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The organization of social insect colonies requires sophisticated mechanisms to regulate
caste composition according to colony demands. In termites, the soldier caste is
responsible for the inhibition of soldier differentiation, but the mechanism underlying
the regulation of soldier differentiation is still unclear. In this study, we performed
transcriptome analyses to identify genes expressed in workers that fluctuated in the
presence of soldiers in the subterranean termite Reticulitermes speratus. First, soldier
differentiation was artificially induced via juvenile hormone (JH) application, and the
inhibitory effects of soldier differentiation on soldier presence were evaluated. Second,
transcriptomes were prepared from workers with or without soldiers under JH treatment,
and expression analyses were performed to identify differentially expressed genes
(DEGs) for each treatment. The expression levels of several DEGs were verified by
quantitative real-time PCR. The results indicated that only a small number of DEGs
were upregulated by the presence of soldiers. A homology search of DEGs and
gene ontology (GO) analysis of the DEGs showed that some genes were responsible
for the regulation of hormone levels, social interaction, and response to xenobiotic
substances, suggesting that they could be involved in developmental arrest and
pheromonal regulation in workers. Moreover, GO analysis indicated that the expression
of many genes, including those involved in hormone metabolic processes, fluctuated
with JH application. Suppression of soldier differentiation in the presence of soldiers
could be accomplished by the expression of a large number of genes required for
soldier differentiation.

Keywords: caste differentiation, soldiers, workers, transcriptome, juvenile hormone, Reticulitermes

Abbreviations: JH, juvenile hormone; SIFs, soldier inhibiting factors; DEGs, differentially expressed genes; GO, gene
ontology; FDR, false discovery rate; CHC, cuticular hydrocarbon; GLM, generalized linear model.
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INTRODUCTION

Social insects have multiple phenotypes (castes) in the same
colony. The optimal composition of each caste and cooperation
among individuals are needed for regular colony growth and
maintenance (Wilson, 1971). Termites are major social insect
groups, and their castes are normally discriminated as workers,
soldiers, and reproductives (Roisin, 2000; Korb and Thorne,
2017). Termite caste differentiation is thought to be regulated
by caste-specific gene expression through environmental stimuli
that may trigger various hormonal conditions (Noirot, 1991;
Watanabe et al., 2014). Because a distinctive sterile soldier caste is
crucial for termite sociality and evolution, soldier differentiation
has been extensively studied during the last two decades (Miura
and Maekawa, 2020). Genes and cascades involved in specific
weapon formations have been analyzed, and several important
factors, including hormone-related and toolkit genes, have been
clarified (e.g., Zhou et al., 2006; Toga et al., 2012; Masuoka et al.,
2018; Sugime et al., 2019). The expression patterns of these factors
can be affected by environmental stimuli via inter-individual (i.e.,
social) interactions (Watanabe et al., 2014). However, the effects
of social interactions on gene expression and endocrine status
have not yet been elucidated (Miura and Maekawa, 2020).

Termite soldiers are differentiated from workers via an
intermediate stage called a presoldier. Presoldier and soldier
formation is known to be inhibited by soldiers themselves
and promoted by the reproductive caste in the same colony
(Watanabe et al., 2014). Indeed, for the inhibitory mechanism
by soldier existence, candidate primer pheromones [soldier
inhibiting factors, SIFs (Park and Raina, 2005)], transferred
from soldiers to workers, were identified in some species of
Reticulitermes [γ-cadinenal and (-)-β-elemene; Tarver et al.,
2009; Tarver et al., 2011; Mitaka et al., 2017]. These chemicals
are terpenoids and are probably defense substances released
from the frontal gland, which is developed in soldiers of
phylogenetically apical termite lineages (Miura and Maekawa,
2020). Previous studies have also shown that live soldiers or
whole extracts of soldiers had strong inhibitory effects on soldier
differentiation (Tarver et al., 2011; Mitaka et al., 2017). Moreover,
similar inhibitory effects were observed in the extracts of
soldiers from more basal termite species (without frontal glands),
which possess physical weapons such as enlarged mandibles
and head capsule (Korb et al., 2003). Consequently, SIFs may
consist of complex and lineage-specific compounds. However,
because information about the internal changes of workers are
lacking, it is unclear how the degree of inhibitory effects of
SIFs is determined.

