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Research on plant-pollinator interactions requires a diversity of perspectives

and approaches, and documenting changing pollinator-plant interactions due

to declining insect diversity and climate change is especially challenging.

Natural history collections are increasingly important for such research and

can provide ecological information across broad spatial and temporal scales.

Here, we describe novel approaches that integrate museum specimens from

insect and plant collections with field observations to quantify pollen networks

over large spatial and temporal gradients. We present methodological

strategies for evaluating insect-pollen network parameters based on pollen

collected from museum insect specimens. These methods provide insight into

spatial and temporal variation in pollen-insect interactions and complement

other approaches to studying pollination, such as pollinator observation

networks and flower enclosure experiments. We present example data from

butterfly pollen networks over the past century in the Great Basin Desert and

Sierra Nevada Mountains, United States. Complementary to these approaches,

we describe rapid pollen identification methods that can increase speed and

accuracy of taxonomic determinations, using pollen grains collected from

herbarium specimens. As an example, we describe a convolutional neural

network (CNN) to automate identification of pollen. We extracted images of

pollen grains from 21 common species from herbarium specimens at the

University of Nevada Reno (RENO). The CNN model achieved exceptional

accuracy of identification, with a correct classification rate of 98.8%. These

and similar approaches can transform the way we estimate pollination

network parameters and greatly change inferences from existing networks,

which have exploded over the past few decades. These techniques also allow
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us to address critical ecological questions related to mutualistic networks,

community ecology, and conservation biology. Museum collections remain

a bountiful source of data for biodiversity science and understanding

global change.

KEYWORDS

plant-pollinator, interaction network, pollen analysis, museum collection,
convolutional neural network

Introduction

Global change is one of the most pressing issues for
modern ecologists, and increases in habitat loss, fragmentation,
climate change, invasive species, and pollutants are leading to
unprecedented losses of biological diversity and less reticulate
ecological networks (Alarcon et al., 2008; Ferrarini et al., 2017;
Harrison et al., 2020; Salcido et al., 2020; Wagner et al.,
2021). Pollination is one of the essential ecosystem services
impacted by global change, but it is difficult to document these
impacts without thorough natural history observations of plant-
pollinator associations and estimates of network relationships
(Seltmann et al., 2017; Balmaki et al., 2022).

Entomopalynology, the study of pollen grains associated
with insects, is a relatively new approach developed to track
pollination ecology through time and space (Jones and Jones,
2001). This approach has recently received greater attention
and has provided more demand for museum specimens because
insects collected across different temporal or spatial gradients
provide invaluable data for reconstructing networks of insect-
pollen interactions. A limited number of studies have used
this method to estimate parameters related to bee pollination
biology (Silberbauer et al., 2004; Wood et al., 2019). Expanding
this approach to other insects that are important pollinators,
such as Lepidoptera, can reveal unique aspects of pollen-insect
interaction networks, and their sensitivity or resilience to change
(Balmaki et al., 2022).

Pollen grains are the common currency of pollination
ecology. Insects may consume, passively carry, or actively
transport pollen (to a stigma or other plant parts), and pollen
grains can cover an insect’s body, either passively through the
air column, or actively while an insect is feeding on nectar or
pollen (Jones, 2012a,b, 2014). Analysis of pollen grains on the
body of a pollinator can reveal dietary associations and patterns
of floral visitation. Examining pollen grains on pollinators
approximates a measure of pollen availability, and with repeated
sampling can illustrate changes in plant-pollinator interactions
over time. Tracking these changes is key to understanding the
effects of environmental change on pollination ecology. Precise
and quantitative descriptions of plant-pollinator interactions
are required to make inferences about changing interaction

networks, and pollination ecosystem services through time, and
analysis of pollen on insect specimens is a powerful approach to
address this need (Burkle et al., 2013).

