidence interval.

Here, an initial run with 60,000 simulations was conducted,

followed by a computation of FST distribution based on putative

neutral loci derived from the simulations. (iii) A coalescent

simulation was implemented in DETSEL 1.0 (Vitalis et al., 2003)

with the following parameters: mutation rate (infinite allele

model, IAM) 0.005, 0.001, and 0.0001; ancestral population size

Na = 500, 1,000, and 10,000; population size before split N0 =

100 and 500; time since an assumed bottleneck t0 = 50, 100,

and 1,000 generations; and time since population split t = 100

generations. Loci outside the 99% confidence level and present

in at least five combinations in the pairwise comparisons among

populations were considered outliers.
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TABLE 1 Geographical information and summary of genetic diversity measures for 28 Zizania latifolia populations based on 46 simple-sequence repeat (SSR) loci/23 neutral loci/9 outlier loci.

Population Location N G A Ne HO HE FIS FST

BS Baihilazi, Heilongjiang

Province

22 21 1.652/1.565/1.667 1.45/1.338/1.406 0.338/0.246/0.328 0.228/0.185/0.196 −0.418/−0.26/−0.599

XXT Xiaoxintun,

Heilongjiang Province

21 19 1.456/1.261/1.667 1.353/1.131/1.597 0.244/0.11/0.333 0.169/0.081/0.197 −0.406/−0.277/−0.765

HDY Hadayan, Heilongjiang

Province

20 16 1.413/1.391/1.667 1.261/1.207/1.418 0.191/0.122/0.326 0.136/0.109/0.214 −0.378/−0.108/−0.528

KEB Kuerbin River,

Heilongjiang Province

22 19 1.369/1.391/1.444 1.229/1.221/1.304 0.189/0.188/0.287 0.129/0.128/0.158 −0.366/−0.353/−0.787

LQQ Lanqitun, Heilongjiang

Province

20 19 1.695/1.565/1.778 1.457/1.458/1.406 0.283/0.256/0.304 0.247/0.247/0.216 −0.14/−0.055/−0.302

HW Hongwei, Heilongjiang

Province

20 14 1.717/1.522/1.667 1.534/1.344/1.643 0.263/0.199/0.413 0.236/0.181/0.291 −0.113/−0.061/−0.426

YLZ Yihaoyuliangzi,

Heilongjiang Province

20 18 1.695/1.435/1.778 1.432/1.277/1.521 0.229/0.179/0.333 0.18/0.13/0.243 −0.205/−0.303/−0.199

Mean Cluster I 20.7 18 1.571/1.447/1.667 1.389/1.282/1.471 0.249/0.186/0.332 0.19/0.151/0.216 −0.29/−0.203/−0.515 0.559/0.623/0.650

JH Jinhua, Liaoning

Province

20 19 1.869/1.609/2.444 1.517/1.415/1.883 0.297/0.277/0.427 0.233/0.204/0.319 −0.264/−0.308/−0.41

HR Huanren, Liaoning

Province

20 17 1.5/1.304/1.778 1.343/1.23/1.643 0.228/0.192/0.373 0.164/0.128/0.255 −0.389/−0.434/−0.525

ZD Zhangdang, Liaoning

Province

20 19 1.478/1.348/1.778 1.34/1.225/1.681 0.239/0.181/0.415 0.171/0.13/0.289 −0.368/−0.328/−0.473

DG Donggang, Liaoning

Province

20 20 1.63/1.478/2 1.33/1.269/1.599 0.246/0.202/0.406 0.177/0.151/0.28 −0.337/−0.294/−0.477

LZX Liaozhong, Liaoning

Province

20 20 2.565/2.391/3.111 1.903/1.661/2.473 0.389/0.343/0.483 0.336/0.305/0.366 −0.16/−0.129/−0.404

Mean Cluster II 20 19 1.809/1.626/2.222 1.487/1.36/1.856 0.28/0.239/0.421 0.217/0.184/0.302 −0.304/−0.298/−0.458 0.485/0.481/0.30

HXD Huanxiangdian,

Shandong Province

20 19 1.76/1.609/2.111 1.472/1.421/1.714 0.329/0.256/0.515 0.245/0.212/0.331 −0.314/−0.218/−0.575

DP Dongpinghu, Shandong

Province

20 15 2.347/2.261/2.778 1.807/1.869/2.034 0.369/0.394/0.452 0.317/0.338/0.335 −0.156/−0.163/−0.4

LQ Luqiao, Shandong

Province

20 19 2.413/2.391/3 1.816/1.785/2.401 0.367/0.398/0.456 0.321/0.352/0.368 −0.125/−0.13/−0.332
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F
ro
n
tie

rs
in

E
c
o
lo
g
y
a
n
d
E
v
o
lu
tio

n
0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fevo.2022.929944
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


W
a
g
u
tu

e
t
a
l.

1
0
.3
3
8
9
/fe

v
o
.2
0
2
2
.9
2
9
9
4
4

TABLE 1 Continued

Population Location N G A Ne HO HE FIS FST

MK Mankou, Shandong

Province

20 20 2.413/2.522/2.889 1.777/1.917/1.999 0.37/0.42/0.433 0.319/0.365/0.344 −0.16/−0.16/−0.338

Mean Cluster III 20 18.3 2.234/2.196/2.694 1.719/1.748/2.037 0.359/0.367/0.464 0.301/0.317/0.344 −0.189/−0.168/−0.411 0.236/0.235/0.106

CH Changhu Lake, Hubei

Province

21 21 2.956/2.435/4.111 2.257/1.938/2.71 0.429/0.391/0.534 0.379/0.352/0.433 −0.153/−0.108/−0.326

DT Dongting Lake, Hunan

Province

21 21 2.63/2.522/3 2.03/1.852/2.364 0.393/0.371/0.46 0.368/0.361/0.368 −0.073/−0.014/−0.348

HH Honghu Lake, Hubei

Province

20 16 2.586/2.174/3.444 1.994/1.702/2.422 0.389/0.37/0.396 0.346/0.331/0.339 −0.137/−0.117/−0.218

LZ Liangzi Lake, Hubei

Province

21 21 2.543/2.304/3.444 1.869/1.695/2.204 0.365/0.348/0.344 0.329/0.315/0.308 −0.127/−0.114/−0.193

LG Longgan Lake, Hubei

Province

21 21 1.478/1.522/1.556 1.293/1.284/1.451 0.25/0.24/0.381 0.161/0.16/0.244 −0.444/−0.417/−0.528

SJ Shengjin Lake, Anhui

Province

21 21 2.673/2.261/3.333 1.989/1.851/2.339 0.391/0.379/0.487 0.358/0.347/0.367 −0.1/−0.086/−0.416

BD Baidang Lake, Anhui

Province

22 22 2.456/2.348/2.667 1.813/1.708/1.906 0.398/0.399/0.434 0.344/0.343/0.334 −0.157/−0.137/−0.37

Mean Cluster IV 21 20.4 2.475/2.224/3.079 1.893/1.719/2.199 0.374/0.357/0.434 0.327/0.315/0.342 −0.171/−0.142/−0.343 0.289/0.394/0.473

NM Nama, Guangxi Province 21 19 1.478/1.391/1.667 1.316/1.251/1.515 0.245/0.199/0.392 0.165/0.134/0.256 −0.424/−0.432/−0.522

