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Urbanization and land-use change are significant contributors to cumulative greenhouse
gas emissions, causing climate change and environmental damage. Research on land-
use-derived carbon storage and sequestration capability is crucial for emission reduction
strategy and sustainable development. Because cities are becoming significant sources
of carbon emissions, an accurate assessment of city-level carbon storage and
sequestration is now required. This study intended to estimate the carbon storage
and sequestration capabilities using the InVEST model under different land use land
cover (LULC) classes in Abha, Saudi Arabia. We used a support vector machine
(SVM) for LULC mapping. For the future forecasting of the LULC map, we employed
cellular automata (ANN-CA). Expansion of built-up land is the primary source of CO2.
From 1990 to 2040, agriculture lost 145 megagram of carbon per hectare (Mg C/ha),
whereas vegetation lost 34,948.15 Mg C/ha. Vegetation would get 17,363.7 Mg
C/ha during the same period, whereas urban areas would receive 3924.1 Mg C/ha.
Approximately 17,000 Mg C/ha would be lost from the vegetation area in future periods.
The approaches outlined in this paper may add a new dimension to carbon emission
analyses and provide helpful information for low-carbon city.

Keywords: carbon storage, carbon sequestration, land use change, machine learning, cellular automata

INTRODUCTION

Human benefits obtained from ecosystems are categorized into four types: regulating, provisioning,
cultural, and supporting ecosystem services (Yirsaw et al., 2017). Changes in land cover and
climate are examples of natural ecosystem regulatory services (Jiang et al., 2019). Contributing
to or removing greenhouse gases from the atmosphere, like carbon sequestration, are vital for
climate regulation (Sil et al., 2017). Climate change, global warming, food scarcity, and sustainable
development have made carbon a trendy research issue (Lal, 2016). Carbon sequestration is
the long-term storage of carbon in soil, plants, and other forms to prevent climate change
(Gallant et al., 2020). Terrestrial ecosystems like forests and farmland are crucial to carbon cycling
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(Sil et al., 2017). Agriculture often releases greenhouse gases,
although forests and orchards frequently sequester atmospheric
carbon (Xiong et al., 2014; Liang et al., 2021). Forests can store
enormous quantities of atmospheric CO2 (IPCC., 2005). Forested
regions store carbon during photosynthesis (Hauck et al., 2015).
Forests and orchards depletion may hasten climate change
because of the release of carbon from the depleted plant (Gibbs
et al., 2007; Sil et al., 2017). Climate change reduces the availability
and value of climate-regulating services. Winkler et al. (2010)
claim that climate regulation services account for almost half of
the value of the main terrestrial biomes (forests, grasslands, and
woodlands). Carbon management has become a need because
of human encroachment on natural resources. During the 19th
and 20th-century industrial revolutions, the global carbon cycle
and reserves suffered significant losses (Lal, 2008). Consequently,
scientists are very interested in the present carbon cycle, its
interactions with carbon stocks, and human involvement.

Population growth, industrialization, urbanization,
deforestation, and conversion of natural vegetation into
cultivable land contribute to soil CO2 emissions, increased
atmospheric carbon, and depletion of the terrestrial carbon
pool (Molotoks et al., 2018; Lal, 2019). Rapid urbanization
threatens natural habitats, including forest cover, agriculture,
and wetlands, affecting terrestrial carbon storage (Wu et al.,
2018). Changes in carbon storage (Fattah et al., 2021) may affect
the human and natural environment with socioeconomic
well-being. Thus, converting natural and semi-natural
landscapes into built-up regions has influenced urban
thermal behavior (Jiang et al., 2015; Rousta et al., 2018).
Because of this, the urban heat island effect has become one
of the most critical climate change issues (Lauwaet et al.,
2016). According to the United Nations, the worldwide
urban population will rise from 50% in 2010 to 70% in 2050
(Huang et al., 2019). Increasing the urban population will
lead to more urban development and diversity, altering the
future climate. Degradation of the terrestrial carbon pool
leads to low soil fertility, erosion, and food shortages (Lal,
2014). Thus, monitoring carbon stock decline is crucial to
ecosystem sustainability.

Al-Maamary et al. (2017) reported that temperatures increased
by 4◦C in Saudi cities in just 50 years, with 2–2.75◦C projected
at coastal locations. Summer temperatures surpass 52◦C because
of pollution from cars and cities (Abubakar and Aina, 2018).
CO2 emissions grew from 14.3 million tonnes in 2000 to 19.5
million tonnes in 2014. The energy sector contributed the most
(about 90% of total emissions), followed by industrial sectors
(8%) and agriculture (2%). According to Field et al. (2014),
temperatures have risen by 0.40◦C in Saudi Arabia. Globally, the
average temperature increase by 2040 is 2.2–2.7◦C (Abubakar
and Aina, 2018). Climate change is a matter of worry for
Saudi Arabia. The urbanization rate in Saudi Arabia is around
80% (in seven major cities) (Darfaoui and Al, 2010). In the
last 40 years, migration has resulted in tremendous urban
population growth. However, infrastructure and sustainable
urban planning efforts are lacking. Taking Jeddah as an example:
the city has exceeded its existing infrastructure. Other cities,
including Riyadh and Abha, have seen significant population

growth recently (Addas et al., 2020; Addas and Maghrabi,
2020).

On the other hand, the unavailability of high-quality data
and appropriate modeling approaches in developing nations,
such as Saudi Arabia, has hampered prior ES modeling and
environmental analyses. The previous study ignored changes in
natural ecosystems and their roles throughout time (Yavari and
Bahreini, 2001). Evaluation of the spatiotemporal repercussions
of land use land cover (LULC) policies on ESs, such as carbon
sequestration and storage, is essential for historical patterns and
future prediction scenarios (Babbar et al., 2021).

Several scientific groups from across the globe recommended
that the InVEST model be used to assess the effectiveness of
the ES model (Pechanec et al., 2018). Researchers quantified
and mapped carbon storage and sequestration as one of the
most prominent regulating activities, and they found it to be
particularly effective (Fekadu Hailu et al., 2021). In spite of the
fact that past research has linked LUCC to carbon storage and
sequestration, the focus of these studies has been on cities and
forest ecoregions (Chu et al., 2019), mountainous ecoregions (Sil
et al., 2017), and floodplains (Chu et al., 2019; Gaglio et al.,
2019). InVEST, on the other hand, has not been utilized to
evaluate carbon sequestration in dry agro-urban environments
(Zhou et al., 2020; Zhu et al., 2021). The present research
evaluated four carbon pools for calculating carbon storage and
sequestration: aboveground biomass, belowground biomass, soil
organic carbon, and dead organic matter. Aboveground biomass
was the most abundant carbon pool, followed by belowground
biomass and dead organic matter. Similarly, Tayebi et al. (2021),
investigated the effects of climate change on soil organic carbon
storage and belowground biomass storage (Deng et al., 2014).
Therefore, based previous research it can be stated that carbon
storage and sequestration modeling with their valuation is
rare studies. Also, future forecasting of carbon storage and
sequestration with their valuation is a novel work for proposing
sustainable urban management plans. In the present study, we
performed all modeling and statistical analysis with open source
software so that the researchers from developing nations can do
this study. To the best of authors’ knowledge, this is first study
ever have been done in the study area. In this work, we used a
machine learning approach called the support vector machine
(SVM) to map multi-temporal LULC changes. In addition, we
forecasted the LULC and carbon storage and sequestration using
CA-ANN and InVest software. Therefore, based on the research
gaps, the objective of the study is to model the multi-temporal
analysis of carbon storage and sequestration under the changing
LULC patterns in Abha city, Saudi Arabia.

