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Urbanization can have profound consequences for mammalian biodiversity and is
thought to contribute to patterns of species richness and community composition. Large
cities can be particularly challenging environments for mammals because these habitats
are often impacted by anthropogenic perturbations, including high human population
density, fragmented habitats, and extensive human development. In this study, we
investigated mammalian species richness, Shannon–Wiener diversity, and evenness in
the most densely populated region in the United States: the New York metropolitan area.
Specifically, we deployed camera traps from 2015 to 2019 to investigate six drivers of
mammalian diversity across 31 greenspaces: (1) human population density, (2) patch
size, (3) habitat type, (4) surrounding land cover, (5) geographical barriers to dispersal,
and (6) habitat heterogeneity. We found that mammal community composition is
largely influenced by a multitude of anthropogenic factors. Specifically, mammal species
richness was higher in greenspaces with larger patch sizes and lower in greenspaces
surrounded by more development. Moreover, Shannon–Wiener diversity and evenness
were higher in urban natural landscapes than human-altered landscapes. In a subset of
data that only included carnivores, we found that carnivore Shannon–Wiener diversity
was higher in urban natural habitats and in sites with lower human population densities.
Finally, we found that geographical barriers to dispersal contributed to both patterns
of mammalian diversity and patterns of carnivore diversity: mammal taxa richness,
Shannon–Wiener diversity, and evenness were all significantly higher on the continent
(Bronx/Westchester) than on Long Island. These results suggest that preserving urban
greenspaces is important for maintaining both mammalian and carnivore biodiversity
and that management of mammals in cities should concentrate on maintaining large,
connected, natural greenspaces.

Keywords: urban ecology, mammals, habitat heterogeneity, patch size, biodiversity, human population density,
New York metropolitan area, land cover

INTRODUCTION

As urbanization continues to spread throughout the world, its consequences, including increased
human population growth, habitat fragmentation, and deforestation, are becoming increasingly
important to examine and understand, especially in terms of biodiversity (McKinney, 2002;
McDonald et al., 2008). Urbanization has had profound impacts on ecosystem function and is
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thought to be a major driver of biodiversity loss (Czech et al.,
2000; Ray, 2000; Sala et al., 2000; Dobson et al., 2006; McCleery,
2010; Seto et al., 2012; Lewis et al., 2015). Mammals are sensitive
to urbanization because their habitats within cities are often
fragmented or replaced by human developments (Fernández
and Simonetti, 2013; Łopucki and Kitowski, 2017). Carnivores
are especially impacted by increased urbanization due to their
large home ranges, human intolerance, limited diets, and low
densities (Ordeñana et al., 2010; Stark et al., 2020). However,
while urbanization is often associated with a lack of wildlife,
recent studies have shown that species diversity, richness,
and abundance are actually high in some urban greenspaces
(Gehrt et al., 2009; Gallo et al., 2017; Matthies et al., 2017;
Parsons et al., 2018). Indeed, some mammals, including coyotes
(Canis latrans), raccoons (Procyon lotor), opossums (Didelphis
virginiana), and foxes (e.g., Vulpes vulpes), are known as “urban
adapters”, and have benefited from being in close proximity to
developed areas reaping the benefits of increased food sources,
decreased competition, and increased protection from large
predators (McKinney, 2002; Adams and Lindsey, 2010; Gehrt
et al., 2013; Lombardi et al., 2017). Understanding what factors
influence patterns of mammalian community composition
are important considerations in maintaining and protecting
biodiversity in urban habitats. In this study, we used camera
traps to investigate the impact of six drivers of mammalian
diversity across greenspaces in the New York metropolitan area:
(1) human population density (Magura et al., 2021), (2) patch
size (Arrhenius, 1921), (3) habitat type (McDonnell and Pickett,
1990), (4) surrounding land cover (Cavia et al., 2009), (5)
geographical barriers to dispersal (MacArthur and Wilson, 1967),
and (6) habitat heterogeneity (Cornelis and Hermy, 2004).

