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DICER-likes (DCLs) proteins are the core component for non-coding RNA (ncRNA)
biogenesis, playing essential roles in some biological processes. The DCL family has
been characterized in model plants, such as Arabidopsis, rice, and poplar. However,
the evolutionary aspect and the expression mechanism under drought stress were
scarce and have never been reported and characterized in one of the most important
worldwide cultivated fruit trees, peach (Prunus persica). Eight DCLs genes in the Prunus
persica genome were detected, in addition to 51 DCLs in the other seven Rosaceae
genomes. The phylogenetic analysis with Arabidopsis thaliana and RTL1 gene as
outgroups suggested that DCL members are divided into four clades: DCL1, DCL2,
DCL3, and DCL4 with several gene gain/loss events of DCL gene copies through the
evolutionary tract of the Rosacea family. The number of homologous DCL copies within
each clade, along with the chromosomal location indicated gene duplication event of
the DCL2 gene occurred once for the subfamily Amygdaloideae and twice for Pyrus
communis and Prunus dulics and trice for the P. persica on Chromosome number 7
genes. Another duplication event was found for the DCL3 gene that occurred once for all
the eight Rosaceae species with no match in A. thaliana. The DCL genetic similarity and
activity was evaluated using BLASTp and previously published RNA-seq data among
different tissues and over different time points of peach trees exposed to drought
conditions. Finally, the expression pattern of PrupeDCLs in response to drought stress
was identified, and two of these members, Prupe.7G047900 and Prupe.6G363600,
were found as main candidate genes for response to drought stress. Our data presented
here provide useful information for a better understanding of the molecular evolution of
DCL genes in Rosaceae genomes, and the function of DCLs in P. persica.
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INTRODUCTION

Plants are continuously exposed to several biotic and abiotic
stresses during their life cycle. Among others, drought is one
important abiotic stress that cause a severe loss in the agriculture
sector. Over the course of evolution, plant have acquired different
drought-tolerance mechanisms that lead to the emergence of
new genotypes and varieties with different drought tolerance
capabilities. The duration of water deficit in the soil influence
the drought stress severity which initiate with water loss from
the cells that leads to cellular dehydration, osmotic stress,
and reactive oxygen species production (Khan et al., 2015a;
Hasanuzzaman et al., 2018). Then activates various molecular
pathway cascades of large signaling network and increasing the
activities of antioxidant enzymes (Liu et al., 2014; Haider et al.,
2018).

Peach (Prunus persica) belongs to the Rosaceae family, which
is an important worldwide cultivated fruit tree (Verde et al.,
2013; Cao et al., 2014). Because of its short reproductive cycle,
nutritional and economic importance, and small genome size
(Alves et al., 2016; Zhou et al., 2019; Zhou et al., 2021),
P. persica has become an emerging model tree species for genetics,
molecular biology, and plant physiology research. Under drought
stress, fruit dry matter content and firmness due to the reduction
of water in fruits increases, resulting in smaller fruits (Haider
et al., 2018; Priya et al., 2019; Singh et al., 2019). Consequently, the
fruit surface conductance and its transpiration decrease causing
a significant effect on the concentrations of non-structural
compounds either through the decrease in dilution and/or
modifications of their metabolism (Rahmati et al., 2014). Also,
drought has a critical effect on fruit growth and quality properties.
Trees yield would be sharply reduced at least 25–50% in yield total
weight (Rahmati et al., 2014; Khan et al., 2015b; Belal et al., 2017;
Haider et al., 2018).

