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Macrobenthos taxonomic and functional diversity are key indicators of

ecosystem health. River–lake ecotones are key macrobenthos habitats.

However, we don’t fully understand macrobenthos biodiversity patterns

in these ecotones. We studied water environment, sediment heavy metal

contents, and macrobenthos community, which we sampled simultaneously

from 29 sampling sites along the Fu River–Baiyangdian Lake gradient in

Northern China with five field surveys from 2018 to 2019. Six trait classes

resolved into 25 categories were allocated to macrobenthos through a

binary coding system. We used the RLQ framework (R, environmental

variables; L, species of taxa; Q, traits) and fourth-corner analyses to evaluate

the relationship between environmental variables and macrobenthos traits.

Finally, we carried out variance partitioning to assess the contributions of

environmental variables to variation of macrobenthos diversities. As the

results, TN and TP contents in the river and lake mouths were lower

than those in the adjacent river and lake, indicating that the river–lake

ecotones played a role in purifying the water and buffering pollution.

High taxonomic diversity of macrobenthos in the lake mouth and the

presence of unique taxa in the two ecotones revealed edge effects, but the

macrobenthos abundance and biomass were extremely low compared with

those in the adjacent river and lake. We found no significant correlation

between the taxonomic and functional diversity indices in the river and lake

mouths. Water depth, water transparency, TN, and TP were the main water

environmental drivers of macrobenthos taxonomic and functional diversity,

explaining up to 45.5% and 56.2% of the variation, respectively. Sediment

Cd, Cr, Cu, Pb, and Zn contents explained 15.1% and 32.8%, respectively, of

macrobenthos taxonomic and functional diversity. Our results suggest that

functional diversity approaches based on biological traits can complement

taxonomic approaches in river–lake ecotones. Furthermore, improving water
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depth, transparency, eutrophication, and heavy metal pollution will improve

macrobenthos diversity in these ecotones and maintain ecosystem health.

KEYWORDS

taxonomic diversity, functional diversity, macrobenthos, environmental factors,
river-lake ecotone, Baiyangdian lake-river system

Introduction

River–lake systems (i.e., rivers flowing through or into
the lakes) can be regarded as continuous aquatic ecosystem,
and are affected by the hydraulic exchanges and hydrological
connectivity (Hillbricht-Ilkowska, 1999). As a result, they
provide multiple ecological functions, such as material cycling,
energy flows, and biotic exchanges (Zhang et al., 2020). Ecotones
are zones of transition between rivers and lakes, and are key
parts of a river–lake system (Holland, 1988; Gosz, 1993; Kolasa
and Zalewski, 1995). They can exhibit edge effects (Odum, 1971;
Murcia, 1995), with elevated species abundance and biodiversity
in some parts of the ecotone (Winterbourn, 1971; Willis and
Magnuson, 2000) and the presence of taxa specific to different
parts of the ecotones (Poznańska et al., 2010). In addition,
ecotones are sensitive to environmental variations (Risser, 1995;
Allen and Breshears, 1998), which play important role in
purifying water and buffering pollution (Risser, 1995; Ward and
Tockner, 2001).

The macrobenthos community show a range of life
history characteristics (e.g., relatively long lifespans, sedentary
existence), and play a central role in energy flows and material
circulation in aquatic ecosystems (Li et al., 2019a; Mosbahi
et al., 2019). In general, the macrobenthos have been regarded
as key biological indicators of freshwater ecosystem health
because these organisms are in direct contact with the sediment
and are highly sensitive to changes in physiochemistry of
the environment (Soldner et al., 2004; O’Brien et al., 2016;
Piló et al., 2016; Eriksen et al., 2021). Most recent studies
that documented the macrobenthos biodiversity have focused
solely on rivers (Azrina et al., 2006; Gonzalo and Camargo,
2013; Li Z. F. et al., 2020; Buffagni, 2021) or on lakes
(Van De Meutter et al., 2006; Li et al., 2016; Cai et al.,
2017; Zhang et al., 2019). Only few studies have accounted
for both the river and lake components of these systems
(Obolewski et al., 2014; Jakubik et al., 2015). However, to
date, limited work has been conducted on the macrobenthos
community structure and diversity in river–lake ecotones
(Szkokan-Emilson et al., 2011; Patrick, 2014). These results
have suggested that the environmental characteristics and
macroinvertebrate assemblages of ecotones differ from those in
adjacent lakes and tributaries (Krebs et al., 2018; Salvo et al.,
2020).

Previous studies on macrobenthos biodiversity typically
focused on species richness and taxonomic diversity (Li

et al., 2016; Wu et al., 2019; Lento et al., 2020), but such
a focus conceals ecological differences among species and
ignores specific roles they play in the ecosystem (Heino et al.,
2007). As a result, they cannot effectively guide biodiversity
conservation (Cadotte et al., 2011; Gagic et al., 2015). Each
species of macrobenthos is a collection of individuals with
multiple functional traits (including phenotypic and behavioral
traits) that determine their performance and fitness (Steneck
and Dethier, 1994; Violle et al., 2007). More generally, these
characteristics determine the compatibility of species with the
characteristics of their environment (Martello et al., 2018;
Brumm et al., 2021). Recent studies have considered the role
of species functional diversity based on biological traits (e.g.,
body morphology, physiology, trophic habits, and life-history
strategies) in a community (Schmera et al., 2017; Espinoza-
Toledo et al., 2021; Paz et al., 2022), which may provide a
more mechanistic perspective on the community–environment
relationships than is possible with approaches based purely on
taxonomic diversity (Violle et al., 2007; Cadotte et al., 2011).
More importantly, some studies have shown that macrobenthos
taxonomic and functional diversity indices respond differently
to the same environmental gradients (Heino and Tolonen, 2017;
Li et al., 2019b,c; Baker et al., 2021). This suggests that functional
diversity metrics complement the information provided by
classical taxonomic diversity metrics (England and Wilkes, 2018;
Zhang et al., 2021).