At first glance it would seem human population density
would negatively affect wildlife diversity, and indeed this is
the case for many species and circumstances (Olifiers et al.,
2005; Schipper et al., 2008; Stark et al., 2020). However, the
impact of human population density on biodiversity is species-
specific and scale-dependent (e.g., Prange et al., 2004; McCleery,
2010; Gehrt et al., 2013; Lombardi et al., 2017). On a global
scale, as human population increases, more natural habitats
are destroyed for residential, commercial, and agricultural use;
mammals are forced from their habitats, and many do not
survive (Lopes and Ferrari, 2000; Kasso and Bekele, 2014).
Accordingly, several studies have reported a negative correlation
between human population density and species richness (e.g.,
Gehrt and McGraw, 2007; Parsons et al., 2018; Stark et al., 2020).
Another consequence of increased human population density is
the occurrence of more hunting and culling in habitats once
dominated by animals (Cullen et al., 2000). This is especially the
case for large mammals that humans perceive as threats, such as
coyotes (Nagy et al., 2017). Finally, although not as well-studied,
vehicles have a major impact on mammalian diversity, in some
years even greater than that of hunting (Forman and Alexander,
1998). Due to the abundance of roads located near forested
areas, vehicular killings have contributed to overall mammal
diversity loss in recent decades (Bashore et al., 1985; Forman
and Alexander, 1998; Seiler, 2001; Shilling et al., 2021). While an
inverse relationship between biodiversity and human population

density has been documented in many circumstances, on a local
scale, species richness and abundance of certain taxa, such as free-
ranging cats (Felis catus), raccoons (P. lotor), and certain rodents,
are actually higher in areas of high human population density
(Luck, 2007; Gehrt et al., 2013; Lombardi et al., 2017). This may
be largely attributed to the high availability of anthropogenic
food sources in areas with high human population densities
(Contesse et al., 2004; Prange et al., 2004; McCleery, 2010; Magura
et al., 2021). Furthermore, close proximity to humans in urban
landscapes has been shown to reduce predation pressures for
small and medium size mammal species (Ditchkoff et al., 2006;
McCleery, 2010). This is predominantly due to the displacement
of large predators as a result of high human presence and activity
in centrally populated areas (Muhly et al., 2011). When taking all
these factors into consideration, densely populated cities typically
have a net negative effect on mammalian species richness and
especially pose a threat for larger mammals (Gehrt and McGraw,
2007; Parsons et al., 2018; Stark et al., 2020).

Patch size, defined as the arrangement and size of usable
land area, have a major influence on patterns of mammalian
diversity (Lombardi et al., 2017). In highly developed areas,
increased urbanization often results in habitat fragmentation or
isolation effects, which reduces the amount of available living
space (Fahrig, 2003; Cavia et al., 2009; Nielsen et al., 2014)
and separates larger populations into smaller subpopulations
that, individually, are less viable. Some species of mammals
are less likely to tolerate isolated patches of habitats that result
from increased urbanization because they require more space to
acquire vital resources (Etter et al., 2002; Prange et al., 2004; Moll
et al., 2020). Accordingly, several studies have reported a positive
association between patch size and species diversity (Saunders
et al., 1991; Iida and Nakashizuka, 1995; Fahrig, 2003). Nielsen
et al. (2014) found that a minimum of 10 hectares of patch size is
necessary to ensure high species richness in urban greenspaces.
However, some mammals, such as large carnivores, require
an even greater amount of greenspace sometimes extending
five square kilometers and beyond (Stark et al., 2020). Thus,
mammalian diversity is largely defined by species-area effects
whereby species richness is a function of patch size (MacArthur
and Wilson, 1967; Hodgkison et al., 2007; Matthies et al., 2017).