The percentage of soldiers is usually very small in natural
colonies (Howard and Haverty, 1981), and thus soldier
differentiation is not frequently observed compared to those
of workers. However, soldier differentiation can be artificially
induced by juvenile hormone (JH) or JH analog treatments with
workers (Watanabe et al., 2014; Miura and Maekawa, 2020). In
R. speratus, artificial presoldier induction rates were significantly
decreased by the presence of soldiers compared to those without
soldiers (Watanabe et al., 2011). Importantly, JH titers of workers
with soldiers were significantly lower than those of workers

without soldiers just 5 days after JH treatment. If workers
are reared without soldiers, only small numbers of workers
differentiate to presoldiers and soldiers (e.g., about 7% for 16 days
in Coptotermes formosanus; Park and Raina, 2005). However, we
never identify the soldier-destined workers before the presoldier
molt normally in the mature colony. Consequently, to determine
effectively whether gene expression changes are affected by the
existence of soldiers (probably using SIFs), an artificial presoldier
induction method is considered useful, and R. speratus workers
should be investigated within 5 days after JH treatment.

Here, internal transcriptomic changes in JH-treated workers
caused by coexisting soldiers were analyzed in R. speratus.
The genome sequence and transcriptome of each caste/caste
differentiation have been clarified for this species (Shigenobu
et al., 2022; Saiki et al., submitted manuscript). Transcriptomes
were prepared from worker individuals with or without soldiers
within 5 days after JH treatment. Based on the differentially
expressed genes (DEGs) observed and specific gene ontology
(GO) terms detected, the molecular basis of physiological changes
in workers with coexisting soldiers is discussed.

MATERIALS AND METHODS

Termites
Mature termite colonies (total: four) were collected in Furudo,
Toyama Prefecture, Japan, in 2014. The nest logs were
transported to the laboratory and kept in a plastic case under
constant darkness. Sixth and seventh instar workers were selected
for the following experiments based on the number of antennal
segments and body size (Tsunoda et al., 1986; Takematsu, 1992).
All experimental insects were maintained in an incubator at 25◦C
under constant darkness for at least 3 days before use.

Dish Assays for Induction of Presoldier
Differentiation
Dish assays were performed in accordance with the procedure
described previously (Tsuchiya et al., 2008; Watanabe et al., 2011;
Masuoka et al., 2013). Briefly, filter papers (55 mm diameter;
Advantec, Japan) were treated with 20 and 40 µg JH III (Santa
Cruz Biotechnology, Dallas, TX, United States) dissolved in
200 µL acetone. Filter papers treated with acetone alone were
used as controls. After the acetone evaporated, each filter paper
was moistened with approximately 450 µL of distilled water
and placed in a 65 mm Petri dish. Then, 20 workers were
exposed to each filter paper along with 0 or 10 soldiers. Each
category was replicated four times using individuals sampled
from four different colonies. All dishes were kept in an incubator
at 25◦C in constant darkness. The number of dead individuals
and differentiated presoldiers was checked every 24 h. If a dead
worker was detected, it was immediately removed from the dish.
If a soldier died, a live soldier was added from a separate dish
kept in the incubator. On day 16, the induction rates of newly
molted presoldiers were compared between dishes with 0 or 10
soldiers. Presoldier differentiation rates (mean ± S.D. values)
were calculated from dishes replicated four times (20 workers
per dish) and evaluated by the generalized Wilcoxon test (80
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individuals in each JH III concentration) using the statistical
software Mac Statistical Analysis, version 1.5 (Esumi, Japan).
Statistical significance was set at P < 0.05.

Dish Assays for RNA Extraction
Dish assays for RNA extraction were performed using the method
described in Section “Dish Assays for Induction of Presoldier
Differentiation.” Three days after treatment with 40 µg JH III (or
acetone treatment as control), all workers in each dish were fixed
with liquid nitrogen and stored at −80◦C until RNA extraction.