FC Fangchenggang,

Guangxi Province

21 19 1.5/1.391/1.667 1.371/1.263/1.607 0.276/0.229/0.404 0.187/0.139/0.288 −0.471/−0.606/−0.418

BL Beiliu City, Guangxi

Province

23 22 1.456/1.435/1.667 1.311/1.308/1.432 0.245/0.215/0.394 0.157/0.143/0.239 −0.508/−0.455/−0.603

WC Wuchuan City,

Guangdong Province

21 20 1.586/1.478/1.667 1.404/1.3/1.412 0.271/0.215/0.372 0.194/0.154/0.229 −0.389/−0.361/−0.558

DC Dongcheng, Guangdong

Province

20 19 1.5/1.304/1.667 1.302/1.229/1.429 0.236/0.197/0.339 0.159/0.125/0.212 −0.399/−0.5/−0.59

Mean Cluster V 21.2 19.8 1.504/1.4/1.667 1.341/1.27/1.479 0.255/0.211/0.38 0.173/0.139/0.245 −0.439/−0.471/−0.538 0.194/0.105/0.145

Overall 20.6 19.1 1.922/1.772/2.266 1.57/1.47/1.804 0.302/0.268/0.401 0.241/0.22/0.286 −0.245/−0.205/−0.44 0.641/0.637/0.599

N, number of individual plants; G, multi-locus genotypes; Na , observed alleles number; A, effective allele number; HO , observed heterozygosity; HE , expected heterozygosity; FIS , inbreeding coefficient; FST , genetic differentiation.
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Following the analysis method described by Richter-Boix

et al. (2011), the locus positive in more than one test was

considered a robust outlier candidate. Furthermore, the loci

not significant in all approaches were considered to be neutral.

We obtained three data sets, including all loci (46), loci under

selection (9), and neutral loci (23). The genetic variation and

population divergence were calculated based on all three data

sets. Simulated demographical process and gene flow were

estimated for the neutral loci only.

Environmental association analysis

Simple-sequence repeat markers that were detected as

outliers in more than one of the three methods used (Bayescan,

Lositan, and Detsel) were used to perform genetic-environment

association using the SAM approach implemented in samβada

(Joost et al., 2007; Stucki et al., 2017). The SAM method uses

a logistic regression model to identify the association between

marker alleles (individuals coded as either present/absent for

each of the marker alleles) and environmental variables across

the sampling locations. The best model was selected based on

significant G andWald tests after Bonferroni correction at a 99%

confidence level (Joost et al., 2007). To supplement the SAM

method, we investigated the evidence for the environmental

contribution to allele frequency distribution, where outlier SSR

markers were evaluated for the environmental association as

described by Bradbury et al. (2013). In brief, genotype data,

excluding rare and fixed alleles of frequency 0.05 and 0.95,

respectively, were coded into Hapmap format for loading to

Tassel 5 software (Bradbury et al., 2007). The standardized 20

environmental variables and their first principal component

(PC1 accounting for 99.32% variation) were used. Genetic

distance calculated from the non-outlier gSSR and EST-SSR in

GenAlEx 6.5 (Peakall and Smouse, 2012) was used as a covariant

to control for the effect of genetic structure on association.

A mixed linear model (MLM) was fit, and a significant

association was considered at P < 0.01 after false discovery rate

(FDR) correction. Loci that were significantly associated with

environmental variables were considered to be under selection.

Their putative identity and role were determined through

BLASTx analysis in NCBI and annotated using BLAST2GO

v.6.0.1 (Conesa and Götz, 2008).

Genetic variation

Genetic diversity across the loci for each population and for

each locus was estimated in terms of observed and expected

heterozygosity (HO and HE), the effective number of alleles

(Ne), the total number of alleles (A, allelic diversity), and

the number of private alleles (SP and SR: alleles that only

occurred in one population and one region) for all the 46 loci

using GenAlEx.

Genetic structure

Population genetic divergence was calculated by the

estimation of FST using 999 permutations with genepop.

STRUCTURE program (Pritchard et al., 2000) was used to

perform Bayesian clustering analysis. Ten independent runs for

each number of K clusters from 1 to 15 were performed. A

total of 20,000 iterations burn-in period followed by 100,000

Markov Chain Monte Carlo (MCMC) iterations were assumed

for each run with correlated allele frequencies and admixture

origin assumptions. To determine the value of K, the output

was interpreted with Structure Harvester (Evanno et al., 2005;

Earl and vonHoldt, 2012). However, Evanno’s delta K method

has been reported to suffer philosophical and statistical errors

(Verity and Nichols, 2016). Therefore, it was supplemented

with the thermodynamic integration (TI) method (Verity and

Nichols, 2016). Here, the rmaverick R package was used to

estimate the true value of K by running 20 runs for K =

1–15 with a burn-in period of 10,000 iterations followed by

100,000 MCMC iterations under the admixture model. The

value of K was estimated as described by Verity and Nichols

(2016). To confirm the results of Bayesian clustering, principal

coordinate analysis (PCoA) and neighbor-joining (NJ) trees

were implemented to identify the substructure and the clustering

pattern of the individuals using GenAlEx and MEGA-X (Kumar

et al., 2018), respectively. Additionally, the analysis of molecular

variance (AMOVA) was performed to determine the genetic

variation among and within populations using ARLEQUIN

(Schneider et al., 2000).

Genetic discontinuity

Taking into account our sampling strategy that could mask

sub-structuring as a result of geographical distances between the

river basins, the spatial Bayesian clustering implemented in the

geneland R package (Guillot et al., 2011), was performed under

the correlated allele frequency model with spatial uncertainty in

the spatial locations fixed at 1 km and using the option to filter

for the presence of null alleles. The value ofK was allowed to vary

from 1 to 15 for 20 independent runs each consisting of 500,000

MCMC iterations, a thinning of 100, the maximum number

of nuclei in the Poisson-Voronoi tessellations fixed at 536,

maximum rate of the Poisson process fixed at 150, and burn-in

of 100,000 in the postprocessing. MCMC coverage was assessed

by comparing the number of populations across replicate runs,

with a mean posterior density as the criterion for choosing the

best run. BARRIER 2.2 (Manni et al., 2004), which is based

on Monmonier’s maximum difference algorithm, was used to
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assess the genetic barriers between populations with 1,000 FST
matrices generated using the diveRsity R package (Keenan et al.,

2013).

Migration and bottleneck analysis

To detect recent demographic bottlenecks, BOTTLENECK

v.1.2.02 (Piry et al., 1999) was used to perform the analysis

under three models: stepwise mutationmodel (SMM), IAM, and

two-phase mutation model (TPM) with 1,000 iterations using a

two-tailed Wilcoxon’s signed-rank test. Furthermore, the allelic

frequency distribution mode was tested and the mode shift away

from the L-shaped distribution indicated recent bottlenecks.

Historical gene flow (MH) was estimated using MIGRATE

(Beerli et al., 2019). The analysis was performed under the

Brownian motion model using Bayesian inference. Defaults

settings, as recommended by Beerli (2009), were used where a

single long chain was run with 20 sampling increments, 5,000

recorded steps in the chain, a burn-in of 10,000, and heating

of 4 parallel chains were set to estimate 2, and M. Gene flow

(MH) was calculated as 2 × M/4, where 2 is the mutation-

scaled effective population size, and M is the mutation-scaled

migration rate. Contemporary gene flow (MC) was assessed

using BAYESASS (Wilson and Rannala, 2003). The analysis was

performed using 5,000,000 iterations with the chain sampled

after 2,000 iterations. A burn-in of 1,000,000 was used and the

delta values were adjusted to ensure a 40–60% acceptance rate.