MATERIALS AND METHODS

Study Area
The area chosen for this study is Abha (Figure 1) in Saudi Arabia’s
south-western province. The high hills near the urban area are a
main tourist destination with the most diverse flora and fauna in
the Asir region and the Saudi Arabia (Vincent, 2008). The study
site covers an area of 1291 km2 and is dominated by J. procera
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FIGURE 1 | Study area.

trees, Acacia origena, and A. gerrardii trees. Geographically, Abha
extend between 18◦9′33.126′′N to 18◦30′56.566′′N latitude and
42◦23′52.477′′E to 42◦51′42.832′′E longitude and the elevation
varies from 1560 to 2735 m with the mean of 2100 m MSL.
The research area, according to the Saudi Geological Society,
is composed of hard silt, mild clay, and sedimentary soil. In
terms of terrain complexity, the research area has a heterogeneous
landscape. It is located in a vital zone of Afromontane, where
the city’s environment is characterized by cold and semi-arid
temperatures (Bindajam and Mallick, 2020). The average rainfall
during the last 55 years (1965–2019) is 245 millimeters, with
the majority of precipitation falling between February and June,
while the mean minimum and maximum air temperatures are 9.4
and 30.8◦C, respectively. High-intensity rainfall is common in the
study area, and some rural communities experience flash flooding
during the winter season (Mallick et al., 2019).

Materials
The data gleaned was divided into auxiliary information
and satellite images. We used satellite images to examine

temporal variations and construct the study region’s LULC
and carbon storage maps. The training and testing datasets
were created using auxiliary data. A topographic map
[Abha (West) Sheet 4218-32] and Google Earth data were
among the auxiliary data. The toposheet was from 1975
and had a scale of 1:50,000. The sheet was scanned and
converted to a digital map, which was saved in.jpg format.
The collected G were then geo-referenced and projected to
the WGS 1984 Geographic (Lat/Lon) datum. For 1990, 2000,
and 2020, data from Landsat 5 TM and 8 OLI (path/row:
138/44 and 138/45, and spatial resolution: 30 m) were
acquired from the USGS Earth Explorer website.1 NASA’s
Earth Science Data Systems provided the ALOS PALSAR
radiometrically terrain corrected (RTC) Digital Elevation
Model (DEM) at a spatial resolution of 12.5 m. data. From
October to January, these cloud-free satellite images were
taken. For these datasets, simple pre-processing of satellite
datasets was conducted.

1https://earthexplorer.usgs.gov
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Method for Land Use Land Cover
Mapping’ and Validation
The SVM classifier was used to categorize the LULC maps in this
work for the years 1990, 2000, and 2020. Because it is one of
the most adaptable and accurate supervised classifier alternatives,
the SVM beat other classifiers such as fuzzy logic, radial basis
function, neural network, and random forest (Talukdar et al.,
2020). Because of its unique ability to extract conclusions even
with limited training data, SVM is a supervised, non-linear, non-
parametric classification method often used in remote sensing
(Talukdar et al., 2020). Melgani and Bruzzone (2004) classified
AVIRIS hyperspectral data with SVMs and compared their results
to those obtained with radial basis function neural networks
and the K-nearest neighbor classifier. SVMs outperformed the
other approaches, indicating that they are a valid and effective
alternative to standard pattern recognition algorithms for remote
sensing data, according to the researchers (Talukdar et al., 2021).
Ibrahim Mahmoud et al. (2016) have utilized the approach to
track urbanization in Abuja, Nigeria. Schneider (2012) evaluated
the maximum likelihood classifier (ML), decision tree (DT), and
SVM algorithms for tracking land change in urban and peri-
urban areas using Landsat satellite data. The DT and SVM
classifiers beat the ML classifier in terms of overall accuracy in
this investigation. Waske (2014) compared SVM classification
results to those of other algorithms like DT and ML. According
to the findings, SVMs exhibited the highest overall accuracies of
all approaches when categorizing multispectral data formulations
based on SVM, on the other hand, are not without problems. The
most important issue is kernel selection. Despite this drawback,
SVMs are more widely used than traditional techniques and
produce more accurate classification results (Tehrany et al., 2014;
Lamine et al., 2018; Parida and Mandal, 2020). The theoretical
background of the SVM is described as follows:

The SVM algorithm is a non-parametric machine learning
technique that classifies data based on statistical learning
(Talukdar et al., 2020). It uses the structural risk minimization
(SRM) idea, which separates and maximizes the hyper-plane and
data points closest to the hyper-spectral plane’s angle mapper
(SAM). It also uses a hyper-spectral plane to split the data
points into many groups. The vectors guarantee that the margin
width is maximized during this operation (Lamine et al., 2018).
Multiple continuous and categorical variables, as well as linear
and non-linear samples in many classes, are supported by the
SVM. Support vectors are the training samples that demarcate the
margin or hyper-plane of SVM (Singh et al., 2014).

Method for Land Use Land Cover
Change Dynamics
To explore the LULC dynamics, the post-category or delta change
(move tabulation) method was used in conjunction with the
MOLUSCE plug-in in QGIS software (Mallick et al., 2021). These
post-type alteration detection algorithms are generally based
on pixel-to-pixel analysis, which computes the quantity and
geographical distribution of LULC class changes. The Markov
version was used to assign LULC changes from t to t + 1. It implies
that the range of pixels was expected to convert from any LULC

class to any other at some point throughout the specified range of
tine units. The following matrix p was proposed for the depiction
of chances:

p = pij =

 p11 p12 p1m
p21 p22 p2m
p31 p32 p3m


where p represents the probability of transition from i to j.

Land Use Land Cover Forecasting With
Cellular Automata-Artificial Neural
Network
An artificial neural network (ANN) captures complicated
interactions between inputs and outputs. It is a network of
connecting nodes inspired by the brain’s neuron simplicity.
The neurons or nodes operate in parallel to categorize the
incoming data. Input, hidden layers and output are the three
layers of an ANN. Each layer contains neurons depending on
the network’s use. In the next layer, each neuron is directly
coupled to another. Weighted connections reflect the intensity of
incoming signals (Varoonchotikul, 2003). The network to use for
an ANN application depends on the issue and data availability.
The multilayer perceptron (MLP) is perhaps the most used
network in hydrological modeling (Bindajam et al., 2021). There
are three layers in MLP: input, processing (hidden) layer (two
hidden layers are used in complicated topologies), and output.
The ANN-MLP was used to simulate transitional probability in
this investigation. Land use transitional probability-conditioning
parameters for 2000, and 2020 LULC maps were constructed.
QGIS 3.2 used the Euclidean distance tool on the retrieved data
to compute proximity parameters.

The CA comprises identical components, such as cells,
arranged in a regular and defined area. CA’s fundamental premise
is that each cell or pixel’s LULC change may be investigated by its
present condition and changes in its neighbors. This combines
the transformation rule with the Markov model. Transform
rules clarify the possibility of considering initial and subsequent
situations. The CA–Markov model builds a cell or pixel’s situation
from its beginning state, nearby cell or pixel circumstances,
and transition rules. Given the proximity concept, this shows
the difficulty of transition, favoring LULC groups’ separation
for locations next to present LULC areas. The CA–Markov
model predicts complicated spatiotemporal patterns using a set
of transformation principles. The program employs ANN-based
suitability maps for each kind of LULC to provide accurate
future predictions.

Calculation of Carbon Storage and
Sequestration Using ESM
Terrestrial ecosystems now store four times more carbon than
the atmosphere and are vital in reducing the effects of climate
change. Changing land cover because of logging, fire, or
deforestation may affect carbon storage. Protecting terrestrial
carbon supplies requires land management practices (Eastman,
2015). Aboveground biomass, subsurface biomass, soil organic
matter, and dead organic matter (Penman et al., 2003) all
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contribute to the amount of carbon stored in a terrestrial parcel.
Each of these sources has separate sections that store carbon.
Leaves and seeds are examples of aboveground biomass (living
biomass top of the soil surface). Belowground biomass comes
from subterranean roots’ living biomass. Soil organic matter
comprises microbial biomass, fresh and partly digested wastes,
and humus. Dead or particulate organic matter comprises soil
and leaf litter (Eastman, 2015). The InVest software uses a
simplified carbon cycle to predict carbon storage and degraded
biomass in woody areas (Eastman, 2015). ESM needs raster land
cover maps and a database of carbon pools (∗.csv) that match
column codes (Eastman, 2015; Wang et al., 2018).