RNA Extraction, Library Preparation, and
Sequencing
Total RNA was extracted from four categories [(1) workers with
0 soldiers 3 days after acetone treatment, (2) workers with 10
soldiers 3 days after acetone treatment, (3) workers with 0 soldiers
3 days after JH treatment, (4) workers with 10 soldiers 3 days after
JH treatment] using an SV Total RNA extraction kit (Promega,
Madison, WI, United States). RNA extracted from 20 individuals
without guts was used for each library. Four replicates derived
from four different colonies (biological quadruplicates) were
prepared (four libraries × four categories = 16 libraries). The
amounts of total extracted RNA and DNA were quantified using a
Qubit fluorometer (Life Technology, Eugene, OR, United States)
and the quality was confirmed using an Agilent 2100 bioanalyzer
(Agilent Technologies, Palo Alto, CA, United States). Total
RNA (500 ng) was used for cDNA synthesis and purification
using a low-throughput protocol with a TruSeq Stranded RNA
LT Kit (Illumina, San Diego, CA, United States). A half-
scale reaction of the standard protocol was used for library
preparation. The quality and quantity of cDNA were validated
using an Agilent 2100 bioanalyzer and a KAPA qPCR SYBR
Green PCR Kit (GeneWorks, Thebarton, SA, Australia). Sixteen
libraries were sequenced by single-end sequencing (101 bp) using
Hiseq1500 (Illumina, San Diego, CA, United States). All reads
were deposited in the DDBJ Sequence Read Archive (DRA)
database under accession number DRA013774.

Identification of Differentially Expressed
Genes
For each read, nucleotides with a low-quality score at the
sequence ends and adapter sequences were removed using
SolexaQA ver. 2.5 (Cox et al., 2010), and the cutadapt program
version 1.2.1 (Martin, 2011), respectively. These reads were
mapped against the R. speratus genome (Rspe OGS1.0; Shigenobu
et al., 2022) using the TopHat program version 2.0.13 (Kim et al.,
2013) with default settings.

The counting of reads and detection of DEGs were performed
using Cufflinks pipeline version 2.2.1 (Trapnell et al., 2010).
In this program, the count data were normalized and analyzed
using the same algorithm implemented in DESeq (Anders and
Huber, 2010). These counts were scaled using the median of
the geometric means of fragment counts across all libraries.
After normalization, pairwise comparisons were performed using
cuffdiff command with “–frag-bias-correct” and “–multi-read-
correct” options (Roberts et al., 2011; Trapnell et al., 2013). We

used the following four schemes for comparison: (i) without JH
and 0 soldiers vs. without JH and 10 soldiers, (ii) without JH and
0 soldiers vs. 40 µg JH and 10 soldiers, (iii) without JH and 10
soldiers vs. 40 µg JH and 10 soldiers, and (iv) 40 µg JH and
0 soldiers vs. 40 µg JH and 10 soldiers. Homology searches of
DEGs obtained in (i) and (iv) (the same JH concentration and
relatively small numbers of DEGs; see results) were performed
by BLASTX using the NCBI non-redundant protein database
(nr) (run on March 2022), and the top hit sequence was
obtained for each DEG.

We also conducted a generalized linear model (GLM) analysis.
Because Cufflinks pilelined did not generate raw count data,
we re-mapped and counted our RNA-seq data. Briefly, we used
the Bowtie program (Langmead et al., 2009) for mapping and
RSEM v1.3.3 software (Li and Dewey, 2011) to estimate the
relative abundance and expected read counts of all genes. The
count data were normalized by the TMM (Trimmed Mean of
M values) method in the edgeR software package (Robinson and
Oshlack, 2010; Robinson et al., 2010; McCarthy et al., 2012).
The adjusted count values were then used for the DEG analysis.
Two model designs were used for DEG detection. In the first
design, we considered three explanatory factors: soldier presence,
JH treatment, and these interactions (Soldier presence × JH
treatment). In the second design, in addition to these three
factors, we used colony information as another explanatory
factor. The threshold of statistical analysis is false discovery rate
(FDR) cutoff of 0.05.