Geographic and environmental influence
on the genetic structure

To compare simultaneously the three gene flow models

(IBD, IBR, and IBE), we used the RCM, which is based

on partial Mantels, and could eliminate the simple Mantels’

spurious correlations (Cushman et al., 2006). For the analysis,

we obtained some parameter matrices, including genetic

distance, geographic distance, environment distance, and

resistance distance.

Genetic distance between populations was calculated as

pairwise FST based on the three data sets (all loci, adaptive loci,

and neutral loci) using genepop. Geographic distance was based

on Euclidean distance and was calculated using GenAlEx.

Nineteen environmental variables were extracted for the

studied sites from BioClim’s 30s resolution dataset (Busby,

1991), and soil type data from http://www.isric.org/ with GIS

details using ArcMap 10.5 (Esri, Redlands, CA, USA). To

reduce climatic variables, principal component analysis (PCA)

was performed based on 21 variables (19 bioclimatic variables,

elevation, and soil type) using PAST ver. 4.01 (Hammer et al.,

2001). The first principal component (PC1) represented 99.32%

of the variation and was highly correlated (r > 0.9) with eight

temperature-related variables (bio_1, bio_2, bio_4, bio_6, bio_7,

bio_9, bio_10, and bio_11). The PC1 was thus used to calculate

the environmental distance matrix with the vegan package in R

(Oksanen et al., 2018).

Zizania latifolia is wind-pollinated, and its seeds are edible

for native waterfowl and migratory birds, which could lead

to pollen and seed dispersal among populations. Additionally,

water connectivity facilitates the dispersal of Z. latifolia

propagules, while wind helps in pollen and seed dispersal.

Wind and hydrological connectivity were used to calculate the

resistance distance. Data for bird movements are unavailable

and their influence on the genetic structure was not estimated

in this study.

To obtain wind resistance distance, the R package rWind

(Fernández-López and Schliep, 2019) was used to extract wind

direction and speed data from September 20 toOctober 20, 2014,

considering the sample collection time (Autumn of 2015) and

flowering of Z. latifolia. We calculated the conductance distance

based on the wind speed and direction for the average of the 30

days and calculated the cost distance between populations.

Hydrological connectivity was calculated on a raster water

layer (Yamazaki et al., 2017) that was re-classed in Arcmap 10.5

such that pixels with permanent water bodies and major rivers

were assigned a value of 0, pixels with small streams and canals

were assigned a value of 1, while dry land pixels were assigned a

value of 2. Pairwise least-cost distance between populations was

then calculated using the gdistance R package.

Based on the four distance matrices, the RCM method was

used to compare the different gene flow models. First, partial

Mantel was performed between genetic (Gen) and geographic

distances to test IBD and to partial out IBR (Gen∼IBD|IBR);

second, partial Mantel was performed between the Gen and

resistance matrices to test IBR and to partial out the IBD

(Gen∼IBR|IBD). The difference between the contribution of

geographical distance excluding the resistance and the resistance

excluding the geographical distance is the score showing support

for IBD when compared to IBR (Cushman et al., 2013a). If the

score is positive, IBD is supported, and a zero or negative score

supports IBR. The vice versa is also true. The full matrix of

the partial Mantel test differences between pairs of alternative

hypotheses was computed. A hypothesis was regarded as fully

supported, independent of all alternatives if all the values in

its column were positive and all the values in the row were

negative (Cushman et al., 2013a,b). Correlation values and

significance values for the partial Mantel model combinations

were calculated through 9,999 corrected permutations using the

vegan R package. The RCM analysis was performed for the

entire data set and for each ecoregion, which corresponds to the

clusters identified by the different methods.

We further evaluated the relationship between genetic

diversity estimators and geographic and environmental variables

through generalized linear models (GLMs) using the PAST

software, and spatially explicit mixed modeling (Morente-López
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et al., 2018) using the spaMM R package. First, GLMs were

used to explore the contribution of each environmental variable

to genetic diversity estimators (HO, HE, and A). Second,

spatial GLMMs were developed using genetic, geographic

(coordinates), and environmental data. Here, we used genetic

diversity estimators (HO, HE, and A) as response variables,

each of the 21 environmental variables as fixed effects, and

geographical coordinates as random effects. We transformed

environmental variables as required, including using their

squared values to account for non-linearity. Full models (e.g.,

[A ∼ bio_1 + (1|lat+long)]) and null models (e.g., [A ∼ 1

+ (1|lat+long)]) were tested for associated likelihood ratio to

obtain the P-value.

Genetically informed ecological niche
modeling

With the realization that IBE was the supported model in

the entire study site and 3 of the 5 river basins, and that our

sampling strategy could have increased the bias toward IBE and

against IBD, we supplemented the RCM analysis with genetically

informed ecological niche models (gENMs). Besides our 28

geo-referenced collections, we obtained 131 occurrence records

from the Global Biodiversity Information Facility (GBIF, http://

www.gbif.org/). The GBIF occurrence records were assigned to

one of the five genetic clusters identified by spatial analysis

in geneland. The geneland probability surface maps for each

cluster were georeferenced in QGIS (QGIS Development Team,

2009) and GBIF occurrence records were overlaid on the maps.

Occurrences within ≥70% posterior probability contours were

assigned to the respective clusters since the range was non-

overlapping for any of the cluster populations. To model for the

current distribution of the genetic populations, 19 bioclimatic

variables (similar to those used in EAA) were used. First,

we tested and removed highly correlated variables (Pearson

correlation coefficient, r > 0.8) and those retained were verified

for variance inflation factor (VIF) <5. To test for climate niche

differentiation, we performed PCA on standardized climatic

variables followed by permutational multivariate analysis of

variance (perMANOVA) in the vegan R package (Bothwell et al.,

2021). Furthermore, the ANOVA followed by Turkey’s pairwise

test of significant difference among groups was performed to

explore the unique contribution of each bioclimatic variable to

genetic group variations.

Following the approach by Bothwell et al. (2021), we

developed ENMs using Maxent 3.4.4 (Phillips et al., 2006),

since it performs better with presence-only data. One model

was generated using all occurrence records for Z. latifolia and

assuming no genetic structure, and the other five models were

generated for each of the genetic groups (gENMs). Model

performance was evaluated using the area under the receiver

operating characteristic curves (AUC) and partial receiver

operating characteristic curves (pROC) (Peterson et al., 2008).

Widely distributed species persist in varied environmental

and geographical spaces resulting in restricted gene flow, local

adaptation, and niche divergence. We tested for niche overlap

and divergence among the 5 gENMs to determine if each group

occupies distinct niches in the geographical space or they exhibit

niche conservatism. For this, we performed a niche overlap test

using Schoener’sD statistic and implemented niche identity tests

in ENMTools 1.4.4 (Warren et al., 2008, 2021) using 99 pseudo-

replicated ENMs from pooled, randomized occurrence records

for each genetic cluster pair.