The small RNA (sRNA) biogenesis and regulation are
controlled by three RNAi proteins-encoded gene families,
known as Dicer-like (DCL), Argonaute (AGO), and RNA-
dependent RNA polymerase (RDR) (Vaucheret, 2006; Chapman
and Carrington, 2007; Kapoor et al., 2008; Qu et al., 2008; Cao
et al., 2020b). Among them, Dicer and Dicer like (DCLs) genes
are an important components of sRNA biogenesis in plants (Xie
et al., 2005; Margis et al., 2006; Kapoor et al., 2008; Vaucheret,
2008; Liu et al., 2009b; Mukherjee et al., 2013). In the same
context, Acquisition of DCL functions associated with distinct
RNA interference branches in plants occurred during, not before,
evolution of the plant lineage (Xie et al., 2005). The DCL gene
family usually contains inconsistent number of genes copies that
vary among plant species (Kapoor et al., 2008; Liu et al., 2009a;
Qian et al., 2011; Cao et al., 2020b). For example, the number
of recorded DCL copies was four in Arabidopsis (Arabidopsis
thaliana), five in poplar (Populus trichocarpa), willow (Salix
suchowensis) and maize (Zea mays), seven in tomato (Solanum
lycopersicum), and eight in rice (Oryza sativa) (Finnegan and
Matzke, 2003; Kapoor et al., 2008; Qian et al., 2011; Qin et al.,
2018; Cao et al., 2020b). Based on previous researches, the
responses of DCLs to drought, cold, and salt showed to be
quite different, indicating that plants might have specialized
regulatory mechanism in response to different abiotic stresses

(Liu et al., 2009a). In A. thaliana all the DCL genes were fully
characterizes, and their role in drought tolerance in addition to
the sRNA biogenesis was confirmed (Xie et al., 2005; Deleris et al.,
2006). However, the number and function of DCL genes in other
plant species (e.g., Roseacea) are poorly studied (Kapoor et al.,
2008; Song et al., 2012; Qin et al., 2017).

The current study aimed to characterize the DCL gene family
at genomic and transcriptomic levels under drought conditions
in Peach (Prunus persica) (International Peach Genome et al.,
2013; Verde et al., 2013; Verde et al., 2017) in comparison with
additional seven other Rosaceae species. Strawberry (Fragaria
vesca) (Li et al., 2019b), China rose (Rosa chinensis) (Hibrand
Saint-Oyant et al., 2018; Raymond et al., 2018; Li et al., 2019a; Lin
et al., 2019), and Black Raspberry (Rubus occidentalis) (VanBuren
et al., 2018) that represent the Rosoideae subfamily. Two species
from genus Maleae, apple (Malus × domestica) (Bianco et al.,
2014), and pear (Pyrus communis) (Linsmith et al., 2019), in
addition to species from genus Prunus, Almond (Prunus dulcis)
(Alioto et al., 2020), and Armenian plum (Prunus armeniaca)
(Jiang et al., 2019), all represent the Amygdaloideae subfamily.

MATERIALS AND METHODS

Extraction and Motif Analysis of DCL
Genes
The genome sequences of eight Rosaceae species
(Supplementary Table 1) were downloaded from the GDR
database.1 The DCLs of A. thaliana (AtDCL) were downloaded
from TAIR database2 as described by Zhang et al. (2012), Verde
et al. (2013), Wu et al. (2013), Daccord et al. (2017), Edger et al.
(2018), and Cao et al. (2020b). The HMM model of DCLs was
generated based on AtDCL copies by TBtools software (Chen
et al., 2020), and then it was used to identify the DCLs members
by HMMER3 software (Mistry et al., 2013). All putative genes
were validated by using NCBI database3 to confirm and acquire
DCL hits from Viridiplantae genomes. To avoid sequence
redundancy; we only considered primary transcripts in this
study. The primary transcript names, chromosomal locations,
and protein lengths of DCLs were obtained from the genome
annotation files of these eight Rosaceae genomes. At protein
level, Prunus persica DCL copies were investigated for conserved
motifs using MEME suite online tool.4 At coding DNA sequence
(CDS) level, Similarity levels among different DCLs genes were
conducted by using “Circos” plot design software5 that basically
visualized by Krzywinski et al. (2009) and described by Zhang
et al. (2013) as similar genome regions.