The type of habitat might also affect patterns of mammalian
diversity (Gallo et al., 2017). In urban areas, some greenspaces
are dominated by human-altered habitats while other greenspaces
are mainly comprised of urban natural habitats. Human-altered
habitats include parks, which are characterized by manicured
vegetation and high human activity (Nielsen et al., 2014); golf
courses, which are comprised of large, semi-artificial greenspaces
where human activity varies temporally (Boone et al., 2008);
and cemeteries (Gallo et al., 2017). Some species can flourish
in human-altered habitats (urban adapters), while other species
cannot (urban avoiders) (McKinney, 2002, 2006). In contrast
to human-altered habitats, urban natural habitats are typically
composed of undeveloped woodlands with secondary growth
forest (Vernon et al., 2014) situated within an urban or human-
altered matrix. Natural areas within urban environments remain
crucial in supporting mammal populations (Baker and Harris,
2007). Several studies have found that the presence of natural
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habitats within urban greenspaces allows for greater movement of
multiple species (Radeloff et al., 2005; Gehrt et al., 2011; Bateman
and Fleming, 2012; Scott et al., 2014).

The amount of developed land cover surrounding a habitat is
another factor thought to be associated with mammalian diversity
(Bierwagen, 2006; Cavia et al., 2009). Urban habitats often
have decreased structural and functional connectivity between
the highly developed cityscape and the less developed natural
habitats within (LaPoint et al., 2015; Beninde et al., 2016). This
reduced connectivity resulting from urbanization often leads to
decreased distribution of smaller species (Zollner, 2000). Highly
developed areas also have a high percent of impervious surface
cover (i.e., roads, buildings, landscaping), and often have lower
biodiversity than less developed areas (McKinney, 2008; Gallo
et al., 2017). High impervious surface cover surrounding natural
habitats like roads, buildings, and parking lots restrict home
ranges and can lead to increased death by vehicle collision
(Trombulak and Frissell, 2000; Seiler, 2001; Gehrt et al., 2013).
These barriers to dispersal reduce gene flow and population
viability relative to a connected metapopulation and can lead
to decreased species richness (Bateman and Fleming, 2012).
Mammals situated in habitats surrounded by highly developed
land cover also experience high rates of habitat and resource
disturbance (Blair and Launer, 1997) and the loss of natural
vegetation to development (McKinney, 2008; McCleery, 2010).
Together, these changes to habitats that encompass greenspaces
place limitations on the species within the greenspace itself.
Therefore, in order to maintain mammalian diversity, it is
important to have patches of natural habitat and vegetation as
well as increased connectivity between greenspaces and highly
developed surrounding areas (Beninde et al., 2016; Gallo et al.,
2017; Fidino et al., 2020).

Another factor that contributes to patterns of mammalian
diversity is habitat heterogeneity. The habitat heterogeneity
hypothesis proposes that the species diversity of an area will
increase as the number of habitats increases (MacArthur and
MacArthur, 1961). Hence, it is predicted that a greater number
of habitats can offer more resources to a wider range of animals
(Garden et al., 2007; Hodgkison et al., 2007; Matthies et al., 2017).
In more heterogeneous habitats, there tend to be more habitat
edges, creating more resources for supporting a greater number
of mammals (Racey and Euler, 1982; Cramer and Willig, 2005).
Accordingly, several studies of mammals have reported a positive
association between habitat heterogeneity and species richness
(Jepsen and Topping, 2004; Arques et al., 2014; Presley et al.,
2019). Thus, urban greenspaces that have a variety of habitats
are thought to be vital to mammalian diversity (Hodgkison et al.,
2007).

Lastly, geographical barriers can also influence patterns of
mammalian diversity. Specifically, islands that are bounded by
water create barriers to dispersal for many species (Weckel
et al., 2015). Hice and Schmidly (2002) found that continental
regions exhibit higher species diversity than island regions mainly
because they do not require the crossing of harsh waterways
or busy bridges for colonization. Some mammals, like coyotes
(Harrison, 1992) and raccoons (Prange et al., 2004), can cross
these barriers and move between the mainland and the island,

which has been observed in major cities like New York (Weckel
et al., 2015; Henger et al., 2020) and San Francisco (Sacks
et al., 2006). Nonetheless, the intersection of urbanization and
geographical barriers to dispersal are thought to lead to reduced
mammal richness and evenness among urban habitats (Ekernas
and Mertes, 2006; Weckel et al., 2015).