Traditional palynology, the study of pollen grains and
spores, depends on morphological characters of pollen
grains to identify pollen taxa. Typical morphological traits
used to distinguish pollen include general shape, polarity,
symmetry, apertures, size, and ornamentation. Nevertheless,
the morphological similarities of pollen grains make it difficult
to effectively use these features to identify pollen species quickly
and accurately. In addition, identifying pollen grains under
the microscope is time-consuming and expensive, and the
results are typically dependent on partly-subjective criteria
for identifications that are associated with a relatively high
error rate (Gonçalves et al., 2016; Sevillano et al., 2020).
Alternatively, pollen metabarcoding is a high-throughput
approach that can characterize multiple taxa in a mixed sample,
but is frequently unable to resolve lower taxonomic levels,
and is not an effective method for estimating abundance (Bell
et al., 2017). While some studies using pollen identification
only warrant a coarse level of taxonomic resolution (family),
most approaches to insect-pollen networks benefit from finer
taxonomic resolution, at the level of species. An effective
method for pollen identification should be efficient, precise,
and accurate, and machine learning approaches are well suited
for this goal. Here, we provide an example using convolutional
neural networks (CNN) which is a deep learning algorithm
that can be part of an integrated approach to collections-based
research. The approach should be especially useful for museums
with large herbaria and entomological collections, because
pollen can be collected from herbarium specimens as well as
insects (Daood et al., 2016; Carranza-Rojas et al., 2017; Romero
et al., 2020; Polling et al., 2021).

We analyzed a plant-pollinator interaction network using
museum specimens collected in the Great Basin Desert and
Sierra Nevada Mountains and stored at the University of
Nevada, and our goal here is to present these methods and
analytical tools to encourage adoption in other collections. The
main objectives of these methodological innovations are to
quantify historic and contemporary pollen-butterfly interaction
networks, and to use this information for hypothesis testing
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about changes in pollination networks in response to extreme
weather events and other commonly measured parameters of
global change. This approach will transform the way we quantify
pollinator networks and present an efficient alternative to pollen
identification that provides reliable species-level accuracy.

With this integrative approach to studying plant-pollinator
interactions using museum specimens, it is possible to address
important questions in ecology and conservation biology, such
as: How have plant-pollinator interaction networks changed
over time? Is climate change associated with changes in
interaction networks? How do habitat loss, fragmentation,
biological invasions, and other disturbances affect these
networks? Can we improve accuracy and decrease the time-
consuming methods of pollen grain identifications using deep
learning?

General methodological approach

Data collection and pollen analysis

The best methods for documenting plant-pollinator species
interactions are likely to combine quantitative approaches with
well-informed natural history descriptions. Historically, these
approaches include flower bagging experiments, observations of
floral visitation, and pollen identification from insect specimens
as described above. These approaches are rarely combined, and
pollination studies are dominated by observational methods and
quantitative literature reviews, typically with a focus on flower
visitation observations for estimating network parameters
(Yamaji and Ohsawa, 2016; Colom et al., 2021; Mendes et al.,
2022). Visitation network studies typically consist of observation
periods in which the researcher observes and records the visitors
to a particular plant in an allotted time period. On its own, this
approach falls shorts because it disregards the effectiveness of
particular pollinators and treats all floral visitors as pollinators,
when some are not (Ballantyne et al., 2015). Additionally,
many observation hours over relatively long temporal scales
may be required to accurately and adequately characterize
these interaction networks (Kaiser-Bunbury et al., 2009). Flower
bagging experiments involve isolating inflorescences with bags
to assess the effects of pollinator exclusions, and pollination
events can be closely monitored upon removal of the bag
(Yamaji and Ohsawa, 2016; Aslan et al., 2019). This method is
valuable for assessing the effectiveness of individual pollinators,
but can be time-consuming, and may be inefficient and
impractical for community-level studies.

In recent decades, ecologists have used pollen analysis to
study the effects of habitat loss and alteration on pollinators
and plants (Silberbauer et al., 2004; Bosch et al., 2009;
Jones, 2014; Wood et al., 2019; Balmaki et al., 2022). Pollen
collections have typically focused on pollen from sediment
or soil cores, but collecting pollen grains directly from the

bodies of pollinators is a more recent approach to estimating
changes in plant-pollinator interactions (Bosch et al., 2009). In
addition, collecting historical ecological data associated with
museum specimens can increase the accuracy of pollinator-plant
interactions and expand our knowledge of pollination networks
through space and time (Kleijn and Raemakers, 2008; Colla
et al., 2012; Bartomeus et al., 2013; Balmaki et al., 2022). Natural
history museums are underutilized repositories of historical
interaction diversity and rapidly declining biodiversity (Johnson
et al., 2011; Castillo-Figueroa, 2018; Jones and Daeler, 2018).
Data from pollen associated with pollinators stored in museums
can be used for the estimation of interaction networks between
plants and flower visitors through time and space.