Phylogenetic Analysis and Evolutionary
Calibration
The MAFFT software was used to conduct three multiple
alignments, one includes all the P. persica DCL copies, the other

1http://www.rosaceae.org/
2https://www.Arabidopsis.org/
3https://www.ncbi.nlm.nih.gov/
4https://meme-suite.org/meme/
5http://circos.ca/
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includes all BLAST top 10 hits of the from NCBI database
(Tophits-set) and another includes all Rosaceae-related DCL
proteins (Rosa-set). The second and third alignments were
performed along with the AthDCL copies (Katoh et al., 2005). The
selected Rosaceae species relationship dendrogram was drawn
based on Taxonomy database (NCBI) and visualized using iTOL
webtool6 and supported with estimated separation time obtained
from7 The Fasttree V2 software (Price et al., 2010) was used
to construct the phylogenetic tree including retrotransposon-
like 1 (RTL1) genes from the same selected Rosaceae species as
outgroup using Jones-Taylor-Thorton model at rate categories of
sites equal 20. The DCL-based phylogenetic tree was evolutionary
calibrated by relative-time maximum likelihood method using
MEGA-X software (Kumar et al., 2018).

RNA-Seq Expression Analyses
Two published RNAseq data were used to validate the expression
of the detected DCL copies from previous studies on P. persica,
one sampled different tissue from high and low altitudes
(Leaf, Phloem, Flower, Fruit, Seed, and Root; Bioproject:
PRJNA694331) and the other sampled the fruit flesh under
drought stress over different time points (0 h, 3 h, 6 h, 12 h, 24 h,
3 days, 6 days, and 12 days; Bioproject: PRJNA694007). For each
data set Trimmomatic was used to remove adapter sequences
and low-quality sequencing reads with default parameters (Bolger
et al., 2014; Cao et al., 2020b). The HISAT2 was used to align
the clean reads to the masked genome (Kim et al., 2019), and the
Stringtie was used to calculate the FPKM values (Fragments Per
Kilobase of transcript per Million mapped reads) of DCLs in the
P. persica reference genome (Pertea et al., 2016). The expression
of DCL among different tissue was shown as a heatmap drawn by

6https://itol.embl.de/
7www.timetree.org

TBtools software (Chen et al., 2020). While the expression of DCL
over time was modelized in expression clusters and visualized as
parallel coordinate plot using xlstat software.8

RESULTS AND DISCUSSION

Identification of DCL Genes in Prunus
persica and Other Rosaceae Species
Total of eight DCL copies were detected in P. persica by BLAST
search (Supplementary Table 2). Five motifs were defined, all
identified as ribonuclease III domain according to pfam database.
The five motifs were distributed differently among the eight
copies, causing different phylogenetic and clustering signals
(Figure 1A). All the four DCL copies as previously reported from
A. thaliana and other species were detected and phylogenetically
clustered accordingly (Mukherjee et al., 2013; Cao et al., 2020b).
The top 10 BLAST hits of the eight P. persica DCL copies were
equally clustered into four major clusters, where DCL1 and DCL4
were monophyletic, while DCL2 and DCL3 were paraphyletic, as
shown in Figure 1B.

In Rosaceae, 405 DCL-similar transcripts were detected from
the seven selected Rosaceae genomes, including all isoforms.
By excluding, the five DCL copies of A. thaliana (AT), and
the eight P. persica (Prupe), a total of 51 non-redundant DCLs
were retained for further analysis, five F. vesca (Frv), five
R. chinensis (Rch), six P. armeniaca (PAR), seven P. dulcis
(Prudul), seven R. occidentalis (Roc) (Xie et al., 2005), nine
Pyrus communis (pycom), and 12 Malus x domestica (MDP) as
displayed in Figure 2A and Supplementary Table 2. Compared
with other families, DCL gene family contains relatively few
members, which is consistent with the previous studies reported

8https://www.xlstat.com/

FIGURE 1 | Conserved motifs of Prunus persica DCLs genes. (A) Gene structure and domain compositions of P. persica DCLs based on the presence of conserved
Ribonuclease motifs (detailed in colored boxes) were arranged and clustered in four groups. (B) Unrooted maximum likelihood DCL phylogenetic tree shows the
RTL1 gene outgroup, and A. thaliana species outgroup along the NCBI BLAST top 10 hits of P. persica DCL copies. A unique cluster is observed for DCL1, and
DCL4, while both DCL2 and DCL3 were separated into two subclades.
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FIGURE 2 | The time-calibrated maximum liklihood phylogenetic tree of DCLs genes of eight Rosacea species. (A) The circular dendogram with colored clusters,
each represent one DCL and the RTL1 outgroup. The Prunus persica DCL genes are colored with orange while Arabidopsis DCL genes are marked by dot-lines.
The Rosaceae specific DCL3 copy cluster was outlined by orange-gray bolded line and named by letter (R). The Amygdaloideae specific DCL2 copy cluster is
named by letter (A). (B) Taxonomy-based relationship of the eight Rosaceae species timely calibrated using data obtained from www.timetree.org/. Black ovals
suggest whole-genome duplication (WGD) occurrences. (C) Distributions of DCLs genes on Prunus persica chromosomes. Eight DCLs genes are mapped on five
out eight chromosomes. The Amygdaloideae specific DCL2 triple copies are adjacent on chromosome 8.