The following definitions of stored carbon and precipitated
carbon help distinguish between the two terms. Short-term
stored carbon is the quantity of carbon in each carbon pool,
while long-term stored carbon is the amount (Eastman, 2015).
To map the carbon stored in the study area, the amount of
carbon stored in four major carbon pools for all land cover
classes must be determined. Data from elevation classes, human
disturbances, and landscape dynamics may be helpful here
(Eastman, 2015). The techniques resulted in three maps, as shown
below: carbon sequestered (Mg), total carbon sequestered per
acre, and their valuation.

Sequestered Carbon (Megagram)
Comparing present and projected land cover carbon yields the
amount. It shows the amount of carbon sequestration, with
positive numbers signifying sequestration and negative values
representing carbon emitted into the atmosphere.

The Valuation of Currently Stored Carbon
The existing land cover and the market price of carbon calculate
the present value of carbon stored in the landscape in dollars.

The Value of Sequestered Carbon
For each pixel of the T1 (present) to T2 (future) land cover
scenario, the value of sequestered carbon is shown in USD or
other currencies.

The ESM model can expect net changes in carbon stock using
current and future land cover maps. This method will determine

the total amount of carbon sequestered throughout the study
period and its economic value (Eastman, 2015).

Carbon Density
There are four carbon pools: above, below, soil, and dead. Due
to a shortage of carbon data, the IPCC report provides carbon
density statistics. Determining the carbon capture densities of
carbon pools that can be employed to sustain the carbon
sequestration of forest landscapes in each grid is also disregarded.
In this study, the IPCC data were utilized instead of calculating
each land cover class’s biomass carbon stock.

Extracting Carbon Data From IPCC
Report
Data from prior literature and data collection utilizing half-life
of wood product to determine average decay rate are included
in the IPCC report on climate change. Chapter HWP of the 2006
IPCC Guidelines for National Greenhouse Gas Inventories report
introduces suitable techniques for calculating carbon stored in
wood, such as decay rate and half-life. If the wood is utilized
to make other items, the slowest half-life should be chosen
(Twisa et al., 2020).

RESULTS

Land Use Land Cover Mapping and
Validation
In this study, we utilized the SVM model to classify the LULC
based on the training sample and layer stacked input variables.
We used C-support vector classification to run the model. The
SVM is executed with the parameters of; the penalty parameter
(C) of 1, Nu of 0.5, P of 0.5, radial basis function based kernel,
coefficient 0 of 1, degree of 0.5, gamma of 1. Based on this
optimized parameters, the LULC has been classified for three
times, such as 1990, 2000, and 2020 (Figure 2). The LULC has
been classified into five classes, such as vegetation (including
dense, sparse, and scrubland), cropland, built-up, waterbodies,
and bare soil with exposed rock.

FIGURE 2 | Land use land cover classification using SVM for (A) 1990, (B) 2000, and (C) 2020 of Abha city.
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In the present study, the validation of the LULC maps
is a most crucial part because of their reliability. The LULC
maps were verified using the user, producer, and conditional,
overall accuracy, and kappa coefficient. The heatmap was used
three times to depict the validation process of each LULC class
(Figure 3). Figure 3A depicts the user accuracy of three different
LULC classes. It was discovered that the built-up area had a
higher user accuracy of 94% in 1990, then 91 and 92% in 2000
and 2020, implying a very satisfactory LULC categorization.
Furthermore, in 1990, 2000, and 2020, the water-bodies achieved
92, 93, and 94% user accuracy. In contrast, the lowest user
accuracy with vegetation has been recorded by 84%, 90% in
1990, 2000, and 2020.

We computed the producer accuracy of each LULC class
for three periods (Figure 3B). It revealed that in 1990, bare
soil and exposed rock had the greatest producer accuracy of
95.7%, followed by built-up area (90.4%), water bodies (90.2%),
vegetation (89.4%), and agricultural land (88.2%). In the year
2000, bare soil and exposed rock earned the greatest producer
accuracy of 96.8%, followed by agricultural land (95.6%), water
bodies (94.6%), vegetation (91.3%), and built-up area (91.3%)
(90.3%). Furthermore, in 2020, water bodies and built-up
areas had the greatest producer accuracy (97.9%), followed by
bare soil and exposed rock (93.9%), vegetation (86.5%), and
agricultural land (84.9%).

Figure 3C depicts the conditional accuracy of each LULC class
of three time periods. It revealed that in 1990, water bodies,
built-up areas, bare soil, exposed rock, and agricultural land had
a conditional accuracy of 0.9. In comparison, vegetation had a
conditional accuracy of 0.8. The kappa coefficient of the 1990
LULC map was 0.9, showing that the LULC map was highly
accurate. In 2000 and 2020, all LULC classes had a conditional
accuracy of 0.9, including the kappa coefficient. As a result, all
LULC maps could be accurate because of the robust performance
of the SVM model.

Analysis of Spatiotemporal Land Use
Land Cover Changes
From 1990 to 2018, the region covered by LULC maps was
determined. We prepared a Sankey diagram to show the
dynamics of LULC maps for 1990–2020 (Figure 4). According to
the 1990 LULC map, most areas of the study area are covered by
bare soil and exposed rock (61,897.05 ha), followed by vegetation
(55,983.06 ha), built-up (6237.36 ha), crops (2809.8 ha), and
water-bodies (135.99 ha) (Figure 4A). The bare soil and exposed
rock covered most of the study area (72,837.27 ha) with the
LULC of 2000, followed by vegetation (41,380.56 ha), built-up
area (10,503.63 ha), farmland (2220.12 ha), and water-bodies
(112.68 ha). The 2018 LULC map contained 57,058.47 ha of bare
soil and exposed rock, followed by vegetation (41,529.78 ha),
built-up area (27,124.92 ha), crops (1769.76 ha), and water-bodies
(52.02 ha). Consequently, in the previous 28 years, the built-up
area has risen substantially in southeastern, extreme southern,
and some part of southwestern parts of the study area, this
due to the economic and commercial hub, and also the suitable
homogenous land.

The present study also computed the LULC change using delta
change rate (%) from 1990 to 2020 and presented it in the Sankey
diagram (Figure 4B). During 1990–2000, the results showed that
the vegetation had lost 11.49% area, followed by cropland (0.46%)
and water-bodies (0.02%). The built-up area has gained 3.36%
area, followed by bare soil and exposed rock (8.61%) during the
same period. Similarly, the built-up area has gained a significant
area by 13.03% during 2000–2018 because of the urbanization
process. While the bare soil and exposed rock have lost 12.57%
area during the same period and other land-use types have lost
very insignificant area. From 1990 to 2018, we observed that the
built-up area had gained 16.4%. While, the vegetation has lost
11.54% area, followed by bare soil and exposed rock (3.97%) and
cropland (0.82).

A markovian transitional probability matrix was used to assess
the LULC change trend objectively. It represents the likelihood
that each cell in a land-use category will be converted to
another land-use type. We computed the transitional probability
matrices for the LULC of 1990–2000, 2000–2020, and 1990–
2020. An alluvial map showed the LULC transition throughout
different periods (Figure 5). Figure 5A shows an alluvial plot
of the transitional probability matrix between the LULC maps
of 1990 and 2000. Each land-use class has a probability value
of 100%; how much transition value has gone to other land
uses is computed for five layers, corresponding to five LULC
classes. Exposed rock (located in the value range of 0–100 and
represented by watermelon color), bare soil (represented by deep
brown color), and vegetation (represented by violet color) in
Figure 5 had 87.69, 81, and 4.9% of likelihood to be changed.
Similarly, water bodies (with values ranging from 100 to 200)
may retain 66.71% of their area (represented by orange color),
while flora (violet color) can gain 23.56% of their area, followed
by bare soil and exposed rock (3.84%). Furthermore, built-up area
(value range 200–300, depicted by light blue) may keep 74.67% of
its area. Cropland, on the other hand (placed in the value range
of 300–400 and represented by light green color), can maintain
29.88% of its area, from which flora may gain 46.8%, followed by
bare soil and exposed rock (18.28%). Finally, vegetation (placed
in the 400–500 value range and represented by violet color) may
maintain 62.51% of its area, while bare soil and exposed rock can
acquire 30.61%.