Baiyangdian Lake is the largest shallow lake in Northern
China. Most previous studies of the lake’s macrobenthos
communities focused on the lake, with few studies in the
tributaries. These studies showed that the macrobenthos
richness and biodiversity in Baiyangdian Lake and its rivers
have decreased significantly since the 1960s (Zhang et al., 2018;
Yang et al., 2020). In the present study, we selected China’s
Baiyangdian Lake–Fu River system as a case study, with the
goals being to (1) compare the spatial distributions of the
macrobenthos community structure among the river, river-
lake ecotones, and lake; (2) explore the spatial patterns and
differences of multiple aspects of macrobenthos biodiversity
(including taxonomic and functional diversity) in different
ecosystem types (the river, river and lake mouths, and
lake); and (3) determine which functional traits respond to
specific environmental factors and quantify the effects of
the water environment and sediment heavy metal contents
on the macrobenthos taxonomic and functional diversity in
the river–lake system. We hypothesized that macrobenthos
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FIGURE 1

Location of Baiyangdian Lake in China and distribution of sampling sites in the study area.

community characteristics would differ significantly along
gradients in the above mentioned environmental factors.

Materials and methods

Study area

Baiyangdian Lake (38◦43′N to 39◦02′N, 115◦45′E to
116◦07′E) is the largest shallow lake in the North China
Plain (Figure 1). The region has a typical warm-temperate
monsoon climate, with monthly mean water temperatures of
2–29◦C; the average annual precipitation and pan evaporation
are approximately 550 and 1,637 mm, respectively. The lake
plays an important role in providing habitats for native plants
and animals, in water purification, as well as in protecting
against floods. Historically, nine upstream rivers flowed into
Baiyangdian Lake. Prior to 1960, the lake was dominated by
natural flows. However, upstream dams and reservoirs have
greatly reduced inflows to the lake, and left insufficient water
to sustain the lake’s environmental flows. In recent years, the
inflows of Baiyangdian Lake have come from three main rivers:
Fu River, Xiaoyi River, and Baigouyin River. The Fu River is
the main source of inflows, and includes water from upstream
rivers, reclaimed city water, and storm runoff.

Our study focused on quantifying the spatial differences
of macrobenthos diversity among the lake, the lake–river

ecotones, and the main tributary (the Fu River). Based on our
preliminary field investigations, combined with measurements
of the distribution of the water area in Baiyangdian Lake, we
chose 13 sample sites (B1 to B13) that covered the entire lake.
We chose three representative sampling sites (F1 to F3) in the
downstream of the Fu River. In addition, we chose nine (R1 to
R9) and four (L1 to L4) sampling sites from the river mouth
and lake mouth zones, respectively (Figure 1), with the category
defined by using the hydrologic boundaries of the ecotone
between the Fu River and Baiyangdian lake (Tian et al., 2020).
We performed five field surveys: in July and November 2018,
and in April, June, and September 2019. We simultaneously
collected samples of the water, sediments, and macrobenthos
from the 29 sampling sites for each field survey in the river–
lake system.

Samples for environmental factors

Water environmental factors
Water depth (H) and water transparency (the Secchi depth,

SD) were measured on-site using a plumb-line (measured in
centimeter) and a Secchi disk, respectively. We also measured
the water temperature (Tw), dissolved oxygen (DO), and pH
in situ with a multiparameter handheld probe (YSI Professional
Plus; YSI, Yellow Springs, OH, United States). Moreover,
we collected 2-L water samples for physicochemical analysis
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from the surface water (50 cm below the water surface)
and then preserved the samples in pre-cleaned polyethylene
bottles according to standard protocols (China Bureau of
Environmental Protection [CBEP], 2002). These samples were
transported in a portable refrigerator, and were carried back
to the laboratory for further analysis. We measured total
suspended solids (TSS), chemical demand oxygen (COD), total
nitrogen (TN), total phosphorus (TP), phosphate (PO4

3−) and
ammonium nitrogen (NH4

+) in the laboratory. Total suspended
solids (TSS) were measured by gravimetric methods. Chemical
oxygen demand (COD), total nitrogen (TN) and ammonium
nitrogen (NH4

+) were determined using the potassium
dichromate method, the alkaline potassium persulfate digestion
UV spectrophotometric method and the Nessler’s reagent
spectrophotometry, respectively. Total phosphorus (TP)
and phosphate (PO4

3−) were both measured by means of
ammonium molybdate tetrahydrate spectrophotometry.

Heavy metals in sediments
We collected three random sediments samples (to a depth

of 10 cm) at each sampling site using a Van Veen grab
sampler, and composited them into a single bulk sample. The
composited samples were sealed in pre-labeled polyethylene
zipper bags and stored in a portable refrigerator, and then
brought back to the laboratory to determine the concentrations
of As, Cd, Cr, Pb, Cu, and Zn. The sediment samples were
air-dried and ground to a fine powder in the laboratory. We
digested about 50 mg subsample of sediment samples using
HCl–HNO3 solution (v/v, 3:1) to determine the total As content
using reduction gasification–atomic fluorescence spectroscopy
method according to standard protocol (HJ 680-2013). To
determine the Cd, Cr, Pb, Cu, and Zn contents, we completely
digested sediment subsamples (approximately 100 mg) with a
1:2:1:1 mixed acid solution (HCl–HNO3–HF–HClO4) in closed
Teflon bombs, evaporated to near dryness (DigiPrep HotBlock;
SCP Science, Baie d’Urfé, QC, Canada), and then diluted to
50 mL with Milli-Q water for further analysis. We determined
the heavy metal contents (Cd, Cr, Pb, Cu, and Zn) in the diluted
extracts using inductively coupled plasma mass spectrometry
(X Series; Thermo Electron, Waltham, MA, United States)
according to standard protocol (DB37/T 4435-2021).

Macrobenthos samples

We collected three random subsamples of the macrobenthos
at each sampling site using a Van Veen grab sampler with
a mouth area of 1/16 m2 following the general protocol by
Chiasson and Williams (1999). Three subsamples were grouped
into one composite sample to describe the macrobenthos
community of each sampling site. Samples were sieved through
a 0.425-mm mesh, and we manually removed impurities
such as aquatic plants and gravel in the field. The sieve
contents were then placed in white trays to let us manually

remove the organisms. All macrobenthos were preserved in
75% ethanol. The organisms were identified to the lowest
possible taxonomic level (i.e., species or genus) in the laboratory
using a stereomicroscope (Nikon SM2, Nikon Ltd., Japan)
based on appropriate identification guides (e.g., Liu et al.,
1979; Morse et al., 1984; Tong, 1996; Wang, 2002; Tang,
2006), and were then counted and weighed to determine
the fresh weight.