Collecting data from historical museum specimens,
especially butterflies, presents a unique set of challenges,
particularly with older specimens. Using museum samples
precludes us from using the acetolysis technique, in which
organic materials, in this case insect tissue, are dissolved to
recover pollen from insects and reveal diagnostic characters
of pollen grains (Jones, 2014). In order to preserve museum
specimens, we use entomological pins under a binocular
microscope to manually collect pollen grains from the external
surface of pollinators, which can be exacting and delicate
work. On Lepidoptera, pollen grains typically aggregate on the
proboscis, legs, and compound eyes (Figure 1). Pollen grains
can be mounted on glass slides by adding two drops of 2000
cs silicone oil volume. Suspension in silicon oil allows for
the rotation of pollen grains under a microscope to examine
the dimensions and shape of pollen in different orientations
(Cushing, 2011). The next step is sealing the slide with a cover
slip and nail polish to protect the slides from damage. This
method is prevalent among quaternary researchers who make
pollen slides from sediment samples in cores for palynology
purposes (Cushing, 2011; Balmaki et al., 2019; Riding, 2021).
Once pollen slides are prepared, they can serve as reference
slides for identification of pollen grains to the genus or
species level. Having pollen reference slides from all plant
taxa in our study region increases the accuracy of pollen grain
identification. A high-resolution light microscope and camera
can create detailed images for pollen morphology, which can
illustrate the number of apertures, exine sculpture, and internal
texture, to analyze and identify pollen grains. In addition,
electron microscopes (SEM) can examine the surface structures
for pollen identification. Figure 2 indicates the summary of the
procedure, from collecting pollen to analyzing the data.

Network analysis and parameters

It is useful to quantify species interaction networks because
of the importance of biotic interactions for ecosystem functions,
from primary productivity to community stability, especially in
the context of environmental change (Tylianakis et al., 2010;
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FIGURE 1

Scanning electron microscope images of pollen grains on the legs and eyes of a skipper (Hesperopsis libya, Hesperiidae) from the
entomological collections of the University of Nevada Reno Museum of Natural History (UNRMNH). (A) Pinaceae pollen grains adhered to the
butterfly’s eye. (B) Asteraceae pollen grains on the butterfly leg.

Losapio et al., 2018; Aslan et al., 2019). The documented
relationships between interaction diversity and stability of
ecological communities are partly a consequence of the number
of network links, their relative strength, nestedness, and degree
of specialization (Pawar, 2014; Metelmann et al., 2020). Large
disturbances, extreme weather events, and continued global
change can decrease the number of potential and realized
interactions in mutualistic networks (Balmaki et al., 2022).
Extending analyses to examine interaction diversity at multiple
scales may provide mechanistic insights into the community
and ecosystem-level consequences of climate change. Including
interaction diversity and network approaches should contribute
to predicting how species interactions will change over time
in response to global change as well as across different
environmental and disturbance gradients, especially if they are
used to construct and validate predictive or forecasting models
(Strydom et al., 2021).

Typically, plant-pollinator interaction networks are
considered as bipartite, or two-sided networks, in which
the nodes indicate plant and pollinator taxa, and the edges
represent their interactions. Commonly, the width of the edges
represents the frequency of interactions, with wider edges
representing higher frequencies of interaction. Dozens of
network parameters can be used to summarize bipartite and
more complex networks; for example, some useful network
metrics for community ecology are connectance, nestedness,
and network specialization (H2) (Dormann et al., 2009).
Connectance represents the number of links between nodes,
and it summarizes the number of realized possible connections
(Martinez, 1992). Nestedness describes the degree of subsetting
that occurs compared to a random network; in other words,

nestedness describes the extent to which more specialized
interactions form subsets within more generalized interactions
(Bascompte et al., 2003; Pawar, 2014). H2 is an index that
quantifies the degree of specialization and is useful for
comparisons across multiple networks (Blüthgen et al., 2006).