During the period 2000–2020, exposed rock in Figure 5B
(placed in the value range of 0–100) has 67.77% stability, with
16.87% of its area capable of transforming into vegetation,
followed by built-up areas (14.77%). While water bodies (with
values ranging from 100 to 200) may keep 43.77% of their area,
vegetation and built-up areas gain 36.34 and 12.38% of their area,
respectively. In addition, built-up area (value range 200–300) may
retain 83.73% of its area. Cropland, on the other hand (valued
between 300 and 400), may retain 20.69% of its area, from which
vegetation can acquire 55.68%, followed by built-up areas (15%).
Finally, vegetation (valued between 400 and 500) may keep 64.6%
of its area, while built-up areas can take 17.26%.

During the period 1990–2020, exposed rock in Figure 5C has
68% stability, with 15.63% of its area capable of transforming into
built-up, followed by vegetation (15.13%). While water bodies
may keep 35.1% of their area, vegetation and built-up areas gain
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FIGURE 3 | The accuracy assessment of LULC maps of 1990, 2000, and 2018 using (A) user accuracy, (B) producer accuracy, and (C) conditional accuracy with
kappa coefficient.
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51.6 and 10.5% of their area, respectively. In addition, built-up
area may retain 83.6% of its area. Cropland, on the other hand,
may retain 15.3% of its area, from which vegetation can acquire
58.85%, followed by built-up areas (17.2%). Finally, vegetation
may keep 53.2% of its area, while built-up areas can take 20.88%,
followed by bare soil and exposed rock (24.2%).

Carbon Storage Modeling and Valuation
Based on the carbon storage model findings for three periods
(1990, 2000, and 2020), forest land had the greatest carbon stock
with 12.69 Mg H, followed by cultivated land with 3.15 Mg
C, and wetlands area had the lowest with 1.26 Mg C, followed
by built-up area (2.97 Mg C). The carbon stock distribution
between 2000 and 2020 was quite comparable, with 12.69, 3.15,
1.26, and 2.97 Mg C, respectively (Figure 6). However, the
carbon stocks have altered as a result of the LULC adjustment.
The vegetation cover of the study area has 710,425 Mg C in
1990, 525,119.3 Mg C in 2000, and 527,012.9 Mg C in 2020.
On the other hand, built-up area has 18,524.96 Mg C in 1990,
which increased to 31,195.78 Mg C in 2000, and 80,561.01 Mg
C in 2020. During 1990–2000, carbon storage of 12.69 Mg
C lost 11.5% of its area, followed by farmland with 3.15 Mg
C (0.46%) and water bodies with 1.26 Mg C (0.02%). The
built-up area increased by 3.36%, and carbon storage decreased
from 12.69 and 3.15 to 2.97 Mg C. The significant region
does not have carbon storage because of the stony terrain.
Similarly, between 2000 and 2018, the built-up area increased
by 13.03% because of urbanization, resulting in an enormous
loss of carbon storage. During the same period, bare soil and
exposed rock lost 12.6% of their area to built-up areas, which
witnessed little carbon storage. From 1990 to 2018, the built-
up area increased by 16.5%, resulting in a decline in carbon
storage because of the conversion of vegetation by 11.54% area
and farmland (0.82). According to our estimates, carbon stocks
in aboveground biomass were the greatest among the three
fundamental carbon pools under varied land coverings. Despite
significant disparities in soil carbon stocks among terrestrial land
cover types, the quantity of carbon stored in cultivated land
was relatively modest when compared to carbon stored in forest
biomass. Carbon stores on cultivated land were relatively low as
compared to carbon stocks in forest biomass, built-up area, and
wetland biomass.

In this analysis, we set the price of carbon per metric tonne
at US$43. As a result, we valued carbon storage across three
time periods (1990, 2000, and 2020) in the current research. In
1990, forest land had the greatest carbon worth of 545.67 million
USD, followed by cultivated land with 135.45 million USD, the
built-up area with 127.7 million USD, and wetlands area with
2.32 million USD. As a result, the total vegetation of the study
area had 30,548,276.35 million USD in 1990, which decreased
to 22,580,130.18 million USD in 2000, and 22,661,555.05 million
USD in 2020 (Figure 7), while the built-up area had 796,510.872
million USD in 1990, which increased by 1,341,313.551 million
USD in 2000, and 3,463,852.284 million USD in 2020. This
demonstrated that the constructed environment had increased
the carbon value over time. However, according to the scientific
explanation, carbon storage and valuation would be greater if

the built-up region had more green space rather than just built-
up area.

Future Land Use Land Cover Modeling
The goal was to forecast the LULC of 2040 using historical
LULC maps and LULC dynamics. If the prediction model
works well, it may forecast future LULC maps. Predicting
the present LULC map is critical to assessing the model’s
effectiveness. The 2020 LULC map was first simulated and
then reviewed. Seven LULC change conditioning factors for
2020 and 2020 were defined: elevation, slope, urban area
proximity, agricultural land, scrubland, dispersed vegetation,
and water bodies. The same parameters were used for both
LULC projections. Lower altitudes and slopes promote economic
development. In contrast, territories near metropolitan regions
are more likely to be urbanized. Distances from vegetation, water
bodies, and agricultural land were crucial to urban growth. The
LULC change driving factors have been prepared for predicting
and forecasting of LULC for 2020 and 2040 (Figures 1, 2).
The MOLUSCE plugin has an inbuilt way to calculate the
correlation between the LULC change conditioning parameters
for 2000 and 2020. Between 2000 and 2020, all indicators are
moderate to highly connected. After acquiring change maps and
transition probabilities between LULC for 1990–2000 and 2000–
2020 using QGIS, the ANN model was used to estimate the LULC
transitional probability map. The QGIS MOLUSCE plugin has a
framework for collecting training and assessment datasets. The
ANN model generated a land-use transitional probability model
based on the training datasets. Several model parameters must
be specified during ANN model performance testing. We fine-
tuned the ANN model parameters through trial and error. The
optimum LULC settings were 1000 iterations, 0.001 learning rate,
0.02, momentum, and 10px neighborhood.

After obtaining an ANN land use likelihood or suitability
model, CA simulation was used to forecast LULC. We employed
regular cell lattices. Each cell might have a few states, depending
on nearby cells. It operated on one cell of linked pixels. The
CA simulation needed much iteration to alter a pixel or cell.
A threshold value was chosen to monitor the pace of change so
that LULC transitions happened gradually. The pixel or cell was
not converted if the maximum transitional probability was below
the threshold value of any LULC type, which was 0.8 in the trial-
and-error study. The threshold value was set at 0.8 to maintain
the LULC conversions consistent in each cycle. So we optimized
the CA model. The model predicts the next decade in the first
iteration (20 years).

The CA model was used to build the 2020 and 2040 LULC
maps using the ANN land suitability model. The simulated
LULC map of 2020 was compared to the original LULC map
of 2020 to assess or validate the ANN-CA model performance
for prediction. The prediction change, correlation coefficient,
and kappa coefficient for the 2020 LULC map were 75%, 0.832,
and 80%, respectively, indicating good model results. The LULC
map for 2040 was generated using the same optimized model
utilizing the 2020 LULC transition conditioning settings and the
validated 2020 LULC map. We did not change any parameters
of the structure of the model for simulating the LULC of
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2040 without any undesirable consequences. Then, the simulated
2020 and predicted 2040 LULC maps were generated based
on the same methodology in QGIS software. Also, we did not
validate the LULC of 2040 because future data is unavailable.
Therefore, simulated LULC must be judged with the original
LULC. If the simulated LULC and original LULC had higher
similarity, then the same configured model can be applied for
forecasting of future LULC.

From 1990 to 2028, the built-up area would be 34,372 ha,
while, the vegetation would be 44,171.28 ha. The cropland would
be 1757.88 ha and water bodies would reduce to 32.94 ha. The
bare soil and exposed rock would reduce from 6,189,705 to
46,729.53 ha (Figure 8).