Results

SSR genotyping

From 578 individuals used in this study, 536 multi-locus

genotypes (MLGs) were identified, and no genotype was shared

among populations. In nine populations, every individual

had a unique genotype (Table 1). The individuals with clonal

genotypes were excluded from further analysis. We detected 371

alleles across the 46 SSR markers, with an average of 8.1 alleles

per locus. Among these loci, four gSSR markers showed a large

number of alleles per locus with 28 (ZL4 and ZL5), 29 (ZL3), and

30 (ZL1) alleles per locus; five EST-SSR markers (EZ73, EZ75,

EZ89, EZ121, and EZ131) only manifested 2 alleles per locus;

40 SSR markers showed private alleles unique to each of the 5

regions (Supplementary Table 2).

Null alleles were present in 87 of 1,288 population-loci

combinations, which is slightly above the expected 64 by chance

at a 5% significance level. The null alleles were not associated

with any loci or population and there was no significant bias in

FST estimation on the data compared to the estimate based on

ENA correction (t-test, P = 0.873). The entire data set deviation

from Hardy– Weinberg equilibrium (HWE) was detected at P

= 0.05, which is expected for the natural population at a broad

geographical scale (Garnier-Géré and Chikhi, 2013). Exact tests

for LD indicated a significant deviation for 62 (P < 0.05) of

680 possible comparisons. This was slightly higher than that

expected by chance (34 at P < 0.05). However, the significant

tests involved different locus pairs indicating that loci were

unlinked and statistically independent of each other.

Neutrality tests, associations between
adaptive loci, and environmental
variables

Among the 46 SSR loci amplified, a total of 19, 7, and

7 were detected as outlier loci by BAYESCAN, LOSITAN,

and DETSEL, respectively (Figure 1A). Of these loci, 9 that
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A B

FIGURE 1

Summary of outlier loci and allele-environmental variables association. (A) Loci identified by each of the software, between two software and

three software, respectively; (B) Environmental variables significantly associated with either of the loci and/or shared among and between loci.

were detected by two outlier tests were considered adaptive

loci. The SAM analysis found that five of the nine loci tested

were significantly associated with 17 environmental variables

(Figure 1A). Three of the loci (EZ78, EZ81, and EZ121) showed

the highest significant association with five temperature-related

environmental variables (Figure 1B). The other two loci (EZ57

and EZ109) were associated with 15 variables both precipitation-

and temperature-related (Figure 1B). Similar results were found

for Tassel analysis, where 7 of the 9 loci tested were significantly

associated with 15 environmental variables and PC1. Among

these loci, three loci (EZ78, EZ81, and EZ121) were significantly

associated with 8, 14, and 15 variables, respectively, as well

as with PC1. EZ57 and EZ109 were significantly associated

with one variable each. Besides PC1, among the significantly

associated variables include; bio_1, bio_2, bio_3, bio_4, bio_5,

bio_6, bio_7, bio_8, bio_9, bio_11, bio_12, bio_13, bio_14,

bio_15, bio_17, and bio_19, eleven of which are related to

temperature, while five are related to precipitation. Four loci

were associated with functional genes based on the top BLAST

hit and their putative roles include DNA-binding transcription

factor activity, protein phosphorylation, RNA splicing, and cell

differentiation, respectively (Table 2).

Genetic variation of populations

The genetic diversity of each population was evaluated

based on all 46 SSR loci, 23 neutral loci, and 9 outlier loci.

For all populations, the outlier loci and neutral loci showed

the highest and lowest values of genetic variation (A, Ne, and

HE) (Table 1). For the different regions, the genetic diversity

increased gradually from north to south, reaching the highest

value in the middle and lower reaches of the Yangtze River,

and then began to decrease. The lowest and the second-

lowest genetic diversity occurred in the southernmost and

northernmost regions (Pearl River Basin and Heilongjiang River

Basin), respectively. For each basin, the genetic variations varied

greatly within the regions of the Heilongjiang River Basin and

Liaohe River Basin. In the bottleneck analysis, 13, 17, and 23

populations were out of mutation-drift equilibrium under SMM,

TPM, and IAM models, respectively. All populations from the

Pearl River Basin showed significant bottlenecks for the 3models

(Supplementary Table 3). Wright’s fixation index based on all,

neutral, and adaptive loci showed that all populations displayed

a heterozygote excess (Table 1).

Genetic structure and discontinuity

Obvious genetic structure was found between populations

with FST = 0.641, 0.637, and 0.599 based on all loci, neutral

loci, and loci under selection, respectively. Based on all loci

and neutral loci, the three approaches (PCoA, NJ tree, and

STRUCTURE) consistently divided the 28 populations into

five clusters and populations from the same region clustered

together, which showed the clear genetic divergence among

the five regions (Figures 2, 3, and Supplementary Figure 1).

Outlier loci showed six clusters, with the population from

the expansive Yangtze River basin clustering into two groups

(Figure 3). Similarly, AMOVA results based on all loci, neutral,

and adaptive loci showed high population divergence (Øpt =

0.6324, 0.6546, 0.5925) (Table 3 and Supplementary Tables 4, 5).

Based on neutral loci that were used to assess the landscape

models, variation among populations was 65.46%, while 34.54%
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TABLE 2 Putative function of adaptive loci that were outliers and associated with climatic variables.

Putative gene Role E-value % Identity Variable Marker

PREDICTED: Oryza brachyantha

homeobox protein knotted-1-like 12

(LOC102715865), transcript variant X2,

mRNA

DNA-binding transcription factor

activity

0 84.28 bio_8 EZ78

bio_12

PREDICTED: Oryza sativa Japonica

Group PTI1-like tyrosine-protein kinase

At3g15890 (LOC4328540), mRNA

Protein phosphorylation 0 93.37 bio_8 EZ81

bio_12

bio_17

PREDICTED: Brachypodium distachyon

serine/arginine-rich splicing factor

RS2Z33 (LOC100826232), mRNA

RNA splicing, mRNA splicing, via

spliceosome, spliceosomal complex

assembly

4.00E-36 91.67 bio_10 EZ121

bio_16

PREDICTED: Oryza sativa Japonica

Group BEL1-like homeodomain protein

1 (LOC4349837), transcript variant X1,

mRNA

biological processes; response to

external stimuli, cell differentiation,

biosynthesis

4.00E-91 79.28 bio_1 EZ109

bio_2

bio_3

bio_4

bio_5

bio_6

bio_7

bio_9

bio_10

bio_11

bio_12

bio_14

bio_16

of the variation was within the populations, both statistically

significant (P = 0.001). Inter-cluster AMOVA showed that

47.13% variation was within the clusters, 21.28% between the

clusters, and 31.59% within populations (Table 4). AMOVA

between populations in each cluster showed that differentiation

was the highest in the north-most region (Øpt = 0.5887, P =

0.000) and decreased toward the south, reaching the lowest in

the south-most region (Øpt = 0.1047, P = 0.000). Hierarchical

FST analysis using neutral loci showed a similar differentiation

pattern (Table 1).

Based on the 23 neutral loci, geneland identified five

genetic clusters and populations from similar latitudes clustered

together (Supplementary Figure 2). The results suggested

that genetic discontinuities existed between any adjacent

regions. Similar results were shown by BARRIER. Additionally,

BARRIER further displayed the genetic discontinuities existing

within the Heilongjiang River Basin, like barriers between

populations BS and XXT, XXT and HDY, and LQQ and HW as

well as around population ZD (Supplementary Figure 3).