Taxonomic and functional diversity
indices

Taxonomic diversity
To describe the taxonomic diversity of the macrobenthos

community, we used the Shannon–Weiner diversity (H’),
Simpson diversity (D), Pielou evenness (E), and Margalef
richness (d) indices. The four indices were calculated as follows:

H
′

=

s∑
1

PilnPi (1)

D = 1−
S∑
1

P2
i (2)

E = H
′

/ln (S) (3)

d = (S− 1)/ln(N) (4)

where Pi is the probability of occurrence of the ith species in a
community; S is the total number of species in a community;
and N is the total number of individuals in a community.

Functional diversity
We considered six functional trait classes to characterize

macrobenthos, consisting of adult body size, longevity,
voltinism, swimming ability, locomotion, and feeding habit
(Supplementary Table 1), which have been widely used to
characterize functional diversity (Coccia et al., 2021; Edegbene
et al., 2021; Akamagwuna et al., 2022). For each trait, a
set of attributes were used to categorize the macrobenthos
species (Supplementary Table 1). These trait classes and their
associated attributes are related to morphology, life history,
and behavior of macrobenthos (Usseglio-Polatera et al., 2000;
Akamagwuna et al., 2022), and showed sensitively response to
various environmental stress (Li et al., 2019c; Li Z. F. et al., 2020;
Juvigny-Khenafou et al., 2021). Additionally, they reflect the
macrobenthos-related ecological functions, such as secondary
production, energetic transference, and the nutrients cycle
(Hébert et al., 2016; Braghin et al., 2018). We further used
a binary coding approach (i.e., 1 if a species displays a trait
attribute, 0 if not) to encode trait attributes of the macrobenthos
collected in the river–lake system (Supplementary Table 2; Li
et al., 2019a,c; Li S. H. et al., 2020; Juvigny-Khenafou et al., 2021).
Information regarding the functional traits of macrobenthos
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was mainly obtained from the published literature on freshwater
ecosystem (Li et al., 2019a; Zhang et al., 2019; Li Z. F. et al.,
2020; Dolédec et al., 2021; Juvigny-Khenafou et al., 2021; Peng
et al., 2021). Where the trait attributes of a given species were
not available, we used information from other species within
the same genus or family (Sivadas et al., 2021; Paz et al., 2022).

We used the following functional diversity indices:
functional richness (FRic), functional evenness (FEve),
functional divergence (FDiv), and Rao’s quadratic entropy
index (RaoQ). FRic indicates the functional niche space
occupied by a given community, and in general, a lower value
implies low utilization of the ecological space (Villéger et al.,
2008; Liu et al., 2021). FEve corresponds to the evenness of the
distribution of species abundance within the functional trait
space, and higher FEve indicates high utilization efficiency of
the niche space (Mason et al., 2005; Villéger et al., 2008). FDiv
(the functional divergence) describes the distribution of species
abundance across the niche space, which reflects the degrees
of niche differentiation and resource competition within the
community. High FDiv entails a high degree of species niche
complementarity and low resource competition (Villéger et al.,
2008). RaoQ measures pairwise differences in trait composition
between taxa weighted by their relative abundance (Botta-
Dukát, 2005). It combines both FRic and FDiv, and therefore
considers potential redundancy or complementarity between
these diversity indices (Péru and Dolédec, 2010).

RLQ and fourth-corner analysis
methods

We combined the RLQ method (Dolédec et al., 1996), which
uses environmental variables (R), species of taxa (L), and traits
(Q), with the fourth-corner method (Kleyer et al., 2012; Dray
et al., 2014) to assess the responses of macrobenthos traits
to environmental gradients. The RLQ method is a three-table
ordination analysis that accounts for environmental variables in
the R table (environment × site), for species abundance in the
L table (species × site), and for functional traits in the Q table
(trait × species). First, we conducted correspondence analysis
(function dudi.coa) on the L table, and principal-components
analysis (function dudi.pca) on the R and Q tables. We then
combined these separate analyses using RLQ analysis (function
rlq in R package ade4, Dolédec et al., 1996). We assessed the
overall significance of this relationship using a global Monte
Carlo test with 49,999 random permutations of both model 2
(H1: assuming no relationship between R and L) and model
4 (H2: assuming no relationship between L and Q). Since the
global test could not test the bivariate relationship between
individual environmental variables and functional traits, we
used fourth-corner analysis with an adjusted p value (i.e.,
p-values were corrected using the false discovery rate adjustment
method to limit bias due to multiple-test comparisons) to

test their relationships (function fourthcorner in R package
ade4, Benjamini and Hochberg, 1995; Dong et al., 2021).
Furthermore, we used a combination of RLQ and fourth-corner
analyses to evaluate the significance of the associations between
environmental variables (or functional traits) and the RLQ axes
(Dray et al., 2014).

Data analysis

We calculated the taxonomic and functional diversity
indices of the macrobenthos community in each of the four
ecosystem types (river, river mouth, lake mouth, lake) using
version 2.5–7 of the “vegan” package1 and version 1.0–12
of the “FD” package2 for the R software (version 4.1.23),
respectively. We used version 1.7–18 of the “ade4” package4 for
the RLQ and fourth-corner analysis. In addition, to evaluate
the contributions of the water environmental variables and
sediment heavy metals to variation of the taxonomic and
functional diversities, we carried out variance partitioning
analysis using the “vegan” package.

Our primary goal was to detect relationships between
environmental factors and macrobenthos diversity; because of
this goal and limitations on our budget, we did not collect large
enough samples on different dates to robustly test for changes
in macrobenthos communities between sample dates. We used
one-way ANOVA to test whether there were significant spatial
differences in environmental variables, taxonomic diversity
indices, and functional diversity indices. If the result was
significant, we used a post hoc test (the least-significant-
difference test) for pairwise comparisons of variables between
pairs of ecosystem types. To identify relationships between
the taxonomic and functional diversity metrics, we calculated
Pearson’s correlation coefficient (r) for each ecosystem type.
These statistical analyses were conducted using version 26.0 of
the SPSS software5.