Carbon Sequestration Modeling and
Valuation
The carbon sequestered throughout the specified period is
calculated as the difference in carbon stored (in Mg/ha) between
the future and present landscapes. This work calculated carbon
sequestration for 1990–2040, 2000–2040, and 2020–2040. Areas
with high negative or positive values should have tremendous
changes in LULC, i.e., less vegetation and vice versa. This model
excludes carbon emissions from management operations, which
are often dynamic. Positive numbers in the model output imply
that carbon storage would grow, while negative values suggest
that carbon storage would decrease. Between 1990 and 2040,
vegetation cover lost 34,948.15 Mg C, whereas agriculture lost
145 Mg C. During the same period, vegetation would gain
17,363.7 Mg C, whereas built-up areas would gain 3924.1 Mg C
(Figure 9). As a result, it is possible to estimate that the vegetation
area would lose about 17,000 Mg C. On the other hand, between

2000 and 2040, and again between 2020 and 2040, the built-up
region would absorb more carbon than before. As a result, carbon
in built-up areas would gain at the expense of vegetation and
farmland, a warning indicator of future climate change because
forest loss indicates the green house emission rather than stored.
The simulation created a raster with the economic worth (dollar
per pixel) of the sequestered carbon in the current and future
scenarios using economic data (Figure 9). The overall economic
value of Abha’s carbon sequestration service was assessed to be
$1,706,070.28 USD every 20 years. According to the geographical
distribution of the economic value of sequestered carbon, there
may be clusters of places with high values clustered around new
built-up areas with a high potential for carbon sequestration,
where economic value loss may be detected along with the
vegetation. As a result of the loss of vegetation and crops and the
increase in the built-up area, greenhouse gas emissions have risen
throughout time.

DISCUSSION

Stakeholders such as managers, decision-makers, and landowners
might benefit from using cross-technologies to quantify,
spatialize, and monetize carbon storage and sequestration. This
straightforward depiction and utilization of data and knowledge
help to analyze that, in many circumstances, how vital is the
ecosystem service in the city for a sustainable and healthy
environment. The primary goal of this research was to evaluate
carbon storage and sequestration models and identify viable
management solutions for creating a low-carbon city. Because
Abha is Saudi Arabia’s most prominent city, it works as a
catalyst for urbanization (Mallick et al., 2021). Furthermore,

FIGURE 4 | Land use land cover dynamics analysis during the period of 1990–2020 using (A) absolute change, and (B) delta change (%).
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FIGURE 5 | A markovian transitional probability analysis for LULC dynamics for the period of (A) 1990–2000, (B) 2000–2020, and (C) 1990–2020.
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FIGURE 6 | Carbon storage modeling with InVest software for (A) 1990, (B) 2000, and (C) 2020.

FIGURE 7 | Valuation of carbon storage modeling with InVest software for (A) 1990, (B) 2000, and (C) 2020.

the availability of a wide range of socioeconomic prospects,
decent accessibility, and high quality of life are key catalysts
for urbanization (Middleton et al., 2012). As a result, rising
urbanization leads to increased carbon emissions (Piyathilake
et al., 2021). Although the city is surrounded by dense
forest, environmentalists and planners are concerned about the
concentration of carbon excess on a local scale (Sil et al., 2017).
As a result, the current research incorporated various viable
methodologies to predict carbon sequestration and storage and
future insight. Furthermore, LULC maps were created to depict
the land change pattern in Abha and simulate future LULC
change projections.

In Abha, the land use-based InVEST model was used
to calculate carbon sequestration. The goal of employing
a comprehensive InVEST model was to assess carbon
sequestration in the current situation, determine carbon
sequestration capability by various LULC classes, and calculate
the city’s emission-sequestration balance. As predicted, carbon
sequestration potential was higher in places under forest land (Li
et al., 2017). Carbon sequestration is one of the most significant
regulatory ecosystem services (Aðralı et al., 2018; Lyu et al.,
2019); therefore it may assist planners and urban managers

in implementing forest conservation plans and management
measures. Because forest land change rates are negative and
the development rate of the built-up area is fast expanding, the
rates of change of carbon storage capacity were determined to be
negative (Figure 8). In 1990, the research area’s vegetation cover
was 710,425 Mg C, 525,119.3 Mg C in 2000, and 527,012.9 Mg C
in 2020. On the other hand, the built-up area had 18,524.96 Mg
C in 1990, climbed to 31,195.78 Mg C in 2000, and increased by
80,561.01 Mg C in 2020. Vegetation cover dropped 34,948.15 Mg
C between 1990 and 2040; whereas agriculture lost 145 Mg C.
Vegetation would receive 17,363.7 Mg C during the same period,
whereas built-up areas would gain 3924.1 Mg C (Figure 9).
As a consequence, it is conceivable to predict that around
17,000 Mg C would be lost from the vegetation area. On
the other hand, the built-up area would absorb more carbon
between 2000 and 2040, then again between 2020 and 2040.
As a consequence, carbon in urban areas will rise at the cost
of vegetation and farms, signaling future climate change since
forest loss implies greenhouse gas emissions rather than storage
(Zhao et al., 2019).

Carbon loss happens in general when natural land covers,
especially forests, shift to anthropogenic land covers such
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FIGURE 8 | The prediction of LULC using ANN-CA model for (A) simulating 2020, and (B) forecasting 2040 LULC.

FIGURE 9 | Modeling of carbon sequestration using InVest model during (A) 1990–2040, (B) 2000–2040, and (C) 2020–2040; valuation of carbon sequestration
during (D) 1990–2040, (E) 2000–2040, and (F) 2020–2040.

as cultivated land, barren land, transportation infrastructure,
residential areas, or natural land covers such as rangeland (Han
et al., 2018). Because the quantity of carbon stored in lands

covered by dispersed dry farming is minimal, converting them to
residential areas will result in more carbon storage than scattered
dry farming. The amount of carbon storage and sequestration
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offered by Abha city as an ecosystem service has been severely
decreased as a consequence of forest degradation and the growth
of man-made land covers, corroborating similar findings from
other regions of the globe (Hui et al., 2014; Chun et al., 2019;
Lahiji et al., 2020; Lu et al., 2020; Abdo, 2021; Dida et al., 2021).

From an economic standpoint, Abha is a significant city
and urban center; thus, it is unworthy of compromising
the city’s economic growth and infrastructural development.
Because urbanization processes are developing at a quicker
rate, adaptive plans and regulations may prove difficult to
implement in the near future. According to Keith et al. (2020),
building urban resilience capability rather than short-term urban
management would be more helpful. Furthermore, it may build
a balance between the environment’s self-regulation capabilities
and human management initiatives.

CONCLUSION

This work aims to offer a positive addition to the study of carbon
storage, its interaction with changing land use patterns, and
the implications of these changes for future carbon dynamics.
Using the land change modeler and the InVEST model, a
multitemporal study of the Konar catchment area was carried
out. The results show the changing dimensions of land use in
that area and provide a conceptualization of the past, present,
and future scenarios of carbon sequestration and remaining
carbon stocks in that area, along with an economic valuation
of those stocks. Although the circumstance revealed by the
job is forbidding, the effort’s product is fulfilling. According
to current estimates, this region is still predicted to lose
66,050.24 Mg C, with a corresponding economic value of
around $US 9.73 million. This effort is an attempt to bring
this bleak prospect to the forefront of the public’s attention
to implement preventative steps as soon as possible. It aims
to present literature that supports and contributes to the
promotion of mitigation plans for carbon management at the
local level by presenting reliable information to the best of
its ability regarding the amount of carbon stock, the amount
of available remaining carbon pools and their potential, along

with any carbon loss or gain associated with land-use change.
However, in the present work, some limitations were present,
which can be overcome in the future research to improve
the robustness of the analysis. In present research, we used
coarse resolution satellite image, like Landsat data, global carbon
pool data instead of field survey based data, application of
traditional machine learning algorithms, instead of deep learning
models. These issues should be overcome in the future research,
especially the calculation of carbon pool from the specific study
area. Despite of these limitation, the present work provides
a foundation work for making carbon free urban area with
sustainable development. This study can be applied other areas
for computing and forecasting of the carbon storage and
sequestration for urban management.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JM: conceptualization, data curation, funding acquisition,
software, validation, and writing – original draft. JM, MAh, and
MKA: formal analysis. MAl, NB, and MAh: investigation. JM and
MAl: methodology. JM, MAl, and MKA: project administration.
MAh and NB: resources. MAl and MKA: supervision. MAh:
visualization. MAl, NB, MAh, and MKA: writing – review and
editing. All authors contributed to the article and approved the
submitted version.