Historical and contemporary gene flow

MIGRATE analysis based on neutral loci detected moderate

historical gene flow between populations in each river basin,

with the highest in Pearl River Basin ranging from 0.546 to 2.354,

and the least in Heilongjiang River Basin, ranging from 0.212

to 1.136. Gene flow among the five clusters was also moderate,

but higher than among the populations within clusters, ranging

from 0.211 to 14.46 (Supplementary Tables 6, 7). Conversely,

BAYESASS analysis revealed low contemporary gene flow in all

clusters with the highest in Pearl River Basin ranging from 0.012

to 0.258 and the least in the Yangtze River Basin, ranging from

0.0112 to 0.0247. Among the clusters, contemporary gene flow
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FIGURE 2

Geographical distribution of Zizania latifolia samples across the five (I–V) latitudinal regions in China and their respective genetic clusters each

denoted by a di�erent color.

was lower compared to within clusters, ranging from 0.0021 to

0.0044 (Supplementary Tables 8, 9).

Environment, geography, and landscape
heterogeneity impact on genetic
structure based on 23 neutral loci

Based on neutral loci, the IBE model was fully supported

with respect to the relative support values of the RCM for the

entire study site (Figure 4A). All column values for IBE were

positive, while the row values were negative indicating that it

explained the genetic structure independent of the alternative

hypotheses (IBD and IBR). IBD was the second-best model

explaining the genetic structure, with only one negative column

value, while IBR was the least supported model. Moreover, the

partial Mantel tests between genetic distance and environmental

distance controlling for IBR and IBD showed significant positive

correlations (Table 5).

It is worth noting that for all loci, neutral, and adaptive

loci, IBE was the exclusively supported model. Simple Mantel

tests were significant for all models based on the three data

sets, but partial Mantel significance differed between the dataset,

except for IBE for which all partial Mantels were significant

for all loci (Table 5 and Supplementary Tables 10, 11)). The

differences between simple and partial Mantels and the

estimation of the best model in each of the datasets

using RCM indicates its advantage over simple Mantel in

landscape genetics.

Based on the neutral loci in each of the clusters, IBE

was fully supported in clusters 2, 3, and 5, while in

clusters 1 (populations along the Heilongjiang River Basin)

and 4 (the Yangtze River Basin), IBD and hydrological

connectivity model (IBR_HC) were the fully supported model,

respectively. IBR_HC was the second-best model explaining
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FIGURE 3

Genetic structure of 28 Zizania latifolia populations based on STRUCTURE, principal coordinate analysis (PCoA), and neighbor joining tree (NJ).

(A) based on all loci; (B) based on neutral loci; (C) based on outlier loci. The colors represent the clusters based on STRUCTURE analysis for the

histograms and NJ tree.
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TABLE 3 AMOVA results based on 23 neutral loci for the 28 population of Z. latifolia across China.

Source of variation d. f. Sum of squares Variance components Percentage

variation

Statistics P

Among population

Among populations 27 5,193.553 4.957 65.46 <0.000

Within populations 1,044 2,730.666 2.615 34.54 Øpt = 0.6546 <0.000

Among clusters

Among groups 4 3,583.867 3.902 47.13 <0.000

Among populations within groups 23 1,609.686 1.761 21.28

Within populations 1,044 2,730.666 2.615 31.59 Øpt = 0.6841 <0.000

TABLE 4 AMOVA results for each of the inferred clusters based on 23 neutral loci.

Source of variation d. f. Sum of squares Variance components Percentage

variation

Statistics P

Cluster 1

Among populations 6 565.055 2.572 58.88 <0.000

Within populations 245 440.116 1.796 41.12 Øpt = 0.5887 <0.000

Cluster 2

Among populations 4 370.708 2.383 52.06 <0.000

Within populations 185 405.997 2.194 47.94 Øpt = 0.521 <0.000

Cluster 3

Among populations 3 166.675 1.424 27.59 <0.000

Within populations 142 530.949 3.739 72.41 Øpt = 0.2759 <0.000

Cluster 4

Among populations 6 470.224 1.829 33.00 <0.000

Within populations 279 1036.300 3.714 67.00 Øpt = 0.330 <0.000

Cluster 5

Among populations 4 37.024 0.192 10.48 <0.000

Within populations 193 317.304 1.644 89.52 Øpt = 0.1047 <0.000

the genetic structure in clusters 1, 2, and 5, while IBD

was the second-best supported model in clusters 3 and 4

(Supplementary Tables 12–16).

Environmental influence on genetic
diversity based on 23 neutral loci

Generalized linear models showed that 14 of the 21

environmental variables had a significant contribution to the

genetic diversity of Z. latifolia. Environmental variables, bio_5,

bio_10, bio_14, bio_15, and bio_17, were significantly correlated

with genetic diversity estimators HO, HE, and A (Table 6).

Spatially explicit linear mixed models with coordinates as

random effect showed that one environmental variable (bio_5)

had a significant influence on the genetic diversity estimator

HE. To identify the most important environmental variables

for the observed genetic variation, we tested the 14 variables

showing a significant contribution to genetic diversity in GLM,

for collinearity using VIF analysis (Helsen et al., 2017). Two

variables, namely bio_5 (Maximum temperature of the warmest

month) and bio_15 (precipitation seasonality), had VIF values

below 5 and were therefore considered the best environmental

variables explaining the genetic diversity patterns of Z. latifolia

(Figure 5).

Genetically informed ecological niche
modeling

Five environmental variables were left after multi-

collinearity analysis (bio3, bio5, bio8, bio15, and bio18)

and were used in subsequent analysis. We found significant

differences among groups in environmental space using both

multivariant and individual-based analyses. The first three

principal components accounted for 99.9% of the variation

in climate among groups (PC1 = 67.9%, PC2 = 20.1%, and

PC3 = 11.9%). Each of the PC axis was highly correlated
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A B

C D

E F

FIGURE 4

Heat map for reciprocal causal model (RCM) values for the entire data set and each of the inferred clusters. (A) All population, (B) Heilongjiang

River Basin, (C) Liaohe River Basin, (D) Huanghe River Basin, (E) Yangtze River Basin, (F) Pearl River Basin. Columns indicate test model and rows

indicate alternative models. Each value represents the relative support for the test model. The best model has positive column values and

negative/zero row values.
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TABLE 5 Reciprocal causal modeling, partial, and simple Mantel results for IBD, IBR, and IBE for the 28 populations of Z. latifolia and each of the

clusters based on 23 neutral loci.

IBD IBR_WD IBR_HC IBE

Geo Wind Water Env

I: Reciprocal causal modeling matrix

IBD Geo 0 −0.6273 −0.0453 0.4989

IBR_WD Wind 0.6273 0 0.6515 0.6552

IBR_HC Water 0.0453 −0.6515 0 0.4378

IBE Env −0.4989 −0.6552 −0.4378 0

II: Simple and Partial Mantel correlation matrix

IBD Geo 0.6388*** −0.0834 0.0171 0.3167***

IBR_WD Wind 0.5439*** 0.4065*** 0.5445*** 0.5859***

IBR_HC Water 0.0624 −0.107 0.6371*** 0.3004***

IBE Env −0.1822 −0.0693 −0.1374 0.6702***

IBD, Isolation By Distance; IBR, Isolation By Resistance; IBE, Isolation By Environment; Geo, Geographic Distance; Res, Resistance Distance; Env, Environmental Distance.