Results

Spatial variations of water
environmental variables and sediment
heavy metals

Table 1 shows the values (mean ± SE) of the water
environmental variables and sediment heavy metals in the

1 https://cran.r-project.org/web/packages/vegan/index.html

2 https://cran.r-project.org/web/packages/FD/index.html

3 http://www.r-project.org/

4 https://cran.r-project.org/web/packages/ade4/index.html

5 https://www.ibm.com/analytics/spss-statistics-software
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four ecosystem types. There were significant differences among
the four ecosystem types in SD (F = 4.681, p < 0.05), TSS
(F = 7.872, p < 0.05), DO (F = 3.095, p < 0.05), TN (F = 11.428,
p < 0.05), and TP (F = 7.617, p < 0.05). Water transparency
(SD) increased moving downstream from the river (with an
average depth of 0.63 ± 0.06 m) to the lake (with an average
depth of 0.88 ± 0.03 m), but was only significantly lower
in the river than in the other sites. Mean DO was much
greater in the lake mouth (8.39 ± 1.20 mg/L) and river mouth
(8.39 ± 0.85 mg/L) than in the river (5.29 ± 0.61 mg/L) and
lake (6.87 ± 0.43 mg/L), and the differences were significant.
The highest and lowest values of TSS, TN, and TP were observed
in the river and lake mouth, respectively, and the differences
were significant. In addition, TN concentrations exceeded the
fourth grade (IV) in the environmental quality standards for
surface water of China (i.e., had water quality sufficiently
bad that it was only suitable for industrial water supply and
recreation in which there is no direct human contact with the
water) at 80.0%, 55.6%, 54.6%, and 53.8% of sampling sites
in the river, river mouth, lake mouth, and lake, respectively.
The average TP ranged from 0.05 mg/L to 0.21 mg/L, and
the concentrations of 88.2%, 75.9%, 66.7%, and 67.3% of
the sampling sites along the river–lake gradient, respectively,
exceeded grade IV.

The values of Cd (F = 9.473, p < 0.05), Cr (F = 4.941,
p < 0.05), Cu (F = 12.539, p < 0.05), Pb (F = 13.205, p < 0.05),
and Zn (F = 29.733, p < 0.05) differed significantly among
the four ecosystem types. The average Cd, Cr, Cu, Pb, and Zn

concentrations were significantly higher in the river and river
mouth than in the lake mouth and lake.

Macrobenthos community structure

Macrobenthos abundance and biomass
We identified a total of 30 macrobenthos taxa across all

sampled areas (Supplementary Table 3): 12 Insecta (40.0%),
11 Gastropoda (36.7%), three Oligochaeta (10%), two Bivalvia
(6.7%), one Crustacea (3.3%), and one Hirudinea (3.3%). The
numbers of species in the different ecosystems were 13, 17,
12, and 25 in the river, river mouth, lake mouth, and lake,
respectively. Among these taxa, only eight species (Limnodrilus
hoffmeisteri, Bellamya aeruginosa, Bellamya purificata, Bithynia
fuchsiana, Bithynia misella, Einfeldia dissidens, Propsilocerus
kamusi, and Orthocladius sp.) appeared in all the four ecosystem
types. Tubifex tubifex was only observed in the river. Seven
species (Cipangopaludina cahayensis, Parafossarulus eximius,
Semisulcospira cancellate, Stenothyra glabra, Unio dongtasiae,
Glyptotendipes tokunagai, Microchironomus tener) were found
only in the lake, but not in the other three study areas.
Glossiphonia sp. and Polypedilum sp. were found only in the
river mouth, and Dicrotendipes nervosus and Hyale changi were
found only in the lake mouth.

Figure 2A shows that the total of the average abundance
of all macrobenthos taxa in the lake (373.91 ± 77.79

TABLE 1 Mean and standard error (mean ± SE) of the water environmental variables and sediment heavy metals in the four ecosystem types.

Variables Ecosystem types

River River mouth Lake mouth Lake

Water environmental variables

Water depth (H, m) 1.87± 0.22a 2.19± 0.08a 2.41± 0.21a 2.36± 0.09a

pH 8.13± 0.11a 8.32± 0.04a 8.35± 0.06a 8.26± 0.05a

Water temperature (Tw, ◦C) 21.00± 1.98a 24.09± 1.00a 25.10± 1.45a 22.69± 0.94a

Secchi depth (SD, m) 0.63± 0.06b 0.77± 0.04b 0.79± 0.05ab 0.88± 0.03a

Total suspended solids (TSS, mg/L) 15.13± 1.80a 6.54± 0.81b 6.47± 1.23b 7.18± 1.02b

Dissolved oxygen (DO, mg/L) 5.29± 0.61b 8.39± 0.85a 8.39± 1.20a 6.87± 0.43ab

Total nitrogen (TN, mg/L) 5.96± 0.81a 2.48± 0.41b 2.14± 0.35b 2.46± 0.28b

Total phosphorus (TP, mg/L) 0.21± 0.05a 0.08± 0.02b 0.05± 0.01b 0.07± 0.01b

Ammonium nitrogen (NH4
+ , mg/L) 0.82± 0.29a 0.36± 0.09a 0.45± 0.11a 0.43± 0.06a

Phosphate (PO4
3− , mg/L) 0.07± 0.02a 0.06± 0.01a 0.04± 0.01a 0.04± 0.01a

Chemical oxygen demand (COD, mg/L) 30.63± 4.99a 20.71± 2.21a 27.15± 7.30a 27.50± 2.71a

Heavy metals in sediments

As (mg/kg) 9.40± 0.58a 10.16± 0.54a 9.75± 0.90a 10.72± 0.55a

Cd (mg/kg) 1.67± 0.13a 1.95± 0.35a 0.68± 0.13b 0.56± 0.10b

Cr (mg/kg) 104.76± 15.36a 82.42± 4.40b 60.85± 2.93c 73.03± 4.47bc

Cu (mg/kg) 62.63± 2.10a 53.40± 2.42a 37.19± 2.60b 38.59± 2.41b

Pb (mg/kg) 50.35± 2.12a 47.41± 2.97a 34.25± 2.60b 31.83± 1.59b

Zn (mg/kg) 311.00± 14.89a 269.65± 20.64a 122.83± 11.87b 113.95± 10.68b

Values of a variable labeled with different letters differed significantly (ANOVA followed by least-significant-difference test, p < 0.05).
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FIGURE 2