FUNDING

The authors extend their appreciation to the Deputyship for
Research and Innovation, Ministry of Education in Saudi Arabia
for funding this research work through the project number IFP-
KKU-2020/13.

REFERENCES
Abdo, Z. A. (2021). Modeling urban dynamics and carbon sequestration in Addis

Ababa. Ethiopia, using satellite images. Arab. J. Geosci. 14, 1–8.
Abubakar, I. R., and Aina, Y. A. (2018). “Achieving sustainable cities in

Saudi Arabia: Juggling the competing urbanization challenges,” in E-planning
and Collaboration: Concepts, Methodologies, Tools, and Applications, ed. B.
Umar (Hershey, PA: IGI Global), 234–255. doi: 10.4018/978-1-5225-5646-6.
ch011

Addas, A., Goldblatt, R., and Rubinyi, S. (2020). Utilizing remotely sensed
observations to estimate the urban heat Island effect at a local scale: case study
of a University campus. Land 9:191. doi: 10.3390/land9060191

Addas, A., and Maghrabi, A. (2020). A Proposed Planning Concept for Public Open
Space Provision in Saudi Arabia: a Study of Three Saudi Cities. Int. J. Environ.
Res. Public Health 2020:5970. doi: 10.3390/ijerph17165970

Aðralı , S., Üçtuð, F. G., and Türkmen, B. A. (2018). An optimization model
for carbon capture & storage/utilization vs. carbon trading: a case study of
fossil-fired power plants in Turkey. J. Environ. Manage. 215, 305–315.

Al-Maamary, H. M., Kazem, H. A., and Chaichan, M. T. (2017). The
impact of oil price fluctuations on common renewable energies in GCC
countries. Renew. Sustain. Energy Rev. 75, 989–1007. doi: 10.1016/j.rser.2016.
11.079

Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., Sivadas, A., et al. (2021).
Assessment and prediction of carbon sequestration using Markov chain and
InVEST model in Sariska Tiger Reserve. Ind. J. Cleaner Prod. 278:123333.
doi: 10.1016/j.jclepro.2020.123333

Bindajam, A. A., and Mallick, J. (2020). Impact of the Spatial Configuration of
Streets Networks on Urban Growth: a Case Study of Abha City. Saudi Arab.
Sustain. 5:1856. doi: 10.3390/su12051856

Bindajam, A. A., Mallick, J., Talukdar, S., Islam, A. R. M., and Alqadhi, S. (2021).
Integration of artificial intelligence–based LULC mapping and prediction
for estimating ecosystem services for urban sustainability: past to future
perspective. Arab. J. Geosci. 14, 1–23.

Chu, X., Zhan, J., Li, Z., Zhang, F., and Qi, W. (2019). Assessment on forest carbon
sequestration in the Three-North Shelterbelt Program region. Chin. J. Cleaner
Prod. 215, 382–389. doi: 10.1371/journal.pone.0158173

Frontiers in Ecology and Evolution | www.frontiersin.org 13 June 2022 | Volume 10 | Article 905799

https://doi.org/10.4018/978-1-5225-5646-6.ch011
https://doi.org/10.4018/978-1-5225-5646-6.ch011
https://doi.org/10.3390/land9060191
https://doi.org/10.3390/ijerph17165970
https://doi.org/10.1016/j.rser.2016.11.079
https://doi.org/10.1016/j.rser.2016.11.079
https://doi.org/10.1016/j.jclepro.2020.123333
https://doi.org/10.3390/su12051856
https://doi.org/10.1371/journal.pone.0158173
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-905799 June 2, 2022 Time: 7:8 # 14

Mallick et al. Modeling Carbon Stocks and Sequestration

Chun, J., Kim, C. K., Kang, W., Park, H., Kim, G., Lee, W. K., et al. (2019).
Sustainable Management of Carbon Sequestration Service in Areas with High
Development Pressure: considering Land Use Changes and Carbon Costs.
Sustainability 11:5116. doi: 10.3390/su11185116

Darfaoui, E. M., and Al, A (2010). A. Response to Climate Change in the
Kingdom of Saudi Arabia. a Report Prepared for the Food and Agriculture
Organization; United Nation. Available online at : http://www.fao.org/forestry/
29157-0d03d7abbb7f341972e8c6ebd2b25a181.pdf (accessed on 12 April 2021)

Deng, L., Shangguan, Z. P., and Sweeney, S. (2014). “Grain for Green” driven land
use change and carbon sequestration on the Loess Plateau. Chin. Sci. Rep. 4, 1–8.
doi: 10.1038/srep07039

Dida, J. J. V., Tiburan, C. L. Jr., Tsutsumida, N., and Saizen, I. (2021). Carbon stock
estimation of selected watersheds in Laguna. Philipp. Using InVEST. Philipp. J.
Sci. 150, 501–513.

Eastman, J. R. (2015). “Chapter Nine: Ecosystem Services Modeler,” in TerrSet
Manual; Clarklabs, (Worcester, MA), 249–252.

Fattah, M. A., Morshed, S. R., and Morshed, S. Y. (2021). Impacts of land use-
based carbon emission pattern on surface temperature dynamics: experience
from the urban and suburban areas of Khulna. Bangl. Rem. Sens. Appl. Soc.
Environ. 22:100508. doi: 10.1016/j.rsase.2021.100508

Fekadu Hailu, A., Soremessa, T., and Warkineh Dullo, B. (2021). Carbon
sequestration and storage value of coffee forest in Southwestern Ethiopia. Carb.
Manage. 12, 531–548. doi: 10.1080/17583004.2021.1976676

Field, C. B., Barros, V. R., Mastrandrea, M. D., Mach, K. J., Abdrabo,
M. K., Adger, N., et al. (2014). “Summary for policymakers,” in PClimate
change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global
and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
(Cambridge: Cambridge University Press), 1–32. doi: 10.18772/220080347
92.11

Gaglio, M., Aschonitis, V., Pieretti, L., Santos, L., Gissi, E., Castaldelli, G., et al.
(2019). Modelling past, present and future Ecosystem Services supply in a
protected floodplain under land use and climate changes. Ecol. Model. 403,
23–34. doi: 10.1016/j.ecolmodel.2019.04.019

Gallant, K., Withey, P., Risk, D., van Kooten, G. C., and Spafford, L. (2020).
Measurement and economic valuation of carbon sequestration in Nova Scotian
wetlands. Ecol. Econ. 171:106619. doi: 10.1016/j.ecolecon.2020.106619

Gibbs, H. K., Brown, S., Niles, J. O., and Foley, J. A. (2007). Monitoring and
estimating tropical forest carbon stocks: making REDD a reality. Environ. Res.
Lett. 2:045023. doi: 10.1088/1748-9326/2/4/045023

Han, Y., Kang, W., and Song, Y. (2018). Mapping and quantifying variations in
ecosystem services of urban green spaces: a test case of carbon sequestration at
the district scale for Seoul. Korea (1975–2015). Int. Rev. Spat. Planning Sustain.
Dev. 6, 110–120. doi: 10.14246/irspsd.6.3_110

Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M.,
Aumont, O., et al. (2015). On the Southern Ocean CO2 uptake
and the role of the biological carbon pump in the 21st century.
Glob. Biogeochem. Cycl. 29, 1451–1470. doi: 10.1002/2015gb00
5140

Huang, K., Li, X., Liu, X., and Seto, K. C. (2019). Projecting global urban land
expansion and heat island intensification through 2050. Environ. Res. Lett.
14:114037. doi: 10.1088/1748-9326/ab4b71

Hui, H., Zhang, J. J., Xu, Q., and Luo, G. F. (2014). The impact of land use change
on ecological carbon sequestration of mining city. Legisl. Technol. Prac. Mine
Land Reclam. 1:6.