(I) Reciprocal causal modeling matrix; columns indicate the test model and rows indicate alternative models. Each value represents the relative support of the test model.

(II) Simple and Partial Mantel correlation matrix. Columns indicate test model and rows indicate alternative models. Values are r values for correlations, diagonal values are the simple

Mantel test r of a variable.
***P < 0.001.

TABLE 6 Generalized linear model (GML) for the contribution of

environmental variables to genetic diversity measures and spatially

explicit generalized linear mixed models (spatial GLMMs) for the

influence of environmental variables on genetic diversity measures

based on 23 neutral SSR loci.

Independent variables GLM Spatial GLMM

Dependent variables Dependent variables

HE HO A HE

bio_1 – 0.033 – –

bio_2 – – – –

bio_4 – – –

bio_5 0.008 0.0001 0.011 0.023

bio_6 – 0.034 – –

bio_7 – –

bio_9 – – – –

bio_10 0.024 0.002 0.027 –

bio_11 – 0.039 – –

bio_14 0.031 0.008 0.024 –

bio_15 0.035 0.023 0.031 –

bio_17 0.031 0.008 0.025 –

bio_18 – – – –

bio_19 0.042 0.012 0.035 –

Values are significant at P ≤ 0.05.

A, Effective Allele Number;HO , Observed Heterozygosity;HE , Expected Heterozygosity.

with a single bioclimatic variable (PC1∼bio8, r = 0.850;

PC2∼bio15, r = 0.849; PC3∼bio5, and r = 0.561) (Figure 6).

Multivariant perMANOVA detected significant niche separation

by climate among genetic groups (p= 0.001). All genetic groups

occupied significantly different environmental niche spaces

with respect to each bio-climatic variable as assessed using

Turkey’s pairwise test (at least p < 0.01) and Welch’s ANOVA

(p < 0.01).

Our genetic-informed models (gENMs) showed high

discriminatory power. AUC and pROC scores were 0.914–

0.987 and 1.879–1.984, respectively. This was an improvement

from the species-level model that had AUC and pROC scores

of 0.893 and 1.845, respectively (Supplementary Table 17). The

percentage contribution of bioclimatic variables to the model

building showed high variation across models (Table 7). For

instance, bio3 had a 92.3% contribution to the HRB model

and 0.1% to the PRB model. Temperature-related variables

showed the highest contribution to all models except the YRB,

where precipitation seasonality had a contribution of 58.8%

(Table 7).

Empirical niche overlap (D) between all model pairs

ranged from 0.097 to 0.451. The null hypothesis that any

genetic group occupies identical niches was rejected for 5

of the pairwise comparisons, while 5 other comparisons

supported niche equivalence (Table 8). However, based on

the low observed D values, the gENMs were found to

be less similar than expected by chance, supporting the

hypothesis of niche divergence among the river basins. The

difference in regional habitat available to each population

could influence its realized niche. Background similarity

test to determine if gENMs were more or less similar

than expected showed that D was significantly higher than

expected by chance reflecting a degree of niche conservatism

(Table 9). This is expected for aquatic plants since they
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FIGURE 5

Significant relationships between genetic diversity estimators and the two most important environmental variables, based on variance inflation

factor (VIF) analysis. A, number of alleles per population; HE, expected heterozygosity; HO, observed heterozygosity; bio_5; Maximum

temperature of the warmest month, bio_15; precipitation seasonality.

persist in limited riparian micro-ecosystems sandwiched among

expansive terrestrial ecosystems.

Discussion

Aquatic plants thrive in patchy habitats within the expansive

terrestrial ecosystem, and their dispersal mostly depends on

water connectivity, wind, and/or birds, generally effective

locally. Previous studies have focused on the IBD model

to explain the genetic structure, ignoring the influence of

other factors, such as climatic, environmental, and landscape

heterogeneity. In this study, the evident genetic structure was

found for all Z. latifolia populations throughout China along the

latitudinal gradient. The three models of gene flow (IBE, IBD,

and IBR) were tested and showed that IBE was first supported

followed by IBD. This indicates that climatic differences,

especially bio_5 (maximum temperature of the warmest month)

and bio_15 (precipitation seasonality), are more important than

the distance between populations. Populations in central China

exhibited higher than average genetic diversity followed by

populations from the North, and the least diversity was found in

Southern populations. This genetic pattern might be impacted

by the latitudinal trend.

Comparison of genetic diversity at
di�erent latitudes and genetic
bottlenecks

Zizania latifolia populations showed relatively low genetic

diversity (HE = 0.258). For the 28 Z. latifolia populations

from the five river basins/regions along the latitudinal gradient,

the genetic diversity increased gradually from north to south,

culminating in the Yangtze River Basin, and then dropping

rapidly to its lowest level in the southernmost populations

in the Pearl River Basin. A similar level of genetic diversity

was reported in its natural populations across China (HE =

0.371) using limited (three) SSR markers (Xu et al., 2015).

Additionally, similar microsatellite diversity of Z. latifolia

was also found in Northeast China (HE = 0.328; Chen

et al., 2017a). In the present study, a higher-than-average

genetic diversity was observed in populations along the

Huanghe River (HE = 0.317), and along the Yangtze River

(HE = 0.315). Similarly, previous studies also reported a

relatively high genetic diversity in the Yangtze River Basin

(Chen et al., 2012; Zhao et al., 2018, 2019).

Although latitudinal trends in intraspecific genetic diversity
have not been fully resolved, the leading hypothesis is that

genetic diversity increases along the latitudinal gradient toward

the equator, which is explained to be as a result of greater
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FIGURE 6

Population genetic groups are significantly di�erent in the

environmental space. HRB, Heilongjiang River Basin; LRB, Liaohe

River Basin; HHRB, Huanghe River Basin; YRB, Yangtze River

Basin; PRB, Pearl River Basin.

evolutionary stability in the tropics than in the higher latitudes.

Such an intraspecific genetic diversity trend has been generally

reported in plants, birds, and vertebrates (reviewed by Hirao

et al., 2017). This trend is not completely applicable to

the present study. The genetic diversity increased from the

Heilongjiang Basin to the Yangtze River Basin, which may

mirror the latitudinal trend of genetic diversity. However, the

lowest level of genetic variations in the Pearl River Basin broke

the trend. Among the five regions studied, the Pearl River Basin

has been fully utilized and developed, with little idle land and

water area. Furthermore, the residents around rivers in the Pearl

River Basin have greatly increased, resulting in more sewage

and a poor water environment. Though recent bottlenecks were

found in all 28 populations, the harsh habitats in the Pearl River

Basin might result in the lowest genetic diversity in this region.

The Bottleneck analysis showed that almost all Z. latifolia

populations experienced recent demographic bottlenecks,

especially under IAM (23 populations) and TPM (17

populations). The microsatellites used in Z. latifolia are

either dinucleotide perfect repeats or imperfect repeats, both

of which tend toward the IAM (Cornuet and Luikart, 1996).