(A) Abundance and (B) biomass of macrobenthos communities in the four study areas. Values are mean ± SE. Values of a variable labeled with
different letters differed significantly (ANOVA followed by least-significant-difference test, p < 0.05).

ind./m2, mean ± SE) was significantly greater than that in
the river mouth (142.48 ± 28.68 ind./m2) and lake mouth
(110.55± 35.74 ind./m2), but not significantly different from the
abundance in the river (327.38 ± 92.56 ind./m2). Limnodrilus
hoffmeisteri was the most abundant species in the river
(153.85 ± 54.91 ind./m2) and river mouth (64.00 ± 16.49
ind./m2), whereas Propsilocerus kamusi and Bithynia misella
were the most abundant taxa in the lake mouth (37.82 ± 23.26
ind./m2) and lake (155.13 ± 44.15 ind./m2), respectively
(Supplementary Table 4). The highest average macrobenthos
biomass occurred in the river (164.64 ± 124.78 g/m2), followed
by the lake (132.06 ± 38.58 g/m2), with the lowest biomass
in the river mouth (8.41 ± 5.52 g/m2, Figure 2B); however,
due to high variation, these differences were not significant.
Bellamya aeruginosa was the species with the highest biomass
both in the river and lake mouths (4.98 ± 3.89 g/m2

and 23.44 ± 16.09 g/m2, respectively), whereas Anodonta
woodiana and Bithynia misella were the species with the
highest biomass in the river (75.23 ± 75.23 g/m2) and
lake (58.29 ± 23.89 g/m2), respectively (Supplementary
Table 5). In addition, Supplementary Figure 1 shows the
temporal changes in the species richness of macrobenthos in
Baiyangdian Lake.

Macrobenthos biological traits
Figure 3 shows the proportions of the macrobenthos

communities in the four study areas. The macrobenthos
functional traits in the river–lake system was mainly
characterized by very small body size (≤ 10 mm, BS1).
The proportions of short-lived taxa (AL1) were higher than
those of long-lived taxa (AL2) in the river, river mouth, and
the lake, but equal in the lake mouth. The proportions of taxa
with a univoltine life cycle (V2) were much higher than those
of bi- or multivoltine (V3) and semivoltine (V1) taxa, and
the proportion of univoltine taxa increased along the gradient

from the river to the lake, with proportions of 61.5%, 64.7%,
66.7%, and 68.0%, respectively. More taxa were characterized
as having no mobility (SA1) and weak mobility (SA2) in all
four ecosystem types, but a few taxa with strong mobility
(SA3) occurred in the lake mouth. Higher proportions of
burrowers (H1, > 50%) appeared in the river and river mouth
ecosystems, whereas climbers (H2) dominated the lake mouth.
We found the same proportions (48%) of burrowers (H1) and
climbers (H2) in the lake. Most taxa were scrapers (FH3) and
collector-filterers (FH2) in all four ecosystem types. Among the
25 biological trait categories, we observed no semivoltine taxa
(V1), swimming taxa (H5), and parasitic taxa (FH6) in the four
ecosystem types.

Macrobenthos taxonomic and
functional diversity

Taxonomic diversity
We found significant differences among the four ecosystem

types in the Pielou evenness (F = 4.149, p < 0.05, Figure 4C).
The peak and minimum values of the Pielou evenness were
recorded at the lake mouth (0.99 ± 0.01, mean ± SE) and
the river mouth (0.67 ± 0.07), respectively, and this difference
was significant. The highest values of the Shannon–Wiener
diversity and Simpson diversity both occurred at the lake mouth,
followed by the lake, with the lowest values in the river mouth
(Figures 4A,B); however, these differences were not significant.
The average value of the Margalef richness was higher in the
lake and river than that of in the river mouth and lake mouth
(Figure 4D); however, these differences were not significant.

Functional diversity
FRic differed significantly among the four studied ecosystem

types (F = 10.381, p < 0.05), with significantly higher values
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FIGURE 3

Proportion of the trait values for the macrobenthos communities in the four ecosystem types: (A) River, (B) River mouth, (C) Lake mouth, and
(D) Lake. Trait values are defined in Supplementary Table 1.

in the river (3.13 ± 0.54, mean ± SE) than in the lake mouth
(0.94 ± 0.46) or the lake (0.87 ± 0.17, Figure 5A). FEve in the
lake mouth and river mouth (0.68 and 0.71, respectively) were
slightly greater than those in the river and lake (both about 0.62),
but did not differ significantly among the locations (Figure 5B).
FDiv showed the opposite pattern compared with FEve, and
the differences were not significant (Figure 5C). For RaoQ, the
greatest value (1.15 ± 0.23) was observed in the river, and the
lowest value (0.61 ± 0.18) was in the river mouth (Figure 5D),
but the differences were not significant.

Correlation between taxonomic and functional
diversity indices

Figure 6 shows the significant correlations between each
pair of biodiversity indices for the four ecosystem types. Overall,
the taxonomic diversity indices had stronger correlations with
each other than with the functional diversity indices. There
were significant positive relationships between the Shannon–
Wiener diversity and the other three taxonomic diversity indices

in the river, river mouth, and lake, whereas Simpson diversity
was significantly positively correlated with the Shannon–Wiener
diversity and Margalef richness in the lake mouth. In addition,
the Simpson diversity was positively correlated with all other
taxonomic diversity indices in the river and lake. Among the
functional diversity indices, RaoQ was significantly positively
correlated with FEve in the river, FDiv was significantly
positively correlated with FRic and RaoQ in the river mouth, and
FRic was significantly negatively correlated with FEve in the lake.
There was no significant relationship between pairs of functional
diversity indices in the lake mouth. RaoQ was significantly
positively correlated with all taxonomic diversity indices in the
river. Pielou evenness and FDiv were significantly negatively and
positively correlated in the river and lake, respectively. Among
the taxonomic diversity indices, Simpson diversity and Pielou
evenness were significantly positively correlated with FEve in
the river but not in the lake, whereas Pielou evenness and
Margalef richness were significantly positively and negatively
correlated (respectively) with FEve in the lake. We found no
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FIGURE 4

Taxonomic diversity indices for the macrobenthos communities in the four ecosystem types: (A) Shannon–Wiener diversity (H’), (B) Simpson
diversity (D), (C) Pielou evenness (E), and (D) Margalef richness (d). Values are: Mean, white squares; standard deviation, vertical black bars;
median, white triangles. The shaded areas correspond to the kernel density shapes. Distributions labeled with different letters differ significantly
(ANOVA followed by least-significant-difference test, p < 0.05).

significant correlation between the taxonomic and functional
diversity indices in the river mouth and lake mouth.