Automation of pollen grain
classification

Deep learning as a subset of artificial intelligence is not a new
approach, but it has become more popular in the past decade
with the advance of technology, including computational power
and the availability of large datasets (Wäldchen and Mader,
2018). Deep learning algorithms are computationally expensive,
but for researchers who do not have access to appropriate
computational resources and high-speed internet to handle large
datasets with many parameters, there are platforms such as
Colaboratory by Google (Google Colab), which is a Jupyter
notebook-based runtime environment that allows running code
entirely on the cloud, that can help train large-scale deep
learning models using a standard computer. The main purpose
of neural networks in deep learning is to receive a set of
inputs, perform complex linear and non-linear calculations on
them, and provide output to aid classification or provide classic
regression parameter estimates. Deep learning is a technique
that enables us to train huge and complex datasets, and applies
to many fields, including crop or weed detection (Buddha et al.,
2019; Afonso et al., 2020), leaf detection (Younis et al., 2020),
detection and classification of plant diseases (Geetharamani
and Pandian, 2019; Albattah et al., 2022), species identification
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FIGURE 2

Summary of pollen analysis method for plant-pollinator studies. Pollen grains are manually extracted from the insect specimen using an
entomology pin under a microscope. The grains are then oriented and slide mounted for pollen identification via machine learning methods.
The direct associations between insect and pollen are then combined with similar data from several specimens or several species collected at
various spatial or temporal scales for examination via network analysis (or other downstream analyses).

(Galanty et al., 2021), and animal counts using camera traps
(Norouzzadeh et al., 2018, 2021; Wäldchen and Mader, 2018).

Convolutional neural networks (CNN) are utilized for deep
learning (e.g., Norouzzadeh et al., 2018; Astolfi et al., 2020;
Polling et al., 2021). A CNN model contains multiple layers,
including convolutional layers, pooling, and fully connected
(FC) layers (Figure 3). For example, utilizing a pollen image as
input, the first layer would include dimensions such as height,
width, and color channels (Red, Green, Blue). The neuron in
the first convolutional layer transforms this information into a
three-dimensional output, yielding non-linear combinations of
the input layer or feature extraction. These learned features are
utilized as inputs for the next layer, allowing for pooling and
data reduction, and at each step, the next node reclassifies the
previous node. Learned features become inputs for statistical
models, taking advantage of the hierarchical nature of the
input data, and summarizing complex patterns using nested
patterns that are smaller and simpler. These approaches have
rarely been used for pollen identification (Daood et al., 2016;

Khanzhina et al., 2018; Sevillano and Aznarte, 2018; Gallardo-
Caballero et al., 2019; Astolfi et al., 2020; Romero et al., 2020;
Sevillano et al., 2020; Polling et al., 2021), whether the goal is for
identifying allergens in the air column or monitoring change in
pollinator-plant interactions through time. Whatever the goal,
CNN models are ideal for image classification and will be useful
for species-level determinations.

Convolutional neural networks models often achieve
prediction capabilities not seen by any other modeling approach
(Flagel et al., 2019; Sevillano et al., 2020; Polling et al., 2021).
This is because CNN models contain many filters and neural
network layers that can extract low and high-level features from
images or data matrices. In fact, the CNN method develops
algorithms that automatically extract discriminant features from
images without human involvement, in contrast to standard
statistical approaches, such as ordination (PCA, NMDS) and
Support Vector Machine (SVM) analyses, with extraction
and preprocessing steps that require user iterations and are
time-consuming (O’Mahony et al., 2019; Alzubaidi et al., 2021).
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FIGURE 3

Basic convolutional neural network (CNN) architecture, including an input image, convolutional layers (convolution and pooling), fully
connected layers, and output classes.

FIGURE 4

Flowchart showing the pollen image classification process across several steps, including: (A) creating the image dataset; (B) training the model;
(C) testing the model.

There are several advantages of CNN compared to traditional
supervised machine learning methods. The CNN method often
achieves a higher accuracy score in tasks such as image
classification and object detection (Viertel and Konig, 2022).
The CNN can be re-trained which allows us to utilize it in
different custom datasets (O’Mahony et al., 2019).