Annotation and Gene Ontology
Enrichment Analysis
Since GO terms were only assigned to model organisms, we
identified the fruit fly ortholog of each termite gene. All predicted
termite amino acid sequences were searched against fruit fly
(Drosophila melanogaster) amino acid sequences using BLASTP.
The complete amino acid sequence datasets for the fruit flies
were downloaded from Flybase version FB2012_04.1 BLASTP
searches were performed using termite genes as queries, and a
10−5 e-value cutoff was used against the fruit fly dataset. The top
hit proteins were defined as orthologs of the focal termite gene.

Gene ontology enrichment analysis was performed using
clusterProfiler software package (version 2.4.3, R version 3.3.3;
Yu et al., 2012). We performed an enrichment test for GO terms
by assuming a hypergeometric distribution. To prevent high
FDR due to multiple tests, we also estimated the q-values for
FDR control (Storey, 2002). For these analyses, we used a list of
DEGs identified by pairwise comparisons. To identify enriched
GO biological processes, we conducted an enrichment analysis
of these DEGs, in which p < 0.1 and q < 0.05 were used as
strict cutoff values.

Quantitative Real-Time PCR
To validate the transcriptome analysis, qPCR was performed
for the identified DEGs (a total of three genes, see results).
Individuals were sampled from five different colonies collected
in Toyama Prefecture, Japan from 2019 to 2020. The dish assay

1https://flybase.org/
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was performed following the method described above, and the
presoldier induction rates were confirmed 16 days after the
treatment. Total RNA was extracted from workers with 0 or
10 soldiers 3 days after treatment with 40 µg JH III using
ISOGEN II (Nippon Gene, Tokyo, Japan). A total of 17–20
live workers (whole bodies) were used in each sample and
homogenized using a Bead Mill 4 (Thermo Fisher, Waltham,
MA, United States). Five replicates derived from five different
colonies (biological quintuplicates) were prepared for each
category. The amounts of RNA and DNA were quantified
using a Qubit fluorometer, and the purity and quantity of the
extracted RNA were determined by spectroscopic measurements
at 230, 260, and 280 nm using a NanoVue spectrophotometer
(GE Healthcare Bio-Sciences, Tokyo, Japan). DNase-treated
RNA (2 µg per sample) was transcribed using High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher). Quantitative
PCR (200 nM of each primer) was performed in biological
quintuplicates using PowerUP SYBR Green Master Mix (Thermo
Fisher) and QuantStudio 3 Real-Time PCR System (Thermo
Fisher). According to the previous study (Miyazaki et al., 2021),
to determine an internal control gene, the suitability of six
reference genes, EF1-alfa (accession no. AB602838), NADH-dh
(AB602837), beta-actin (AB520714), GstD1 (gene ID: RS001168),
EIF-1 (RS005199), and RPS18 (RS015150), were evaluated
using GeNorm (Vandesompele et al., 2002) and NormFinder
(Andersen et al., 2004). Specific primers were designed against
each gene sequence using Primer3Plus (Untergasser et al., 2007;
Supplementary Table 1). Statistical analysis, Welch’s t-test, was
performed using the statistical software Mac Statistical Analysis
version 3.0 (Esumi, Tokyo, Japan).

RESULTS AND DISCUSSION

Presoldier Induction Rates
As shown in a previous study (Watanabe et al., 2011), presoldier
induction rates after both 20 and 40 µg JH III treatments were
significantly reduced by soldier presence (Figure 1). The JH titer
(endogenous + applied JH III) levels in workers with 0 soldiers
were shown to be higher than those with 10 soldiers 5 days after
JH III treatment (Watanabe et al., 2011, 2014). Because we tried
to effectively detect gene expression changes in workers before
the reduction of JH III titer levels, total RNA was extracted from
workers 3 days after 40 µg or without JH III treatments.