Relationships between macrobenthos
traits and environmental variables

Figure 7 and Supplementary Table 10 show the
relationships between the macrobenthos traits and the
environmental variables. Overall, these were significant (Model
2, p < 0.01; Model 4, p < 0.01). The first two axes of the RLQ
multivariate analysis explained 98.9% of the total inertia of the
three tables, with the first and second RLQ axes explaining
93.4% and 5.5% of the total variance, respectively.

The left (negative) part of the first RLQ axis (Figure 7A)
included Oligochaeta species (i.e., Limnodrilus hoffmeisteri,
Branchiura sowerbyi, and Tubifex tubifex), which were
with characteristics of large body size and collector-
gatherers (Figure 7B). These taxa were mostly found

in the river (Figure 7D), with higher TN, TP, and Cr
concentrations (Figure 7C). The left (negative) part of the
first RLQ axis also showed that the trait states (e.g., burrower,
no mobility) largely matched the characteristics of the Insecta
species (e.g., Tanypus villipennis, Chironomus plumosus,
Polypedilum sp.), which was related to the increasing heavy
metal concentrations for Pb, Zn, Cu, and Cd, and tended
to emerge in the river mouth. The right (positive) part
of the first RLQ axis indicated trait states (e.g., univoltine
life cycle, climber, weak mobility) were associated with the
physical variables H and SD. The most representative species
were Gastropoda (e.g., Semisulcospira cancellata, Stenothyra
glabra, Gyraulus convexiusculus) and tended to emerge in
the lake. The positive (top) part of the second RLQ axis
showed trait states (e.g., medium body size and long life)
associated with higher concentrations of NH4

+, TSS, COD,
and As. These trait states largely matched the characteristics
of the Gastropoda and Bivalvia. Furthermore, the negative
(bottom) part of the second RLQ axis illustrated that Hirudinea
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FIGURE 5

Functional diversity indices for macrobenthos communities in the four ecosystem types: (A) FRic, functional richness; (B) FEve, functional
evenness; (C) FDiv, functional divergence; (D) RaoQ, Rao’s quadratic entropy. Values are: Mean, white squares; standard deviation, vertical black
bars; median, white triangles. The shaded areas correspond to the kernel density shapes. Distributions labeled with different letters differ
significantly (ANOVA followed by least-significant-difference test, p < 0.05).

(Glossiphonia sp.) and Insecta (e.g., Propsilocerus kamusi,
Procladius sp., Dicrotendipes nervosus) with a short life and
a scraper feeding mode were more susceptible to PO3−

4 , Tw,
DO, and pH, and tended to emerge in the river mouth and
lake mouth areas.

The fourth corner analysis showed no significant
bivariate associations between a single trait state and a single
environmental factor (p-adjusted < 0.05). Therefore, we further
examined the relationships between individual trait states and
the two RLQ environmental axes, as well as those between
individual environmental variables and the two RLQ trait axes
(Supplementary Figure 2). The first RLQ trait axis (AxcQ1) was
significantly positively correlated with two physical variables
(H and SD, p-adjusted < 0.05) and significantly negatively
correlated with TN and TP (p-adjusted < 0.05). In addition, all
heavy metals except As were significantly negatively correlated
with the first RLQ trait axis (p-adjusted < 0.05). We found
no other significant relationships between the two RLQ
environmental axes and individual trait states.

Partitioning of the influences of
environmental variables on
macrobenthos diversities

Variance partitioning revealed that the water environmental
variables and sediment heavy metals both played important
roles in the macrobenthos taxonomic and functional diversity
in the river–lake system (Supplementary Figure 3). Water
environmental variables accounted for a larger proportion of
the variation than sediment heavy metals for both taxonomic
and functional diversity. The combination of both variable
categories explained the taxonomic diversity well (66.8% of
the variance; Supplementary Figure 3A), which was higher
than the sum for the individual environmental variables
(60.5%). The variability of taxonomic diversity explained
by the interaction between water environmental variables
and sediment heavy metals was 6.2%. For functional
diversity (Supplementary Figure 3B), the sum of the
individual environmental variables (89.0%) explained more
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FIGURE 6

Pearson’s correlation coefficients (r) for the relationships between pairs of macrobenthos taxonomic and functional diversities in the (A) River,
(B) River mouth, (C) Lake mouth, (D) Lake: H’, Shannon–Wiener diversity; D, Simpson diversity; E, Pielou evenness; d, Margalef richness; FRic,
functional richness; FEve, functional evenness; FDiv, functional divergence; RaoQ, Rao’s quadratic entropy. The actual r values are presented in
Supplementary Tables 6–9. Lower blank cells indicate insignificant correlation (p > 0.05).

than the combination of water environmental variables
and sediment heavy metals (77.6%). The variability of
functional diversity explained by the interaction between
water environmental variables and sediment heavy metals
was −11.4%. Remarkably, the amount of the variation
explained by water environmental variables and sediment
heavy metals were both higher for functional diversity than for
taxonomic diversity.