Ibrahim Mahmoud, M., Duker, A., Conrad, C., Thiel, M., and Shaba Ahmad,
H. (2016). Analysis of settlement expansion and urban growth modelling
using geoinformation for assessing potential impacts of urbanization on
climate in Abuja City. Nigeria. Rem. Sens. 8:220. doi: 10.3390/rs803
0220

IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage.
Prepared by Working Group III of the Intergovernmental Panel on Climate
Change. Cambridge: Cambridge University Press.

Jiang, L., Li, C. Y., Song, B., and Li, S. S. (2015). Impacts of land use/cover changes
on carbon storage in Beijing 1990–2010. Int. J. Environ. Stud. 72, 972–982.
doi: 10.1080/00207233.2015.1054140

Jiang, Z., Sun, X., Liu, F., Shan, R., and Zhang, W. (2019). Spatio-temporal
variation of land use and ecosystem service values and their impact factors in

an urbanized agricultural basin since the reform and opening of China. Environ.
Monitor. Assess. 191, 1–14. doi: 10.1007/s10661-019-7896-z

Keith, M., O’Clery, N., Parnell, S., and Revi, A. (2020). The future of the future city?
The new urban sciences and a PEAK Urban interdisciplinary disposition. Cities
105:102820.

Lahiji, R. N., Dinan, N. M., Liaghati, H., Ghaffarzadeh, H., and Vafaeinejad, A.
(2020). Scenario-based estimation of catchment carbon storage: linking multi-
objective land allocation with InVEST model in a mixed agriculture-forest
landscape. Front. Earth Sci. 14:637–646. doi: 10.1007/s11707-020-0825-1

Lal, R. (2008). Carbon sequestration. Phil. Transac. R Soc. BBiol. Sci. 363, 815–830.
Lal, R. (2014). “Abating climate change and feeding the world through soil carbon

sequestration,” in Soil as World Heritage, ed. D. Dent (Dordrecht: Springer),
443–457. doi: 10.1007/978-94-007-6187-2_47

Lal, R. (2016). Why Carbon Sequestration in Agricultural Soils. In Agricultural
Practices and Policies for Carbon Sequestration in Soil. Florida: CRC Press,
45–54.

Lal, R. (2019). Eco-intensification through soil carbon sequestration: Harnessing
ecosystem services and advancing sustainable development goals. J. Soil Water
Conserv. 74, 55A–61A.

Lamine, S., Petropoulos, G. P., Singh, S. K., Szabó, S., Bachari, N. E. I., Srivastava,
P. K., et al. (2018). Quantifying land use/land cover spatio-temporal landscape
pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS§.
Geocarto Int. 33, 862–878. doi: 10.1080/10106049.2017.1307460

Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., Van Lipzig,
N. P. M., et al. (2016). Assessing the current and future urban heat island of
Brussels. Urban Clim. 15, 1–15. doi: 10.1016/j.uclim.2015.11.008

Li, Z., Zhong, J., Sun, Z., and Yang, W. (2017). Spatial pattern of carbon
sequestration and urban sustainability: analysis of land-use and carbon
emission in Guang’an. Chin. Sustain. 9:1951. doi: 10.3390/su9111951

Liang, Y., Hashimoto, S., and Liu, L. (2021). Integrated assessment of land-
use/land-cover dynamics on carbon storage services in the Loess Plateau of
China from 1995 to 2050. Ecol. Indicat. 120:106939. doi: 10.1016/j.ecolind.2020.
106939

Lu, Y. N., Yao, S., Ding, Z., Deng, Y., and Hou, M. (2020). Did government
expenditure on the grain for green project help the forest carbon sequestration
increase in Yunnan. China?. Land 9:54. doi: 10.3390/land9020054

Lyu, R., Mi, L., Zhang, J., Xu, M., and Li, J. (2019). Modeling the effects of urban
expansion on regional carbon storage by coupling SLEUTH-3r model and
InVEST model. Ecol. Res. 34, 380–393. doi: 10.1111/1440-1703.1278

Mallick, J., Khan, R. A., Ahmed, M., Alqadhi, S. D., Alsubih, M., Falqi, I., et al.
(2019). Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer
Using Fuzzy-AHP and Geoinformation Techniques. Water12:2656. doi: 10.
3390/w11122656

Mallick, J., Singh, V. P., Almesfer, M. K., Talukdar, S., Alsubhi, M., Ahmed, M., et al.
(2021). Spatio-Temporal Analysis and Simulation of Land Cover Changes and
Their Impacts on Land surface Temperature in Urban Agglomeration of Bisha
Watershed. Saudi Arabia: Geocarto International, 1–27.

Melgani, F., and Bruzzone, L. (2004). Classification of hyperspectral remote sensing
images with support vector machines. IEEE Transac. Geosci. Remote Sens. 42,
1778–1790. doi: 10.1109/tgrs.2004.831865

Middleton, R. S., Kuby, M. J., Wei, R., Keating, G. N., and Pawar, R. J.
(2012). A dynamic model for optimally phasing in CO2 capture and storage
infrastructure. Environ. Model. Soft. 37, 193–205. doi: 10.1016/j.envsoft.2012.
04.003

Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T. P.,
et al. (2018). Global projections of future cropland expansion to 2050 and direct
impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908.
doi: 10.1111/gcb.14459

Parida, B. R., and Mandal, S. P. (2020). Polarimetric decomposition methods for
LULC mapping using ALOS L-band PolSAR data in Western parts of Mizoram.
Northeast Ind. SN Appl. Sci. 2, 1–15.

Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C., Štìrbová, L., and Cudlín, P. (2018).
Modelling of the carbon sequestration and its prediction under climate change.
Ecol. Inform. 47, 50–54. doi: 10.1016/j.ecoinf.2017.08.006

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., et al. (2003).
Land-Use Change and Forestry. Rio de Janeiro: United Nations Climate change.

Piyathilake, I. D. U. H., Udayakumara, E. P. N., Ranaweera, L. V., and Gunatilake,
S. K. (2021). Modeling Predictive Assessment of Carbon Storage using InVEST

Frontiers in Ecology and Evolution | www.frontiersin.org 14 June 2022 | Volume 10 | Article 905799

https://doi.org/10.3390/su11185116
http://www.fao.org/forestry/29157-0d03d7abbb7f341972e8c6ebd2b25a181.pdf
http://www.fao.org/forestry/29157-0d03d7abbb7f341972e8c6ebd2b25a181.pdf
https://doi.org/10.1038/srep07039
https://doi.org/10.1016/j.rsase.2021.100508
https://doi.org/10.1080/17583004.2021.1976676
https://doi.org/10.18772/22008034792.11
https://doi.org/10.18772/22008034792.11
https://doi.org/10.1016/j.ecolmodel.2019.04.019
https://doi.org/10.1016/j.ecolecon.2020.106619
https://doi.org/10.1088/1748-9326/2/4/045023
https://doi.org/10.14246/irspsd.6.3_110
https://doi.org/10.1002/2015gb005140
https://doi.org/10.1002/2015gb005140
https://doi.org/10.1088/1748-9326/ab4b71
https://doi.org/10.3390/rs8030220
https://doi.org/10.3390/rs8030220
https://doi.org/10.1080/00207233.2015.1054140
https://doi.org/10.1007/s10661-019-7896-z
https://doi.org/10.1007/s11707-020-0825-1
https://doi.org/10.1007/978-94-007-6187-2_47
https://doi.org/10.1080/10106049.2017.1307460
https://doi.org/10.1016/j.uclim.2015.11.008
https://doi.org/10.3390/su9111951
https://doi.org/10.1016/j.ecolind.2020.106939
https://doi.org/10.1016/j.ecolind.2020.106939
https://doi.org/10.3390/land9020054
https://doi.org/10.1111/1440-1703.1278
https://doi.org/10.3390/w11122656
https://doi.org/10.3390/w11122656
https://doi.org/10.1109/tgrs.2004.831865
https://doi.org/10.1016/j.envsoft.2012.04.003
https://doi.org/10.1016/j.envsoft.2012.04.003
https://doi.org/10.1111/gcb.14459
https://doi.org/10.1016/j.ecoinf.2017.08.006
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-905799 June 2, 2022 Time: 7:8 # 15

Mallick et al. Modeling Carbon Stocks and Sequestration

model in Uva province. Sri Lanka: Modeling Earth Systems and Environment,
1–11.

Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y.,
et al. (2018). Spatiotemporal analysis of land use/land cover and its effects on
surface urban heat island using Landsat data: a case study of Metropolitan City
Tehran (1988–2018). Sustainability 10:4433. doi: 10.3390/su10124433

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas
using dense time stacks of Landsat satellite data and a data mining approach.
Remote Sens. Environ. 124, 689–704.

Sil, Â, Fonseca, F., Gonçalves, J., Honrado, J., Marta-Pedroso, C., Alonso, J., et al.
(2017). Analysing carbon sequestration and storage dynamics in a changing
mountain landscape in Portugal: insights for management and planning. Int. J.
Biodivers. Sci., Ecosyst. Serv. Manage. 13, 82–104. doi: 10.1080/21513732.2017.
1297331

Singh, S. K., Srivastava, P. K., Gupta, M., Thakur, J. K., and Mukherjee, S. (2014).
Appraisal of land use/land cover of mangrove forest ecosystem using support
vector machine. Environ. Earth Sci. 71, 2245–2255. doi: 10.1007/s12665-013-
2628-0

Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S. K., Islam, A. R. M. T., and Mallick,
J. (2021). Modeling fragmentation probability of land-use and land-cover using
the bagging, random forest and random subspace in the Teesta River Basin.
Banglad. Ecol. Indic. 126:107612. doi: 10.1016/j.ecolind.2021.107612

Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., and Rahman, A. (2020).
Land-use land-cover classification by machine learning classifiers for satellite
observations—A review. Rem. Sens. 12:1135. doi: 10.3390/rs12071135

Tayebi, M., Fim Rosas, J. T., Mendes, W. D. S., Poppiel, R. R., Ostovari, Y., Ruiz,
L. F. C., et al. (2021). Drivers of organic carbon stocks in different LULC history
and along soil depth for a 30 years image time series. Rem. Sens. 13: 2223.
doi: 10.3390/rs13112223

Tehrany, M. S., Pradhan, B., and Jebuv, M. N. (2014). A comparative assessment
between object and pixel-based classification approaches for land use/land
cover mapping using SPOT 5 imagery. Geocarto Int. 29, 351–369. doi: 10.1080/
10106049.2013.768300

Twisa, S., Mwabumba, M., Kurian, M., and Buchroithner, M. F. (2020). Impact
of land-use/land-cover change on drinking water ecosystem services in Wami
River Basin. Tanzania. Res. 9:37. doi: 10.3390/resources9040037

Varoonchotikul, P. (2003). Flood Forecasting using Artificial Neural Networks.
Rotterdam: Balkema.

Vincent, P. (2008). Saudi Arabia: An Environmental Overview. Boca Raton: CRC
Press.

Wang, Y., Dai, E., Yin, L., and Ma, L. (2018). Land use/land cover change and the
effects on ecosystem services in the Hengduan Mountain region. Chin. Ecosyst.
Serv. 34, 55–67. doi: 10.1016/j.ecoser.2018.09.008

Waske, B. (2014). “Synergies from SAR-optical data fusion for LULC mapping,” in
Land use and Land Cover Mapping in Europe, (Dordrecht: Springer), 179–191.
doi: 10.1007/978-94-007-7969-3_11

Winkler, M., Abernethy, R., Nicolo, M., Huang, H., Wang, A., Zhang, S., et al.
(2010). “November. The dynamic aspect of formation storage use for CO2

sequestration,” in SPE International Conference on CO2 Capture, Storage, and
Utilization, (Palisades Creek: OnePetro).

Wu, J., Chen, B., Mao, J., and Feng, Z. (2018). Spatiotemporal evolution of
carbon sequestration vulnerability and its relationship with urbanization
in China’s coastal zone. Sci. Total Environ. 645, 692–701. doi:
10.1016/j.scitotenv.2018.07.086

Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G.,
and Comerford, N. B. (2014). Interaction effects of climate and
land use/land cover change on soil organic carbon sequestration.
Sci. Total Environ. 493, 974–982. doi: 10.1016/j.scitotenv.2014.0
6.088

Yavari, A. R., and Bahreini, H. (2001). Functional Programming with Simple
Methods of Zoning. J. Environ. Stud.27, 79–97.

Yirsaw, E., Wu, W., Shi, X., Temesgen, H., and Bekele, B. (2017). Land
use/land cover change modeling and the prediction of subsequent
changes in ecosystem service values in a coastal area of China,
the Su-Xi-Chang Region. Sustainability 9:1204. doi: 10.3390/su907
1204

Zhao, M., He, Z., Du, J., Chen, L., Lin, P., and Fang, S. (2019). Assessing the
effects of ecological engineering on carbon storage by linking the CA-Markov
and InVEST models. Ecol. Indic. 98, 29–38. doi: 10.1016/j.ecolind.2018.10.
052

Zhou, J., Zhao, Y., Huang, P., Zhao, X., Feng, W., Li, Q., et al. (2020). Impacts of
ecological restoration projects on the ecosystem carbon storage of inland river
basin in arid area. Chin. Ecol. Indic. 118:106803. doi: 10.1016/j.ecolind.2020.10
6803

Zhu, G., Qiu, D., Zhang, Z., Sang, L., Liu, Y., Wang, L., et al. (2021).
Land-use changes lead to a decrease in carbon storage in arid
region. Chin. Ecol. Indic. 127:107770. doi: 10.1016/j.ecolind.2021.107
770

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mallick, Almesfer, Alsubih, Ahmed and Ben Kahla. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 15 June 2022 | Volume 10 | Article 905799

https://doi.org/10.3390/su10124433
https://doi.org/10.1080/21513732.2017.1297331
https://doi.org/10.1080/21513732.2017.1297331
https://doi.org/10.1007/s12665-013-2628-0
https://doi.org/10.1007/s12665-013-2628-0
https://doi.org/10.1016/j.ecolind.2021.107612
https://doi.org/10.3390/rs12071135
https://doi.org/10.3390/rs13112223
https://doi.org/10.1080/10106049.2013.768300
https://doi.org/10.1080/10106049.2013.768300
https://doi.org/10.3390/resources9040037
https://doi.org/10.1016/j.ecoser.2018.09.008
https://doi.org/10.1007/978-94-007-7969-3_11
https://doi.org/10.1016/j.scitotenv.2018.07.086
https://doi.org/10.1016/j.scitotenv.2018.07.086
https://doi.org/10.1016/j.scitotenv.2014.06.088
https://doi.org/10.1016/j.scitotenv.2014.06.088
https://doi.org/10.3390/su9071204
https://doi.org/10.3390/su9071204
https://doi.org/10.1016/j.ecolind.2018.10.052
https://doi.org/10.1016/j.ecolind.2018.10.052
https://doi.org/10.1016/j.ecolind.2020.106803
https://doi.org/10.1016/j.ecolind.2020.106803
https://doi.org/10.1016/j.ecolind.2021.107770
https://doi.org/10.1016/j.ecolind.2021.107770
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Estimating Carbon Stocks and Sequestration With Their Valuation Under a Changing Land Use Scenario: A Multi-Temporal Research in Abha City, Saudi Arabia
	Introduction
	Materials And Methods
	Study Area
	Materials
	Method for Land Use Land Cover Mapping' and Validation
	Method for Land Use Land Cover Change Dynamics
	Land Use Land Cover Forecasting With Cellular Automata-Artificial Neural Network
	Calculation of Carbon Storage and Sequestration Using ESM
	Sequestered Carbon (Megagram)
	The Valuation of Currently Stored Carbon
	The Value of Sequestered Carbon

	Carbon Density
	Extracting Carbon Data From IPCC Report

	Results
	Land Use Land Cover Mapping and Validation
	Analysis of Spatiotemporal Land Use Land Cover Changes
	Carbon Storage Modeling and Valuation
	Future Land Use Land Cover Modeling
	Carbon Sequestration Modeling and Valuation

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