Numbers of Differentially Expressed
Genes
We obtained different numbers of DEGs for the four pairwise
comparisons (Figure 2). The number of DEGs between 40 µg
and without JH III treatments in workers with 0 soldiers was
3,089. Of these genes, 1,516 and 1,573 were upregulated in
40 µg and without JH III-treated workers, respectively (Figure 2;
Supplementary Table 2). Similarly, the number of DEGs between
40 µg and without JH III treatments in workers with 10 soldiers
was 3,014. Of these genes, 1,567 and 1,447 were upregulated in
40 µg and without JH III-treated workers, respectively (Figure 2;
Supplementary Table 3). In contrast, there were only 44 DEGs

between soldier absence (26 upregulated genes) and soldier
presence (18 upregulated genes) in acetone-treated workers
(Figure 2; Supplementary Table 4). The expression levels of
171 genes were significantly different between soldier absence
(142 upregulated genes) and soldier presence (29 upregulated
genes) in JH III-treated workers (Figure 2; Supplementary
Table 5). In particular, the expression of a large number
of genes (approximately 3,000) in workers was fluctuated by
JH/acetone treatments. These numbers of DEGs were similar to,
but slightly larger than, those between JH analog (methoprene)
and acetone-treated workers in Coptotermes formosanus (2,547
unigenes) (Du et al., 2020). Reticulitermes and Coptotermes are
phylogenetically closely related to each other (Bucek et al.,
2019), and inferred genome sizes (800–900 Mb) and total
gene numbers (approximately 13,000–15,000) of both species
are very similar (Maekawa et al., 2022). Consequently, these
discrepancies may be due to the differences in treated chemicals
[JH homolog (this study), synthetic juvenoid (Du et al., 2020)]
and/or RNA-sequencing (RNA-seq) methods [genome-based
assay (this study), de novo transcriptome assembly-based assay
(Du et al., 2020)]. Most of these DEGs were also identified
by GLM analysis (Supplementary Tables 6, 7), suggesting that
our analysis effectively listed genes which are related to soldier
differentiation.

Quantitative Real-Time PCR
We selected three genes [cytochrome P450 (Cyp4c3; RS013835),
alpha-amylase (Amy-p; RS006137), and multidrug resistance
protein (Mdr49; RS002816)], which were listed as DEGs in
JH III-treated workers with 0 and 10 soldiers (Supplementary
Table 5). We focused on this category because it was expected that
there would be large variations in gene expression levels among
samples. RNA-seq analysis indicated that all these three genes
were upregulated in workers with 10 soldiers. A suitable reference
gene (NADH-dh) was selected for real-time qPCR analysis using
GeNorm and NormFinder (Supplementary Table 8). Real-time
qPCR analysis showed that high expression levels of the three
genes examined were observed in JH III-treated workers with
10 soldiers (soldier presence), compared to those with 0 soldiers
(soldier absence) (Figure 3). Although the statistical support of
RS002816 expression levels between soldier presence and absence
was weak (p = 0.106; Welch’s t-test), it should be noted that the q
value of RS002816 (0.012) was higher than that of the remaining
two genes (0.007; Supplementary Table 5). Overall, the qPCR
analysis supported the reliability of the RNA-seq results.

Differentially Expressed Genes Between
Soldier Presence and Absence
We focused on DEGs specifically observed in workers with
0 and 10 soldiers under the same JH concentrations. Note
that all DEGs discussed below were detected by both designes
of GLM analysis (Supplementary Tables 6, 7), except that
Cyp4c3 (RS013835) was not observed only in the first design. In
the acetone treatment, three takeout protein genes (RS013762,
RS014812, and RS010477) were highly expressed in workers with
0 soldiers, whereas a JH-inducible protein gene (RS007835) was
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FIGURE 1 | Presoldier induction rates (mean ± S.D., biological quadruplicates) 16 days after the 20 or 40 µg juvenile hormone (JH) III application in Reticulitermes
speratus. In both applications, presoldiers were more frequently differentiated from workers with 0 soldiers (soldier absence, “Sol = 0”) than those with 10 soldiers
(soldier presence, “Sol = 10”) (generalized Wilcoxon test, *P < 0.05).