Discussion

Spatial patterns of macrobenthos
taxonomic and functional diversity

Functional diversity measures are increasingly being
incorporated into making better conservation and restoration
decisions for freshwater ecosystems (Cadotte et al., 2011;
Schmera et al., 2017; Coccia et al., 2021). Using several
functional trait indices is likely to provide more insight into

functional attributes of the ecosystem than relying only on
species-based indices (Gagic et al., 2015; Sotomayor et al.,
2021). In the present study, we investigated the spatial patterns
of macrobenthos taxonomic and functional diversity along
the gradient from the Fu River to Baiyangdian Lake. Our
results support our hypothesis that macrobenthos community
characteristics would differ significantly along gradients
in the environmental factors. The average abundance of
all macrobenthos taxa was significantly greater in the lake
than that in the river and lake mouths. Pielou evenness
was significantly higher in the lake mouth than in the
river mouth and lake. Similarly, Poznańska et al. (2010)
found that the higher taxonomic diversity (e.g., Pielou
eveness) but extremely lower abundance of macrobenthos
in a transition zone (i.e., the sandy substrata) compared
with that found at the adjacent reservoir ecosystem.
Functional richness was significantly higher in the river
than in the lake mouth and lake, which can be interpreted
as a sign of functional redundancy in the lake mouth and
lake (Arenas-Sánchez et al., 2021). In addition, greater
functional evenness in the river and lake mouths indicated
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FIGURE 7

Results of the RLQ analysis represented by the first and second axes based on data for the four ecosystem types combined: (A) species scores,
(B) trait states, (C) coefficients for the environmental variables, (D) projection of sampling sites. The d value represents the grid size of the graph.
Species codes in panel (A) are defined in Supplementary Table 3; trait codes in panel (B) are defined in Supplementary Table 1.

that functional traits were distributed more evenly across
the trait space than that in the river and lake, which was
associated with greater response diversity and resilience
in aquatic ecosystems (Gagic et al., 2015; Schriever et al.,
2015; England and Wilkes, 2018). Differences other three
taxonomic diversity indices (i.e., Shannon–Weiner diversity,
Simpson diversity, and Margalef richness) were not significant
among the four ecosystem types. These can be related to
the fact that the collected communities were dominated
by few taxa with high abundances in each ecosystem
type (Supplementary Table 4; Arenas-Sánchez et al.,
2021).

We found significant positive correlations among the
taxonomic diversity indices in our study area, which
was consistent with previous studies (Heino et al., 2007;
Gascón et al., 2009; Tolonen et al., 2017). Moreover,

there was significant positive relationship between the
Rao’s quadratic entropy and functional evenness in the
river, whereas Rao’s quadratic entropy was significantly
positively correlated with functional divergence in the
river mouth. In contrast, De Castro-Català et al. (2020)
indicated that Rao’s quadratic entropy was negatively
correlated with functional evenness and functional divergence
of macrobenthos in European river basins. In addition,
the relationships between the taxonomic and functional
diversity indices were complex and differed among the four
ecosystem types. In the river, Rao’s quadratic entropy was
significantly positively correlated with the four taxonomic
diversity indices, which corresponded with findings of De
Castro-Català et al. (2020). Similarly, Feld et al. (2014)
revealed a strong positive relationship between Rao’s
quadratic entropy and three taxonomic diversity indices
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(Shannon–Weiner diversity, Simpson diversity, and Pielou
evenness) of benthic macroinvertebrates along a gradient
of hydromorphological alteration across 65 lowland river
sites. In the lake, Pielou evenness was significantly positively
correlated with functional divergence and functional evenness.
Similar results have been reported for macroinvertebrate
communities in a large lake undergoing eutrophication,
where Pielou evenness was found to be significantly positively
correlated with functional divergence and functional evenness
(Tolonen et al., 2017).

Some studies on the relationships between taxonomic
and functional diversity indices of freshwater macrobenthos
suggest that even if some taxonomic and functional diversity
indices are correlated, the correlation is not sufficient to
guarantee that they can replace each other (Heino et al.,
2008; Cadotte et al., 2011; Gallardo et al., 2011; Feld et al.,
2014). In particular, despite these significant correlations
between macrobenthos taxonomic and functional diversity
indices, this trend is not universally supported. We found
no significant correlation between taxonomic and functional
diversity indices in the river mouth and lake mouth ecosystems.
Some studies on macrobenthos also indicated that functional
diversity fluctuates independently from taxonomic diversity
(Cadotte et al., 2011; Reynaga and Dos Santos, 2013). These
results highlight and support the importance of functional
diversity as complementary to, rather than a replacement for,
taxonomic biodiversity in river–lake ecotones. The different
indices quantify different and unique aspects of biodiversity,
so using complementary and uncorrelated diversity indices
can provide a more thorough understanding of the multiple
facets of biodiversity (Wilsey et al., 2005; Gallardo et al.,
2011).

Effects of water environmental
variables and sediment heavy metals
on the macrobenthos community

In the present study, ecotones are transitional areas between
a river (a lotic environment) and a lake (a lentic environment).
In such river–lake systems, ecotones can function as water
purification areas and pollution buffers. Nutrient concentrations
(i.e., TN and TP) in the river mouth and lake mouth were
both lower than those in the adjacent river, and the lake
mouth values were lower than those in the adjacent lake.
The sediment Cr, Cu, Pb, and Zn concentrations in the
river mouth were generally lower than those in the adjacent
river but higher than those in the adjacent lake mouth.
The RLQ and fourth-corner results clarified the relationships
between environmental factors and functional traits in the four
ecosystem types. They not only indicated that the functional
traits of macrobenthos communities can respond to different
environmental variables, but also support previous research,

in which the functional traits of these communities are not
randomly spatially distributed (Piló et al., 2016; Kuzmanovic
et al., 2017; Hu et al., 2019).

The effects of water environmental variables on
macrobenthos community might be complex and indirect,
which might work by the alterations in their water habitat
conditions. Even so we still tried to explore the statistical
relationship between water environmental variables and
macrobenthos community from the field survey. We
found that physical conditions (H and SD) strongly
correlated with the abundance and traits of many of
the macrobenthos in Baiyangdian Lake, which confirms
previous studies in this region (Yi et al., 2018; Yang et al.,
2020). In addition, the RLQ analysis showed that with
increasing eutrophication as a result of high TN and TP,
a community dominated by macrobenthos with climber,
scraper, and weak mobility functional traits changed to a
community dominated by burrowers, collector-gatherers,
and organisms with no mobility. These results support
the hypothesis that spatial variation of the macrobenthos
community structure can be largely attributed to a gradient
from eutrophic to oligotrophic conditions in a freshwater
ecosystem (Birk et al., 2020; Faghihinia et al., 2021). In
addition, semivoltine and univoltine species were more
common in Baiyangdian Lake than in the ecotones and the
Fu River, which were lotic environments and were constantly
disturbed by hydraulic exchanges. The semivoltine and
univoltine macrobenthos require a longer period with a
stable water environment to reach maturity and reproduce,
whereas bi- or multivoltine species can reach maturity
faster and maintain their populations despite constant
disturbance (Weiher, 2011; Saito et al., 2015; Dolédec et al.,
2021).