Therefore, the IAM might give more accurate estimates. The

census population size of species can provide compelling

evidence for bottlenecks. Unfortunately, for wild Z. latifolia, as

a kind of common weed, its census population size is difficult

to be obtained. Chinese wetlands, including the current five

river basins, have been shrinking seriously in the past few

decades (Wang et al., 2011; Huang et al., 2012; Cao et al., 2017;

Chen et al., 2017b; Zhang et al., 2019). During this process, we

inferred that the habitats of Z. latifolia could have been severely

disturbed and the population size would be reduced. Besides the

general situation, wild Z. latifolia populations have continuously

suffered from bottlenecks caused by other factors. The factors

leading to the bottlenecks were different for populations

collected from different habitats. As for the populations from

lakes (including all populations from the Yangtze River Basin

and DP and LQ from the Huanghe River Basin), they generally

grow along the littorals of lakes, and two factors may lead to the

bottlenecks: (1) Severe shrinkage of lakeside zones during the

dry seasons would result in extensive death of wild Z. latifolia;

(2) Since people do not need Z. latifolia to feed cattle as they

did historically, Z. latifolia has been removed by machines

in some lakes to prevent the process of paludification. As for

populations growing in ponds, irrigation ditches, and small

rivers, such habitats are usually ephemeral, which would lead to

repeated bottlenecks for Z. latifolia populations. As we know, Z.

latifolia cannot withstand drought due to its underdeveloped

root systems and recalcitrant seeds (Berjak and Pammenter,

2007).

Historical and contemporary gene flow

In the present study, historical gene flow (MH = 0.212–

2.354) was higher compared to contemporary gene flow

(MC = 0.0021–0.0044), indicating the effect of wetland

fragmentation and subsequent population decline. These

findings are supported by observed low genetic diversity,

significant bottlenecks, and high population divergence. Unlike

the contemporary gene flow, which showed that higher

migration was within clusters (MC = 0.0112–0.0247) than

among clusters (MC = 0.0021–0.0044), a higher migration

rate was found among clusters (MH = 0.211–14.46) than

within clusters (MH = 0.212–2.354) for historical gene flow.

This could be related to the origin and dispersal history

of Z. latifolia. Guo and Ge (2005) reported that Zizania

species originated from the New World and dispersed into

North America and then to Asia through the Bering Land

Bridge during the Miocene, which is also supported by the

timeframe for the diversification of the rice tribe (Wen, 2001;

Gutaker et al., 2020). After the introduction of Z. latifolia in

Northern China, colonization occurred southwards occupying

different environmental habitats (Guo and Ge, 2005). During

the migration process, the plant could have acquired new

mutations, but which were not enough to dilute the shared

common ancestry.

IBE, IBD, and IBR

For the first time, IBE and IBR were tested, besides the

commonly assessed IBD pattern in the natural populations of

Z. latifolia. We found that the IBE pattern was exclusively

supported by RCM for all populations, and it was also detected
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TABLE 7 Percentage contribution of bioclimatic variables across six ecological niche models (ENMs).

Variable All pops HRB LRB HHRB YRB PRB

Isothermality (bio_3) 15.4 92.3 60.9 2.7 16.6 0.1

Max. temperature of the warmest month (bio_5) 13.4 0.4 0 0.2 13.6 0.7

Mean temperature of the wettest quarter (bio_8) 17.3 0.5 0.7 76.4 1 68.8

Precipitation seasonality (bio_15) 1.9 5.5 15.6 19.8 58.8 5.7

Precipitation of the warmest quarter (bio_18) 52 1.3 22.8 0.9 10 24.7

HRB, Heilongjiang River Basin; LRB, Liaohe River Basin; HHRB, Huanghe River Basin; YRB, Yangtze River Basin; PRB, Pearl River Basin.

TABLE 8 Niche identity tests between genetic group pairs.

HRB LRB HHRB YRB PRB

HRB 0.342 0.49 0.156 0.255

LRB 0.256 0.341 0.097 0.166

HHRB 0.207 0.146 0.144 0.341

YRB 0.362 0.313 0.413 0.451

PRB 0.375 0.281 0.112 0.219

Lower triangle represents 1-tailed t-tests (a = 0.05) while upper triangle represents Niche Overlap (D). The D ranges from 0 (no overlap) to 1 (niche equivalency). Niche divergence was

observed in five pairs (bold). Niche equivalency was also observed in five pairs involving HHRB and LRB groups although the D value was substantially low.

HRB, Heilongjiang River Basin; LRB, Liaohe River Basin; HHRB, Huanghe River Basin; YRB, Yangtze River Basin; PRB, Pearl River Basin.

TABLE 9 Background similarity test between genetic clusters with all comparisons being significant at 95 CI level.

HRB LRB HHRB YRB PRB

HRB 0.342 0.49 0.156 0.255

LRB 0.021–0.348 0.341 0.097 0.166

HHRB 0.001–0.454 0.032–0.344 0.144 0.341

YRB 0.035–0.132 0.035–0.081 0.068–0.185 0.451

PRB 0.102–0.243 0.053–0.127 0.188–0.347 0.201–0.434

Lower triangle represents 95% confidence interval while upper triangle represents Niche Overlap (D). The overlap values were within the null distribution, which indicates background

similarity showing that the observed niche divergence was not due to difference in habitats available to each group. Focal groups are horizontal while background points are vertical.

HRB, Heilongjiang River Basin; LRB, Liaohe River Basin; HHRB, Huanghe River Basin; YRB, Yangtze River Basin; PRB, Pearl River Basin.

in three regions, including Liaohe River Basin, Huanghe River

Basin, and Pearl River Basin. Similarly, previous studies also

showed that instead of geographical distance, the environmental

variables better explain the genetic patterns of different other

plant species [refer to reviews by Shafer and Wolf (2013) and

Sexton et al. (2014)]. For example, IBE was reported for the

perennial grass species (Festuca rubra) of the western Norway

alpines and the aquatic species Ranunculus subrigidus of the

Qinghai-Tibetan plateau (Šurinová et al., 2019; Wu Z. et al.,

2019).

The two methods (GLMs and spatial GLMMs) consistently

found that the maximum temperature of the warmest month

(bio_5) and precipitation seasonality (bio_15) were the best

environmental variables responsible for the observed genetic

diversity. Environmental association analysis (EAA) based on

the outlier loci also showed similar results. Additionally, EAA

also detected a significant association between outlier loci and

a high number of temperature-related variables, which implied

that temperature and precipitation could alter the physiology

and phenotypic diversity and subsequently influence plant

genetic differentiation and adaptability, which was well-proved

by previous studies (Hoffmann and Sgr, 2011; Manel et al., 2012;

Wang et al., 2016; Münzbergová et al., 2017). For Z. latifolia,

the intolerance to drought undoubtedly makes precipitation

very important for its growth and population maintenance.

Our common garden experiments showed that the individuals

exhibited shorter heights and smaller leaves when they were

transplanted to a relatively lower latitude region. We also found

that with the annual temperature increasing at 1◦C, the plant

height, leaf length, and width would decrease by 4.65, 2.81, and

0.39mm, respectively (unpublished data). Furthermore, higher

respiration rates were found in the populations from high to

low latitude regions compared with those from low to high

latitude regions, but all populations showed similar levels of
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photosynthetic parameters (unpublished data). A previous study

suggested that plant respiration often reaches peak at a higher

temperature compared to photosynthesis (Atkin and Tjoelker,

2003). Therefore, we inferred that a warmer condition could

result in a decrease in biomass accumulation due to higher

organic matter degradation. In the present study, the putative

roles of the four gene-linked loci (DNA-binding transcription

factor activity, protein phosphorylation, RNA splicing, and

response to external stimuli) are part of the plant machinery

involved not only in normal growth, but also in response to

stressors through transcription regulation, RNA modification,

and protein metabolism.