Our goal was to determine predictors of mammalian diversity
in various greenspaces across the New York metropolitan area.
To do so, we deployed camera traps across 31 study sites (Figure 1
and Table 1). We hypothesized that mammal community
composition is influenced by a multitude of anthropogenic
factors including human population density (Magura et al.,
2021), patch size (Arrhenius, 1921), habitat type (McDonnell
and Pickett, 1990), surrounding land cover (Cavia et al., 2009),
geographical barriers to dispersal (MacArthur and Wilson,
1967), and habitat heterogeneity (Cornelis and Hermy, 2004).
Specifically, we predicted that mammalian diversity would be
higher in study sites where there were lower human population
densities, larger patch sizes, urban natural habitats, less developed
land cover surrounding the core habitat, and more heterogenous
habitats. Because bodies of water are important geographical
barriers to dispersal, we also predicted that mammal diversity
would be greater in the mainland (Bronx/Westchester) than in
Long Island, Manhattan, and Randall’s Island. Identifying and
understanding what factors influence patterns of mammalian
diversity is critical to maintaining both mammalian populations
and overall biodiversity.

MATERIALS AND METHODS

Field Sites
This research focused on mammalian diversity across various
greenspaces in the New York metropolitan Area. Our study sites
included 31 greenspaces throughout four geographical regions:
(1) Long Island; (2) mainland (Bronx and Westchester); (3)
Manhattan; and (4) Randall’s Island (Supplementary Table 1).
Of the 31 sites, 16 were located in Long Island, nine in the
mainland, five in Manhattan, and one in Randall’s Island. Within
each of these regions, there were various types of greenspaces.
Of the 16 sites on Long Island, one was a baseball field, one
was a golf course, one was a ranch/farm, two were cemeteries,
and the remaining eleven sites were urban parks. Of the nine
mainland sites, all contained natural vegetation with one site
also containing multiple recreational and tourist facilities. In
Manhattan, four of the five sites were parks consisting mainly
of natural vegetation, while the fifth site was a more developed
urban park containing a mixture of natural vegetation and
human-altered habitats. The Randall’s Island site was comprised
of a combination of open areas, natural vegetation, and human
made recreational facilities. Each of the greenspaces contained
one or more cameras to monitor wildlife and predict patterns of
mammalian diversity.

Camera Surveys
Camera traps were deployed across 31 sites in the New York
metropolitan area from December 2015 to June 2019 following
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FIGURE 1 | Map of camera locations across 31 greenspaces in which mammals were surveyed in the New York metropolitan area, 2015–2019. A = Manhattan;
B = Mainland (Bronx/Westchester); C = Randall’s Island; D = Long Island.

the guidelines described in Nagy et al. (2016). Except for
small rodents, which we classified at the family level (family
Muridae), we identified all mammals to the species level using
photographs captured by each camera trap. Throughout the
five-year course of this study, three types of Reconyx cameras
were used: RC55, PC800, and HC500 motion- and heat-activated
camera traps (Reconyx, Inc., Holmen, WI, United States). Each
of these cameras had 0.2 s trigger speed, 1080p resolution,
and comparable infrared flash ranges (RC55 and HC500: 15 m,
PC800: 21 m). There were two models of the RC55 used, with
the older one having a 5.0 × 7.6 cm red/infrared flash primarily
for night pictures, and the newer one with a single LED bulb
for a “semi-covert” infrared flash. Using ArcGIS 9 and ArcGIS10
(ESRI, Redlands, CA, United States), random locations were
selected for camera deployment in the different greenspaces with
at least 500 m distance between each camera. Exact survey dates
varied year-to-year but generally cameras were deployed either
year-round or more commonly twice a year, first in early January
through mid-April and again June through August. These twice-
annual deployments allowed for the detection of seasonally-
active, hibernating mammals (e.g., chipmunk: Tamias striatus;
groundhogs: Marmota monax) and the detection of new coyote
breeding sites in the winter—i.e., when occupancy across the