in P. trichocarpa (5) (Cao et al., 2020b), S. suchowensis (5) (Cao
et al., 2020b), O. sativa (8) (Kapoor et al., 2008), S. esculentum (7)
(Bai et al., 2012) and A. thaliana (4) (Deleris et al., 2006). It does
not appear to be a direct correlation between the number of DCL
genes and genome size. For example, it has been observed that
the numbers of DCL genes differed between P. armeniaca (6) and
P. dulcis (8), but their genome size is not significantly differed
(P. armeniaca: 206.1 Mb, and P. dulcis: 208.9 Mb). However,
F. vesca and P. armeniaca had equal number of DCL copies,
although they have different genome size: F. vesca (219.29 Mb)
and P. armeniaca (206.10 Mb). Rosaceae species share an ancient
whole-genome duplication (WGD) event (Wu et al., 2013; Cao
et al., 2020a), while experienced a more recent WGD event (Wu
et al., 2013; Daccord et al., 2017), which might explain why
M. x domestica contains the highest number of DCL gene copies
among the studies Rosaceae species.

Phylogenetics and Evolutionary Analysis
All DCL genes were clustered into four clades: DCL1, DCL2,
DCL3, and DCL4. This spread on DCLs genes indicating that
they play critical roles in plant antiviral response (Necira et al.,
2021), as well as contribute to the phased secondary siRNAs
production (Gasciolli et al., 2005). clade DCL1 included one
PrupeDCL1, one FrvDCL1, four MDPDCL1, two pycomDCL1,
one PrudulDCL1, one RocDCL1, one RchDCL1, one PARDCL1,
and one AthDCL1 was set as outgroup in the DCL1 clade with
the processing of 21 nucleotides (nt) miRNA and contributing
to the derivation of siRNAs (Kurihara and Watanabe, 2004;
Kurihara et al., 2006), as shown in Figure 2A. Members of
the DCL2 clade contained four PrupeDCL2, one FrvDCL2,
two MDPDCL2, three pycomDCL2, four PrudulDCL2, three
RocDCL2, two PARDCL2 and one RchDCL2 in addition to
one AtDCL2 as out group. DCL2A showed tandem duplication
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FIGURE 3 | Circos plot of protein similarity among the identified DCLs genes copies. Rosaceae DCLs genes copies were mapped using BLASTP data on the
different species which were anchored to the PrupeDCLs. Similarity score is indicated on the inner box and the highlighted arcs in the center of the circos link
homologous DCLs genes. P-value<0.05.

between both genes (Prupe.7G047700 and Prupe.7G048000). The
members of the DCL3 clade included two PrupeDCL3, two
FrvDCL3, three MDPDCL3, three pycomDCL3, two PrudulDCL3,
two RocDCL3, two RchDCL3, two PARDCL3 in addition to
one AtDCL3 as out group. Our results of phylogenetic analysis
showed an important occurrence in the DCLs development
of Rosaceae. Clade 3 witnessed a specific split for Rosaceae
copies which separated before the Arabidopsis speciation event.
That was unlike the usual occurrences in the stages of DCLs
duplication of Rosaceae family (0.37 part of the separation

time). This event indicates the important occurrence in the
evolution of these species and may offer more insights in
the coming evolution researches. These copies in clade DCL3
cluster was outlined by orange-gray bolded line and named
by letter (R) in Figure 2A. The chronological convergence of
the Arabidopsis separation event to the Rosaceae family was
noticeable in the phyletic analysis as relative fragments [DCL1
and DCL2(±29); DCL3(±31); DCL4(±30)] which indicates to
the normal development and synchronize speciation in different
evolution events. Phylogenetic analysis for species was created
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FIGURE 4 | Heatmap of tissue expression pattern of PrupeDCLs blast data in Root, Fruit, Seed, Flower, Phloem, and Leaf by FPKM counts. The color bar showed
the expression degree. The phyletic clades were designed within FPKM values counts to identify the most relative items for displaying.