In the example presented here for identification of pollen
from the Great Basin Desert and Sierra Nevada Mountains,
two popular transfer learning (pertained models) approaches
have been used, including AlexNet and VGG19, to create
and train our models and extract the critical features
automatically from the pollen images (Krizhevsky et al., 2012;
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Simonyan and Zisserman, 2014). AlexNet was initially created
to classify millions of images in 1000 categories in ImageNet
datasets (Krizhevsky et al., 2012). It takes input images by size
224 × 224 RGB. This method includes five convolutional layers
and three fully connected (FC) layers with around 60 million
parameters. Through different layers of the CNN network, the
first layer extracts the basic features such as color and edges;
then, in the deeper layers, the model learns more convoluted
features such as spines and pores in pollen grains. After the
convolutional layers and extracting the features, AlexNet has
three FC layers with 1000 neurons for each category. The output
layer in the AlexNet model is interpreted as the probability of
an image belonging to each pollen species category. The VGG
(Visual Geometry Group) model takes input images with the
size of 224× 224 RGB. This model has five convolutional blocks
with a filter size of 3 × 3, a fixed stride size of 1, and each of
these convolutional blocks followed by max-pooling with size
2 × 2 with a stride of 2. Also, the VGG has three FC layers,
including Rectified Linear Unit (ReLU) and softmax function
in the final layer. The main VGG transfer-learning models are
VGG16 and VGG19, and the critical difference between them
is the number of convolutional layers which are 16 and 19,
respectively (Simonyan and Zisserman, 2014). Here, we used
VGG19 for our case study.

The pollen image datasets are divided into training and
validation sets to evaluate the training error and prevent
overfitting, compromising 80% training set and 20% validation
sets. There are several regularization approaches to avoid
overfitting, including early stopping, batch normalization,
dropout, L1 and L2 regularization, increasing the number of
training datasets, and data augmentation. For our approach,
we used dropout, increasing the number of training datasets,
and data augmentation. Dropout is a regularization strategy
that involves randomly excluding some number of layer outputs
during the training of the CNN model. It helps to force
nodes within a layer to probabilistically take on more or
less responsibility for the inputs, decreasing the complexity
of the model. The data augmentation method was also used
on the training dataset after separating the dataset into two
training and validation datasets to prevent overfitting and
increase the accuracy of the model. The deep learning models
need enormous datasets, and it is one of the most significant
challenges that researchers face in the case of collecting
a large number of samples (e.g., Najafabadi et al., 2015;
Polling et al., 2021).

Data augmentation is an approach commonly used in
computer vision to increase the amount of training data by
adding slightly modified copies of already existing data, only
using information from the training data (Perez and Wang,
2017). This method can act as a regularization strategy, and the
model is not able to overfit all the image samples, which allows
for greater model generalizations (Perez and Wang, 2017).
For the data augmentation, we used several transformation

methods, such as resizing the images (all of which were the same
size), rotating the images across multiple angles, and horizontal
flips. All these transformations generate new images from the
original. This approach balances the sample sizes for images of
different species, it delivers a wider variety of features found
in images of the pollen grains, and it increases the number of
images in the training datasets (Figure 4).

To evaluate our CNN algorithm, we used the accuracy
metric. The accuracy metric equation includes the terms TP
(True Positive), TN (True Negative), FP (False Positive), and
FN (False Negative) and provides an estimate of how the model
performs through all the classes. It calculates the ratio between
the number of correct predictions and the total number of
predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

Case study: Pollen analysis of
historic Lepidoptera in Great Basin
Desert and Sierra Nevada
Mountains

Great Basin Desert and Sierra Nevada
Mountains pollen-butterfly networks

Our pollen analysis included pollen grains collected from
lepidopteran specimens from the UNR Museum of Natural
History (UNRMNH) from historic collections dating back to
1910 in the Great Basin and Sierra Nevada Mountains near
Reno, NV. Beginning in 2020, we started regular collections
of butterflies from three sites to supplement and expand the
UNR collections and to improve the resolution of plant-
pollinator networks from museum specimens. We selected 266
specimens, including 20 locally abundant native butterfly species
from five families in the Great Basin and the Sierra Nevada,
for pollen analysis for this study (Supplementary Table 1).
Part of the dataset was published recently to reconstruct the
butterfly-pollen interaction network in the Great Basin and
Sierra Nevada Mountains over the past century (Balmaki et al.,
2022); that study used the methods described here, and more
specific methods for data collection and statistical analyses are
described in that paper. While Balmaki et al. (2022) focused
on characterizing changes in pollen-butterfly networks over the
past century and comparing these networks to contemporary
visitation networks, the current paper focuses more generally
on pollinator network methodology with an expanded pollen-
butterfly network from the UNRMNH collections.