landscape is highest as dispersers establish new territories and
pairs form (Nagy et al., 2016). At each location, cameras were
deployed in a substantial patch of forest or undeveloped area.
Because we had a limited number of camera traps, in cases in
which a study area consistently surveyed the same mammals,
we shifted camera traps to new locations within a greenspace
to increase coverage. Many of the cameras required relocation
due to theft, legal ramifications, or necessity for a better-suited
placement. Each of these relocations were at least within ∼50 m
of the originally planned locations. The actual number of cameras
per greenspace varied, however, the density of cameras in most
cases was at least one camera per 0.5 km2 in each of the
greenspaces (Table 1). Across the five years of the study, the
cameras were typically placed in the same general areas unless
there were natural disasters or theft that previously influenced the
camera placement.

Predictors of Mammalian Diversity
To gain better insight into what predicts mammalian diversity
across an urban landscape, we modeled three response variables:
(1) richness, defined as the number of different mammal taxa
present in a given greenspace or region (Dorji et al., 2014);
(2) evenness, defined as the abundance equality of mammal
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TABLE 1 | Dates, location, and characteristics of study sites surveyed 2015–2019.

Study site Survey dates Latitude, longitude A Human population
density

people/km2B

Patch size
(km2)

Habitat type Percent
developed
land cover

(500 m)

Percent
developed
land cover
(1,000 m)

Habitat
heterogeneity

(500 m)

Habitat
heterogeneity

(1,000 m)

Region Number of
cameras/km2

Number of
cameras
deployed

Alley Pond 2/1/16–5/7/19 40.75742, –73.74266 28,552.03 2.82 Urban Natural Habitat 71.58 82.86 7 10 Long Island 2.48 7

Bronx Park 1/30/16–6/13/19 40.86273, –73.87398 139,345.89 2.95 Urban Natural Habitat 44.33 85.71 10 13 Mainland 3.39 10

Central Park 2/17/16–7/24/17 40.76635, –73.97463 271,920.26 3.43 Human-Altered Habitat 30.89 30.56 8 12 Manhattan 2.62 9

Clearview Golf
Course

2/1/16–3/29/19 40.77767, –73.78519 34,319.93 0.48 Human-Altered Habitat 53.32 0 4 7 Long Island 6.25 3

Cunningham 2/3/16–5/7/19 40.74176, –73.76742 37,726.40 2.25 Urban Natural Habitat 41.83 33.33 7 8 Long Island 2.67 6

Elmjack
Ingrams Field

5/27/16–5/10/19 40.77693, –73.89096 65,241.80 0.058 Human-Altered Habitat 69.89 51.43 7 7 Long Island 51.72 3

Ferry Point 2/1/16–5/16/19 40.81174, –73.82832 31,890.52 1.32 Human-Altered Habitat 44.46 50 13 13 Mainland 3.03 4

Forest Park 6/13/16–5/10/19 40.70644, –73.84295 68,951.44 1.30 Urban Natural Habitat 16.38 0 6 6 Long Island 3.08 4

Fort
Washington

2/18/16–9/1/16 40.84486, –73.94538 160,249.04 0.51 Urban Natural Habitat 48.8 28.13 6 10 Manhattan 5.88 3

Francis Lewis 2/3/16–2/8/19 40.79685, –73.82587 36,189.90 0.039 Human-Altered Habitat 59.56 43.75 7 7 Long Island 25.64 1

Green-wood
Cemetery

1/26/17–5/13/19 40.65319, –73.99909 75,492.97 1.90 Human-Altered Habitat 62.04 54.29 3 4 Long Island 1.58 3

Highbridge Park 7/9/17–7/28/17 40.84889, –73.92803 184,104.12 0.262 Urban Natural Habitat 66.71 19.44 9 12 Manhattan 7.63 2

Hutchinson 3/7/16–5/8/19 40.833, –73.83879 31,890.52 0.031 Urban Natural Habitat 85.01 83.33 4 5 Mainland 32.26 1

Idlewild Park 2/10/16–3/23/19 40.6564, –73.74908 32,512.12 1.65 Urban Natural Habitat 22.67 0 9 11 Long Island 1.21 2