and the taxonomy-based relationship of the eight Rosaceae
species timely calibrated to show the evolutionary relationship
between species. The occurrence of the speciation for sub-
family Amygdaloideae from Roseaceae family into two branches
was demonstrated from the Rosaceae within the estimation
study of the relative time 54 million years as time part of the
speciation events, as noticed in Figure 2B. The values in the
phyletic phases refer to the relative. Black ovals correspond
to inferred locations of whole-genome duplication (WGD)
events and the values in the head of clades refers to the
approximately time of duplications per million years. The
distributions of DCLs genes on Prunus persica chromosomes
showd eight DCLs genes mapped on five out eight chromosomes
as shown in Figure 2C. The Amygdaloideae specific DCL2
triple copies are adjacent on chromosome 7 which include the
genes Prupe.7G047900, Prupe.7G047700, and Prupe.7G048000
cluster in a clade DCL2A, indicate that these genes might
play different functions in siRNAs production. Previously, the
functional differentiation of DCLs in one clade was found in
O. sativa DCL3 (Song et al., 2012).

DCLs Genes Similarity
Rosaceae DCLs genes copies were mapped using protein
sequences of BLASTP (Altschup et al., 1990) to compare every
DCLs annotated with proteome and designated the best hit
as a homolog blast data on the different species which were
anchored to the PrupeDCLs, As shown in Figure 3. DCL1 copies
includes one PrupeDCLs copy (Prupe.2G200900) which scored
high similarity with its duplicates while MDPDCLs genes copies
showed less similarity than others duplicates. DCL2 has four
duplicated copies of PrupeDCLs which have different similarity
score with other DCLs. Prupe.6G363600 showed the highest
similarity score with other Rosaceae copies in DCL2 compare
with the other three PrupeDCLs copies revealed which showed
low score. In DCL3, (Prupe.7G252800 and Prupe.8G202000)
showed similarity with other DCLs copies of PARDCLs, and
PrudulDCLs copies while pycomDCL (pycom08g03830) showed
asymmetry with PrupeDCL2 copies. DCL4 has one copy of
P. Persica (Prupe.7G252800) which anchored to other copies of
species and highly similarity is shown. There is a highly similarity
between the DCLs copies hit with PrupeDCLs except MDPDCLs
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FIGURE 5 | Temporal trend for DCL genes expressed in the fruit flesh of P. persica exposed to drought stress over time periods: 0 h, 6 h, 12 h, 24 h, 3 days, 6 days,
and 12 days stratified by 0 timing as a control. The timelines were aligned by the average of DCLs genes expression overtime by standardize relative expression. The
expression area is divided into three expression clusters EC1, EC2 and EC3 to evaluate and categorize genes expressions. RNA data were used to measure the
expression level of DCLs genes.

copies which have a noticeable asymmetry score ≤ 0.25. The
results clarified that most of PrupeDCLs showed high similarity
for their duplicates where this confirms the evolution path
that these genes went during the species development for
resistance drought.

Expression Patterns of PrupeDCL Genes
in Various Tissues
As the master parts of sRNA biogenesis; DCL genes play
important roles in the growth and development of plants
(Fang and Spector, 2007; Song et al., 2007). The transcript
levels of DCLs may be closely related to their physiological
functions. To primarily clarify the functions of PrupeDCLs,
the expression patterns of PrupeDCLs were analyzed in six
tissues: root, fruit, seed, flower, phloem, and leaf. As shown in
Figure 4, Our results found that all PrupeDCLs have expressed
in the analyzed P. persica tissues, although they showed different
expression patterns that provided a clear vision about how
did they work. These results are consistent with the key roles
of DCL genes in the miRNAs biogenesis that are involved in
plant stress responses and development. Our results exhibited
lowest expression showed by PrupeDCL1 (Prupe.2G200900) and
PrupeDCL2 (Prupe.7G047700) in the different tissues. Other
two PrupeDCL2 genes (Prupe.7G047900, and Prupe.7G048000)

showed same expression pattern degree in root tissue. It
was observed that PrupeDCL2 (Prupe.6G363600) exclusively
expressed in both root tissue and seeds while PrupeDCL4 almost
identically expressed in all tissues.