We prepared more than 400 pollen reference slides from
native flowers found in the Reno herbarium (RENO) for cross-
validation of pollen identifications. We used a ZEISS, Axiolab
5 light microscope, and Axiocam 208 color microscope camera
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FIGURE 5

Bipartite pollen-butterfly networks of 20 butterfly species from museum collections of butterflies in the Great Basin Desert and Sierra Nevada
Mountains (United States). Light green nodes are butterfly species, dark green nodes pollen species, and the size of the nodes indicate the
frequency of those species in the dataset, while the edge thickness (gray) indicates the frequency of interactions (or strength of the association)
between the insect and plant species.

for pollen identification and photography of pollen grains,
and the images were captured using 40× objective lenses and
10× ocular lenses. Z-stack images show the vertical details of
pollen grains at various focus levels. To train the model for
automating the identification of pollen grains, we cropped all
the images using Adobe Photoshop (CS6, 13.0.1.3). We removed
images with high levels of noise due to debris, air bubbles, and
aggregated pollen.

We then estimated the richness and frequency of butterfly-
plant interactions over time and space by bipartite interaction
networks, and estimated network parameters using network
methods outlined by Dormann et al. (2009). This network
provided a summary of butterfly-plant interactions over the last
century in the Great Basin Desert and Sierra Nevada Mountains
(Figure 5). Using temporal subsets of these networks from
1910 to 2021, Balmaki et al. (2022) demonstrated that there
have been shifts in plant species associated with butterflies,

with strong shifts in network structure when comparing pre-
and post-drought time intervals. For that analysis, pollen
species known to be from wind-pollinated plants were excluded.
Insect-pollinated plants have spikey, sticky pollen grains that
easily attach to butterflies’ bodies when they are foraging for
nectar. Wind-pollinated species in the Great Basin Desert
and Sierra Nevada Mountains butterfly-pollen network shown
here included species in the families of Pinaceae and Poaceae,
and insect-pollinated plants are in the Asteraceae, Lamiaceae,
Fabaceae, Polemoniaceae, Malvaceae, and Rosaceae. We found
pollen grains of these wind-pollinated families were attached to
the legs and wings of butterfly specimens, which means they
likely were picked up incidentally from the environment (e.g.,
as butterflies visit or perch on these plants).

Results from Balmaki et al. (2022) indicated that the plant
community associated with butterflies is shifting and that this
shift is temporally associated with periods of extreme drought
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FIGURE 6

VGG19 confusion matrix for the 21 pollen species used for the training dataset pollen images from the Great Basin. Rows are species identities
and columns are convolutional neural network (CNN) species assignments. The color bar indicates frequency, with dark green being most
frequent. The diagonal elements are frequency of correctly classified outcomes, while misclassified outcomes are on the off diagonals.

in the Western United States. This study also showed that
pollen richness associated with butterflies has declined over
the past 100 years, which can be a consequence of lower
local plant diversity or fewer floral resources (Balmaki et al.,
2022). Fewer floral resources could potentially lead to the
decline of pollinator species, especially specialized butterflies
that may depend on nectar or pollen from a limited number
of plant species (Schowalter, 2006). These temporal changes in
plant-pollinator interaction networks are an example of how
anthropogenic change may be influencing biodiversity.

Anthropogenic climate change has been characterized
by increased drought frequency and intensity, and extreme
temperatures in the Western United States, and has in
some cases been linked to phenological mismatches between
pollinators and their food plants (Stemkovski et al., 2020).
Museum specimens are one of the best options for examining

predicted changes in plant-pollinator interactions over time due
to specific global change parameters.

Convolutional neural network models
for the Great Basin Desert and Sierra
Nevada Mountains pollen identification

We used two pretrained CNN models (AlexNet and
VGG19) to classify the 21 most common pollen species in the
Great Basin, including Achillea millefolium, Cirsium arvense,
Erigeron divergens, Erigeron peregrinus, Helianthus annus,
Taraxacum officinale, Taraxacum californicum, Ericameria
nauseosa, Chrysothamnus viscidiflorus (Asteraceae); Erysimum
capitatum (Brassicaceae); Astragalus purshii, Lupinus argenters
(Fabaceae); Monardella villosa, Salvia dorrii (Lamiaceae);
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Calochortus nuttallii (Liliaceae); Sphaeralcea ambigua
(Malvaceae); Phlox diffusa, Phlox longifolia (Polemoniaceae);
Eriogonum umbellatum, Eriogonum rosense (Polygonaceae);
Rosa woodsii (Rosaceae). Our pollen image datasets included
5709 images from 21 different pollen species. The number
of images per species ranges between 200 and 650, and
the majority of the images belong to these four species
(E. peregrinus, S. ambigua, P. diffusa, and R. woodsii).