Inwood Hill Park 12/26/15–5/10/19 40.87247, –73.92971 89,468.55 0.789 Urban Natural Habitat 19.11 0 10 11 Manhattan 10.14 8

Kings Point
Park

6/29/16–9/1/16 40.81459, –73.74606 5,881.86 0.70 Urban Natural Habitat 9.3 0 7 10 Long Island 2.86 2

Maple Grove
Cemetery

3/7/16–5/10/19 40.71028, –73.82334 88,168.38 0.272 Human-Altered Habitat 88.89 80 4 4 Long Island 7.35 2

Pelham Bay
Park

2/2/16–5/11/19 40.86636, –73.81177 31,890.52 2.23 Human-Altered Habitat 7.91 2.86 7 13 Mainland 6.73 15

Prospect Park 7/7/17–5/13/19 40.65661, –73.96745 139,567.73 2.46 Urban Natural Habitat 8.29 5.41 12 14 Long Island 1.63 4

Pugsley Creek 2/18/16–5/7/19 40.81244, –73.85221 69,530.82 2.40 Urban Natural Habitat 72.66 20 9 12 Mainland 1.67 4

Queensline 2/10/16–5/10/19 40.71709, –73.85794 95,769.99 0.198 Urban Natural Habitat 94.85 89.19 4 4 Long Island 15.15 3

Railroad 2/10/16–5/10/19 40.67924, –73.76794 47,282.82 0.152 Urban Natural Habitat 90.16 16.67 4 4 Long Island 13.16 2

Randall’s Island 2/3/16–5/4/19 40.79188, –73.9234 63,011.82 0.092 Human-Altered Habitat 86.74 87.88 9 11 Randall’s Island 21.74 2

Ridgewood
Highland

1/26/18–5/16/18 40.68739, –73.8877 70,792.15 1.71 Human-Altered Habitat 40.96 8.33 11 11 Long Island 0.58 1

Riverdale 1/31/16–5/12/19 40.89881, –73.91566 72,364.27 0.51 Urban Natural Habitat 11.71 8.82 12 14 Mainland 21.57 11

Riverside Park 2/17/16–4/16/19 40.81059, –73.96693 208,386.12 0.35 Human-Altered Habitat 47.36 22.86 8 8 Manhattan 11.43 4

Smiling
Hogshead
Ranch

1/27/17–4/29/18 40.74252, –73.94411 25,236.84 0.008 Human-Altered Habitat 99.66 100 5 5 Long Island 125 1

Soundview 7/3/16–5/7/19 40.81164, –73.86387 69,530.82 0.719 Urban Natural Habitat 57.88 0 9 9 Mainland 4.17 3

Starlight Park 2/18/16–5/12/16 40.83183, –73.88263 131,408.23 0.011 Urban Natural Habitat 97.59 75.76 4 4 Mainland 90.91 1

Van Cortlandt 1/27/16–5/16/19 40.90697, –73.89154 51,011.11 4.65 Urban Natural Habitat 12.39 0 7 7 Mainland 3.44 16

Willow Lake 2/10/16–1/9/17 40.71763, –73.82987 67,286.60 0.665 Urban Natural Habitat 53.54 0 9 9 Long Island 1.5 1

AFor sites containing multiple camera sites, the latitude and longitude was recorded based on the location at which there were the most photo captures.
BThe human population density was calculated by averaging the population density of all of the zip codes surrounding each site.
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taxa in a specific greenspace or region (Dorji et al., 2014);
and (3) Shannon–Wiener diversity, defined as the proportional
abundance of each mammal taxon from the total sample of
individuals within the given surveyed community (Ekernas and
Mertes, 2006). We conducted two analyses, one that included
all mammal taxa identified in our camera trap surveys, and
another that excluded humans and domestic dogs. In cases in
which both analyses yielded the same best supported model, we
report the results including all mammal taxa. In cases in which
the best supported model differed between analyses, we report
two sets of results, one including all mammal taxa and another
excluding humans and domestic dogs. We included free-ranging
cats in both analyses because these can include feral cats as
well as free-roaming cats possibly subsidized by human foods
(Elizondo and Loss, 2016).