Our variance partitioning analysis results revealed that
sediment heavy metals contributed more to the variation of
functional diversity than to the variation of taxonomic diversity,
which suggests that the functional diversity can serve as a good
indicator for monitoring heavy metal pollution. In particular,
the dominant trait modalities (burrower, no swimming ability,
bi- or multivoltine life cycles) may be indicators of the
effects of heavy metal pollution. Our results therefore provide
information on the responses of functional traits to heavy metal
pollution in river–lake ecotones. In addition, adult body size
has been proven to be important in previous studies of the
effects of heavy metal pollution on changes in macrobenthos
functional traits (Gusmao et al., 2016; Odume, 2020; Dong
et al., 2021). Adult body size is a direct and intuitive trait of
macrobenthos (Edegbene et al., 2020; Odume, 2020) and is
usually associated with environmental gradients. The present
results indicated that a large adult body size (BS4) was
a dominant trait state in areas with high sediment heavy
metal contents (e.g., Cr, Pb, Zn, Cu, and Cd). These results
support the common hypothesis that large adult body size
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is a more prevalent functional trait than small or very small
adult sizes in areas contaminated with heavy metals (Gusmao
et al., 2016; Dong et al., 2021). This may be because of a
higher content of organic matter with high concentrations
of heavy metals (Zhang et al., 2014). Areas rich in organic
matter may represent a large food resource and, therefore,
may increase the potential for certain organisms that feed on
organic detritus to grow and attain greater body size, despite
any toxic effects from heavy metals (Ryu et al., 2011; Hu et al.,
2019).

Management insights

Eutrophication and heavy metal contamination have
attracted much attention in Baiyangdian Lake (Zhao et al.,
2011; Ji et al., 2019a,b). Although ecotones between the Fu
River and Baiyangdian Lake functioned as a water purification
and pollution buffer, the contents of nutrients (i.e., TN and
TP) and heavy metals in the ecotones were still high. In
addition, the macrobenthos abundance and biomass in the
two ecotones were extremely low compared with those in the
adjacent river and lake. A current dredging project aims to
reduce the load of endogenous pollution (heavy metals and
nutrients) in the sediments and thereby improve water quality
in Baiyangdian Lake (Li et al., 2021; Zhou et al., 2021). However,
previous studies of other shallow lakes (Da̧bkowski et al.,
2016; Meng et al., 2018, 2020; Zou et al., 2019) showed that
dredging can cause a significant reduction in the macrobenthos
species richness, abundance, biomass, and taxonomic and
functional diversity indices. These negative consequences could
be due to the direct removal of macrobenthos in the sediment
(Meng et al., 2018, 2021; Piló et al., 2019) combined with
alterations of physical environmental conditions (e.g., water
depth and turbidity), thereby making the environment less
suitable for these organisms (Robinson et al., 2005; Meng
et al., 2018). We therefore recommend that dredging be
stopped until studies can be conducted to confirm that this
activity will not adversely affect the macrobenthos community
in the long term.

Our results show that macrobenthos taxonomic and
functional diversity responded strongly to water depth,
water transparency, TN, TP, and sediment heavy metals
in the river–lake system. Therefore, we recommend that if
dredging continues, managers define an appropriate dredging
depth to protect the macrobenthos and maintain high
water transparency, thereby mitigating the consequences for
the macrobenthos community composition. Furthermore,
most studies indicated that macrobenthos species richness,
abundance, and taxonomic diversity can eventually recover after
dredging, and may even surpass the pre-dredging levels during
the recovery period (Aldridge, 2000; Da̧bkowski et al., 2016;
Zawal et al., 2016; Piló et al., 2019; Meng et al., 2021). Thus, it will

be necessary to provide a recovery period to promote restoration
of the macrobenthos taxonomic and functional diversity.

Conclusion

In this study, we investigated the spatial patterns of
macrobenthos taxonomic and functional diversity along a river–
lake gradient for a shallow lake in Northern China. We found
that nutrient concentrations (i.e., TN and TP) in the river mouth
and lake mouth were both lower than those in the adjacent
river and lake. Cr, Cu, Pb, and Zn contents in the river mouth
and lake mouth were generally lower than those in the river.
These results indicated that the river–lake ecotones functioned
as a water purification and pollution buffer. The macrobenthos
abundance and biomass in the two ecotones (river mouth and
lake mouth) were both lower than those in the river and lake.
The highest values of three macrobenthos taxonomic diversity
indices (Shannon–Wiener diversity, Simpson diversity, and
Pielou evenness) occurred in the lake mouth, with the lowest
in the river mouth; however, the differences between ecosystem
types were only significant for Pielou evenness. Moreover,
the highest macrobenthos functional evenness occurred in
the lake mouth, whereas the lowest values of functional
divergence and Rao’s quadratic entropy index occurred in the
river mouth. We also found that the first RLQ trait axis was
significantly positively correlated with two physical variables
(H and SD) and significantly negatively correlated with TN
and TP. All heavy metals except for As were significantly
negatively correlated with the first RLQ trait axis. Furthermore,
the proportions of variation explained by the taxonomic and
functional diversity were 66.8% and 77.6%, respectively, which
reflect the combined effects of water environmental variables
and sediment heavy metals. Overall, our results suggest that
studies of macrobenthos functional diversity in ecotones will
complement the information provided by classical taxonomic
diversity indices, and can therefore provide useful data to
support the management of river–lake systems. Because we
combined samples from multiple dates in our analysis, it was
not possible to test whether the environmental values and
macrobenthos community varied over time. Improving our
understanding of these variations will be an important area
of future research. In addition, the macrobenthos are only
one component of biodiversity. In future research, it will be
important to sample other components of biodiversity, such as
the plant and fish communities.
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