To evaluate the accuracy of our model, we used the
validation set, which was composed of unseen images by the
model during the training process. These images did not go
through the data augmentation, which let us get the realistic
accuracy of our model when encountering a new observation.
Our AlexNet model achieved the training and validation
accuracy of 96.5 and 92.1%, respectively. On the other hand, we
acquired higher training and validation accuracy using VGG19,
including 98.8 and 93.1%, respectively. This is likely because
our VGG19 model architecture, compared to the AlexNet,
has a higher number of parameters (VGG19: 102,850,581,
AlexNet: 9,459,733) and deeper layers (VGG19: 19, AlexNet:8
layers) which let the VGG19 model better differentiate features
within images. The accuracy obtained by the validation dataset
was similar to the accuracy obtained by training datasets in
the VGG19 model. The low deviation between training and
validation accuracy indicates that our model is robust and
rules out the possibility of overfitting, which occurs when a
model is too complex.

In addition, to see how our VGG19 model acts in different
pollen species, we created a confusion matrix that shows just
a few mislabeled species (Figure 6). Finally, we believe this
accuracy in VGG19 is high enough to build a web and phone
application to create an automatic classification system for
pollen grains at the species level.

Conclusion

Decades of research have focused on coevolution between
plants and insects; these coevolutionary interactions have
generated broad-scale geographic patterns of interactions that
can be summarized with network parameters (Olesen et al.,
2007; Tylianakis et al., 2010; Pellissier et al., 2018). This plant-
insect interaction research is often limited by poor natural
history data, for which museum collections can serve as
an untapped and unparalleled resource. Current challenges
include incorrectly inferring relationships from brief visits
(i.e., a butterfly landing on a flower implies pollination),
assuming interactions are present throughout the geographic
range of a species and inferring interactions from literature
sources. Consequently, inferences used for ecological networks,
for understanding of plant-pollinator coevolution, and for
pollinator conservation efforts are formed using incomplete
data (Dyer, 2018). Despite the abundance of lepidopterans
in collections, their importance as pollinators still lacks

rigorous quantification for many taxa. Mining pollinator
interaction data from museum specimens can help to fill this
critical knowledge gap.

In this time of well-documented declines in pollinators,
there is a clear need for innovative methods for studying plant-
pollinator interaction networks using museum collections (Potts
et al., 2010; Burkle et al., 2013). Species interactions, and their
impact on community structure, and ultimately, ecosystem
functioning, can be explored through better-informed network
methods, which can help us to describe spatial and temporal
changes in these dynamics (Burkle and Alarcón, 2011; Campos-
Moreno et al., 2021). For example, many specialist pollinators
are more susceptible to declines as their more restricted niches
provide less redundancy in resource availability (Weiner et al.,
2014). It is also likely that the occupancy of specialists across
the landscape is low compared to generalists (Sudta et al.,
2022) and that more specialized pollinators are less abundant
overall (Fort et al., 2016). In either case, there is an expectation
of a strong positive correlation between generalization and
abundance at some scale, which has conservation implications
for threatened specialized plant-pollinator interactions and
overall network complexity. It is difficult to assess such
network responses without careful networks that are backed
by natural history observations and that take into account
changes across spatial and temporal gradients. In particular,
because museum collections can provide multiple observations
over space and time, they can be a more powerful tool for
differentiating specialist and generalist pollinators than more
limited field observations. Analyzing pollen grains on butterflies
from museum collections adds valuable natural history data
to specimens and is an efficient and accurate method for
documenting the frequency and richness of interactions with
plants. These methods should be used to explore how networks
have changed over time and may help us predict further network
change. Lastly, this approach can help us identify relationships
that are most at risk to environmental perturbations and those
that are robust to perturbations associated with global change.
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