Isolation by distance was the second best-supported model

for the entire study site. As an anemophilous emergent plant,

combined with its edible seeds, Z. latifolia can mainly be

dispersed by wind, water flow, and waterfowl. These factors

work more effectively at close distances, especially in the

local area. Furthermore, since the Z. latifolia populations in

this study were sampled from plains with latitude gradients,

geographically distant regions tend to have greater variations

due to differences in climate factors. Even though migrating

birds can spread seeds over long distances along latitudes, the

seeds may unsuccessfully colonize in the new habitat due to

unsuitable climatic conditions. In contrast, seeds that spread

to nearby regions are more likely to survive due to similar

climatic conditions. The contribution of geographical distance

to Z. latifolia genetic structuring has been reported previously

by Zhao et al. (2018, 2019) using a simple Mantel, for which we

also found a strong positive correlation (r = 0.6388; P = 0.001)

for the entire data set.

Within regions, IBD was only in the Heilongjiang River

Basin where Z. latifolia populations grow along the stretch of

the Amur River (Fan et al., 2016). When populations reach

equilibrium between gene flow and genetic drift, there should

be an IBD pattern (Wright, 1943). The IBD pattern in the

Heilongjiang River Basin may suggest that the continuous

populations along the river in this area are less susceptible to

genetic drift.

For aquatic or riparian plants, hydrological connectivity

greatly facilitates their dispersal between populations. In the

present study, the populations from the Yangtze River Basin

were sampled from ponds and small rivers which would connect

with the artery of Yangtze in flood seasons. The Yangtze River

Basin was a potamo-lacustrine system where lakes (including

sampling lakes) were interconnected with the main vein of the

Yangtze River by small rivers; thus, hydrological connectivity

(IBR_HC) was expected. It is worth noting that of the seven

lakes sampled in the Yangtze River Basin, except for Dongting

Lake, the water course of the other six lakes was controlled

by water gates installed in the 1950s for controlling water

levels, generating electricity, and irrigation (Wu Y. et al., 2019).

Thus, the hydrological connectivity between lakes depends

on the control of lakes by local governments, rather than

the connectivity of waterways. Since Z. latifolia is a wind-

pollinated plant, wind connectivity was also investigated in

this study. Previous studies have shown that pollen-mediated

gene flow spreads almost exclusively locally, and diminishes

logarithmically with increasing distance (Tero et al., 2003). The

IBR_WD was not supported in the present study, which proved

that the wind pollination of Z. latifolia was only effective within

a population.

We found that populations within each river basin occupy

significantly different environmental spaces, which is expected

to facilitate local adaptation. Similar to our results of EAA, where

bio_3, bio_5, bio_15, and bio_18 variables were significantly

associated with gene-linked loci, these variables proved to be

the most influential drivers of niche differentiation. Niche

divergence was identified in half of the pairwise comparisons

that involved at least each genetic group. Although some

comparisons showed evidence of niche equivalency, the niche

overlap score was substantially low (0.097–0.451) on a scale of

0 (no overlap) to 1 (niche equivalency). Pairwise background

similarity tests showed that gENMs were not significantly

different, and thus the observed niche divergence could not

be an artifact of difference in habitat availability among the

river basins. The IBD model results from geographical isolation,

which limits gene flow among populations. Given that the local

adaptation could occur in differentiated environment space,

the genetic structure pattern could be construed to be shaped

by IBD, especially for widespread species. Our gENM results

supplement the evidence for IBE being the most important in

shaping the genetic structure and distribution of Z. latifolia.

In general, the genetic structure ofZ. latifolia is influenced by

the combined effects of the environment, geographical distance,

and landscape heterogeneity, with the environment having the

highest impact.

Genetic discontinuity and excess
heterozygosity

In the present study, the AMOVA based on three data

sets consistently showed the strong genetic divergence among

Z. latifolia populations from different regions/latitude areas,

accounting for 45.54–47.13% of the total genetic variations.

The results were also supported by the cluster analyses

(STRUCTURE, PCoA, and NJ) which showed that the

populations from the same regions/latitude areas clustered

together. Accordingly, genetic discontinuities were detected

between adjacent regions/latitude areas by both geneland and

BARRIER analysis. The evident genetic differentiation among

regions might be explained by a number of factors, such as IBE,

IBD, and fragmentation, which were supported by decreased

gene flow.
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As mentioned above, the IBE and IBD were the two best-

supported models for the entire study site. Populations from

the same latitude are geographically closer and their climatic

conditions are more similar, so populations from the same

latitude tend to cluster together with less genetic differentiation.

Habitat fragmentation generally reduces the gene flow

among populations by decreasing the habitat size and increasing

the isolation between populations, which would eventually

increase genetic differentiation. However, Zhao et al. (2013)

reported that wild rice Oryza rufipogon increased gene flow

in fragmented habitats through introgression which is from

cultivated populations to wild ones and acts as a bridge to

mediate the gene flow among wild populations. In the present

study, historical gene flow (MH = 0.212–2.354) was higher than

contemporary gene flow (MC = 0.0112–0.0247), which implied

that the wetland fragmentation and degeneration were followed

by reduced gene flow.

Declining population size and population isolation are

expected to result in considerable inbreeding. However, we

found negative FIS values for almost all populations. This

could be related to the characteristics of Z. latifolia, which is

a perennial species that reproduces both sexually and clonally.

The reproduction system of partial clonality has been shown

to influence the heterozygosity rate, with tendencies toward

excess, leading to negative FIS values (Stoeckel et al., 2006,

2021). According to Balloux et al. (2003), in clonal/partial clonal

species, mutations will accumulate due to irreversible divergence

of two alleles of a locus over generations leading to excess

heterozygosity and hence the observed negative FIS values for

Z. latifolia populations.

Implications for conservation and
management

Global climate change has brought a tremendous impact

on world food production, which highlights the protection

and management of the resources of crop wild germplasm

increasingly prominent. Knowledge of genetic diversity patterns

and local adaptation for the target species is a prerequisite for

the effective conservation of its wild germplasm resources.

The wild rice Z. latifolia showed a high level of genetic

differentiation among the regions along the latitudinal gradient.

The genetic discontinuity was attributed to the climate

differences (especially temperature and precipitation), the

heterogeneous landscape, and the discrete distribution of the

natural populations. Given that Chinese wetlands are being

increasingly damaged (Liu et al., 2005), both in-situ and

ex-situ conservation should be recommended in the future

conservation process. In the process of ex-situ conservation,

transplanting with a large latitude span is discouraged due to its

inadaptability to the local climate. Multiple ex-situ conservation

sites should be established along the latitude gradient, which

can reduce the management cost, and prevent the out-crossing

depression caused by the interbreeding of ex-situ populations

from different latitude regions.

For the same latitude region, obvious genetic differentiation

among populations was detected due to wetland fragmentation.

Therefore, dredging the watercourses to achieve hydrological

connectivity within each wetland is recommended for in-situ

conservation at the same latitude. This action would increase

the gene flow among populations and habitat stability

and consequently reduce bottlenecks (Chen et al., 2017a).

Additionally, populations with a high level of genetic variation

need to be protected as a priority for both ex- and in-situ

conservation, such as populations CH, SJ, and DT in the Yangtze

River Basin.
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