FIGURE 2 | Numbers of differentially expressed genes (DEGs, bold italic)
between each category. Small italic numerals indicate the numbers of
upregulated genes in each category. Gene numbers between juvenile
hormone (JH) III and acetone treatments (3,014 in soldier presence, 3,089 in
soldier absence) were much larger than those between soldier presence and
absence (171 in JH treatments, 44 in acetone treatments). Numbers of
significant gene ontology (GO) terms of the DEGs are indicated in squares.

highly expressed in workers with 10 soldiers (Supplementary
Table 4). Takeout proteins are normally able to bind JH
because they possess the JH binding protein domain conserved
in insects (Noriega et al., 2006; Chamseddin et al., 2012).
Although the functions of JH-inducible and takeout proteins
are unanalyzed, there is a possibility that these work on the
role of JH sequestration from the hemolymph of workers, such
as JH binding proteins (e.g., hexamerin, Zhou et al., 2006).
Alternatively, these proteins may be crusial for the change of
the JH sensitivity in workers, which is similar to the case
in Pheidole ants (Wheeler and Nijhout, 1984; Nijhout, 2003).
In any case, these results support that JH levels in workers
are affected by the three-day interaction with soldiers. Note

that other JH binding proteins (including hexamerin) and JH
biosynthetic/degradation genes, all of which were annotated in
previous literature (Shigenobu et al., 2022), were not detected in
our transcriptome analysis.

Two chemosensory protein genes (RS000584 and RS010442)
were highly expressed in workers with 0 soldiers (Supplementary
Table 4) and were recognized as RspeCSP1 and RspeCSP7,
respectively (Shigenobu et al., 2022). Previous RNA-seq analysis
in R. speratus indicated that both genes were highly expressed in
the head compared to the remaining part of the body of workers
(RspeCSP7) or workers and soldiers (RspeCSP1) (Shigenobu et al.,
2022). Although their precise expression sites (antennae or other
head parts) should be clarified, they may be involved in SIF-
related social communication between soldiers and workers.

In the JH III treatment, the functions of some DEGs
(total: 52) could not be identified based on the BLASTX
search (hypothetical or uncharacterized proteins, no hit;
Supplementary Table 5). Most DEGs shown in the acetone
treatment described above (Supplementary Table 4) were
not detected, but many genes involved in antimicrobial and
xenobiotic responses and digestive enzymes were observed in
workers with 10 soldiers [e.g., Mdr49 (RS002816), prolixicin
antimicrobial protein (AttD, RS000201), laccase2 (RS004166),
and Amy-p (RS006137)] and those with 0 soldiers [e.g.,
C-type lysozyme-3 (RS003406), toll-like receptor 6 (RS012895),
and venom protease-like (RS012253)]. Interestingly, fatty acyl-
CoA reductase (RS002448), a well-known soldier-specific gene
(Maekawa et al., 2022), was highly expressed in workers with
10 soldiers. As this gene may be involved in the production of
soldier-specific cuticular hydrocarbon (CHC) profiles (Wu et al.,
2018; Maekawa et al., 2022), the presence of soldiers can induce
changes in worker CHC profiles. Cyp4c3 (RS013835) was also
highly expressed in workers with 10 soldiers. Because CYP4 is
involved in the last step of CHC biosynthesis in D. melanogaster
(Qiu et al., 2012), it may also support the above hypothesis. The
soldier ratio applied in this study was quite high, and further
analysis should be performed in colonies with an appropriate
soldier ratio under natural conditions (about 2% in R. flavipes;
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FIGURE 3 | Quantitative real-time PCR expression levels of the three genes
(mean ± S.D., biological quintuplicates) in the 40 µg juvenile hormone (JH)
III-treated workers with 10 soldiers (Soldier presence, “Sol = 10”) and 0
soldiers (Soldier absence, “Sol = 0”). Each value was normalized to the
expression levels of NADH-dh (Supplementary Table 8). Asterisks above the
bars indicate significant differences (*P < 0.05, **P < 0.01; Welch’s t-test).