Consistently, we also identified two PrupeDCL3;
(Prupe.8G202000 and Prupe.1G401900). The results showed
that Prupe.1G401900 was highly expressed in almost all tissues
especially in root, and Prupe.1G401900 showed a high level of
expression in flower, leaf, phloem and seeds respectively, but
recorded low expression in both root and fruit.

Expression Patterns of PrupeDCLs
Under Drought Stress
Environmental stress may influence plant growth and health by
affecting the regulation of crucial plant genes (Chinnusamy and
Zhu, 2009). Many stress-related genes are induced to express
under external environmental stresses to help plants cope with
adverse conditions (Chinnusamy and Zhu, 2009; Priya et al.,
2019). For example, DCLs from P. trichocarpa, S. suchowensis,
Saccharum spontaneum, and Solanum tuberosum contribute to
plants resist abiotic stress (Esposito et al., 2018; Cao et al.,
2020b; Cui et al., 2020). The P. persica is generally widely
grown in irrigated semi-arid and arid regions. However, the
aggravation of drought caused by the global greenhouse effect
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has greatly restricted the growth and development of P. persica.
To determine the effect of PrupeDCL genes on drought stress,
we investigated the expression pattern of PrupeDCL genes in
P. persica within the relative expression time. As regards drought
stress, the results cleared that all PrupeDCLs were differentially
expressed. The expression level of PrupeDCLs have different
expression in both of brief and chronical exposure for drought
conditions, as shown in Figure 5. DCL1 (Prupe.2G200900)
showed high and stable expression in the short-term treatment
(time 0:3 days) but it dramatically dropped at the chronic period
(3 days: 12 days) while PrupeDCL2 copies (Prupe.7G047900 and
Prupe.6G363600) recorded various expression in the short-term
treatment but achieved the highest expression in the chronic time
of drought treatment as appeared in expression cluster EC1. On
the other side, PrupeDCL3 (Prupe.1G401900) and PrupeDCL4
(Prupe.7G252800) have low expression in the relative time of
drought treatment in EC3. That could be explained that they
worked as chronic co-expression genes to resume resistance
drought conditions. PrupeDCL2 (Prupe.7G047700) positively
expressed in the brief time (0–12 h) and then continued as
moderate expression gene as shown in EC2 was increased at
0–24 h. The transcript levels of PrupeDCLs2 (Prupe.7G04790
and Prupe.6G363600) were significantly upregulated by drought
stress for 3–12 day, whereas the two genes from the same
clade PrupeDCL2 were unchanged, suggesting that these genes
from the same ancestor were functionally redundant or neo-
functionalization during evolution.

Our results provided insights into the molecular evolution of
PrupeDCL genes in Rosaceae, and the probable roles in response
to drought stresses in P. persica.

CONCLUSION

Although DICER-like (DCL) genes have been studied because
of their critical roles in plant resistance to the abiotic stresses,
the focus remains on their role in plants of the Rosaseae species,
especially peach (Prunus persica), which needs in-depth studies to
clarify their roles, and evolution in Rosaceae. In our study, it was

identified about 59 DCLs in eight Rosaceae genomes, 8 of these
genes were from P. persica. Based on the phylogenetic analysis,
and comparison with homologs from A. thaliana, the DCL family
members were divided into four clades: DCL1, DCL2, DCL3, and
DCL4. RNA-seq data indicated that the recent WGD might have
driven the expansion of DCLs in Prunus Persica and revealed that
the identified PrupeDCLs play a pivotal role in different tissues
development and drought stress. Overall, our data constitute a
foundation for further studies examining the complexity and
functioning of Rosaceae DCL genes in the future.
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