Howard and Haverty, 1981) to clarify the general tendency of
this hypothesis.

Finally, in JH III treatment, high expression levels of some
members of the multigene family [beta-glucosidase (RS004143)
and lipocalin (RS013912); Shigenobu et al., 2022] were observed
in workers with 10 soldiers (Supplementary Table 5). Many
paralogs of both genes have been identified in the R. speratus
genome, and these paralogs showed different expression patterns
among castes (Shigenobu et al., 2022). Beta-glucosidase is
essential for cellulose digestion in termite workers (Watanabe
and Tokuda, 2010), but RS004143 was highly expressed in the
thorax and abdomen of soldiers and reproductives (Shigenobu
et al., 2022). Thus, RS004143 may have a different role other than
wood digestion in R. speratus. It is interesting to note that beta-
glucosidase (called Neofem2) is involved in queen-recognition
pheromones that probably function in the suppression of
reproductive emergence in Cryptotermes secundus (Korb et al.,

2009; Korb, 2016). Similarly, lipocalin is a member of the
protein transporter family, but molecular phylogeny showed that
RS013912 was closely related to soldier-specific protein 1 (SOL1)
identified in Hodotermopsis sjostedti (Shigenobu et al., 2022).
SOL1 may function as a signaling molecule for defensive social
interactions among colony members (Miura et al., 1999; Miura,
2005). We suggest that both RS004143 and RS013912 are involved
in chemical communication, and their expression changes in
workers are affected by different social circumstances, with or
without soldiers.

Gene Ontology Enrichment Analysis of
Differentially Expressed Genes
We performed GO enrichment analysis of the DEGs observed
in each category (Figure 2). The number of GO terms
detected between 40 µg and without JH III treatments in
workers with 0 soldiers was 65 (Supplementary Table 9).
Similarly, the number between 40 µg and without JH III
treatments in workers with 10 soldiers was 60 (Supplementary
Table 10). More than half of these terms (total: 38) were
common (bold italic terms in Supplementary Tables 9, 10),
and four out of 38 terms (GO: 0016053, 0046394, 0072330,
and 0032787; metabolic and biosynthetic processes of some
molecules) were specifically observed during the worker-
presoldier molt (Saiki et al., submitted manuscript). However,
specific GO terms involved in hormone levels (e.g., GO:
0010817, 0042446, and 0045455) were detected only in workers
with 10 soldiers (Supplementary Table 10). Moreover, the
number of GO terms significantly detected between soldier
presence and absence in the acetone-treated workers was only
three (Supplementary Table 11); all of which were related
to the regulation of hormone levels. These results clearly
indicate that the JH levels in workers are affected by the
presence of soldiers.

Finally, a total of 10 significant GO terms were observed
between the presence and absence of soldiers in JH-treated
workers (Supplementary Table 12). These terms included
metabolic processes of some molecules (GO: 0006022, 1901071,
and 0006040), chitin and cuticle development (GO: 0006030
and 0040003), and response to xenobiotic substances (GO:
0009617, 0042742, and 0050830). These results may be explained
by the effect of the presence of soldiers on developmental
arrest during JH-induced presoldier differentiation, which
is generally accompanied by specific cuticle development
via the tyrosine metabolic pathway (Masuoka et al., 2013;
Masuoka and Maekawa, 2016).

CONCLUSION

Most workers treated with commercial JH III are differentiated
into presoldiers, and living soldiers strongly inhibit the presoldier
differentiation by rapid JH decrease soon after interaction with
workers (Watanabe et al., 2011, 2014). This study aimed to
understand the gene expression profiles of workers affected by
coexisting soldiers. RNA-seq analysis supported that worker JH
levels are affected by the presence of soldiers, probably by the
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functions of JH binding and inducible proteins, regulatory factors
of social interaction, and response to xenobiotic substances.
Further gene function analyses of candidate targets are needed
to clarify this possibility.
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