For our analysis of interest—predictors of mammalian
diversity in the greenspaces of the New York metropolitan
area—we modeled six predictor variables (Table 2): (1) human
population density; (2) patch area; (3) habitat heterogeneity; (4)
type of habitat; (5) percent developed land cover; and (6) region.
We also included cameras per square kilometer in our models
to control for variation in camera deployment. The number of
cameras deployed at each site ranged from one to sixteen with a
mean of 4.45 cameras per site (SD ± 4.01). Sampling effort ranged
from 50 camera trap days to 2,279 camera trap days (SD ± 478).

1. Human population density. To measure human population
density, we used United States Zip Code data1 to ascertain the
number of individuals per square mile in the zip code in which
the study site was located and then we converted these data
to the number of individuals per square kilometer. In cases
in which study sites were situated in more than one zip code,
we calculated the mean human population density of the zip
codes surrounding the study site.

2. Patch size. We calculated patch size using the “measure
distance” tool on Google Maps.2

1https://www.unitedstateszipcodes.org/
2https://www.google.com/maps

3. Habitat type. We classified study sites into two main categories
based on habitat type. If a greenspace was comprised of
greater than 50% secondary growth forest, we classified
this habitat as urban natural (Gallo et al., 2017). On the
other hand, if a greenspace was comprised of greater than
50% manicured lawns, athletic fields, playgrounds, and golf
courses, we classified this habitat as human-altered (Gallo
et al., 2017).

4. Percent developed land cover. ArcGIS Pro 2.6 and the
National Land Cover Database3 were used to calculate percent
developed land cover at each of the 31 greenspaces. We
constructed buffers of 500 m to assess whether developed
land cover in the immediate habitat impacted mammalian
diversity (e.g., Gallo et al., 2017) and buffers of 1,000 m
to assess whether land use surrounding a greenspace
impacted mammalian diversity (e.g., Gomes et al., 2011).
In cases in which the best supported model yielded the
same results regardless of spatial scale, we report and
discuss the model results based on land cover within
500 m (Gallo et al., 2017). Following Callaghan et al.
(2019), Stark et al. (2020), and Goldstein et al. (2022),
we combined the percent land cover of three different
NLCD classes (“developed, low intensity”; “developed,
medium intensity”; and “developed, high intensity”) into a
superclass called “developed land cover.” Developed land
cover included areas with a mixture of both constructed
materials and vegetation, and where impervious surface
cover accounted for at least 20 percent of the land
cover.

5. Habitat heterogeneity. To calculate habitat heterogeneity,
we counted the number of different habitat types based
on 15 categories provided by the National Land Cover
Database (Supplementary Table 2). We calculated
habitat heterogeneity at two spatial scales: buffers of 500
and 1,000 m surrounding each of the 31 greenspaces.
As with percent developed land cover, in cases in

3https://www.mrlc.gov/data/legends/national-land-cover-database-2019-
nlcd2019-legend

TABLE 2 | Response and predictor variables for mammalian diversity among 31 greenspaces in the New York metropolitan area.

Response variables

Richness the number of different taxa present per study site

Shannon–Wiener diversity the proportional abundance of each taxon from the total sample of individuals within the given surveyed community

Evenness the abundance equality of a given species in a specific study site

Predictor variables

Human population density the number of individuals per square kilometer in the zip code in which the study site was located

Patch size the area in kilometers of each of the study sites

Habitat type the type of greenspace that makes up greater than 50% of the patch size of the study site (coded as either urban
natural habitat or human-altered habitat)

Percent developed land
cover

the percentage of land cover type within a 500 or 1,000 m buffer comprised of a mixture of constructed materials
and vegetation and where impervious surface cover accounts for at least 20% of the land cover

Habitat heterogeneity the number of different greenspace types based on 15 classifications from the National Land Cover Database
(2019) constituting each study site (Supplementary Table 2)

Region geographical location of camera traps defined as: (1) mainland (Bronx/Westchester); (2) Manhattan; (3) Long Island;
(4) Randall’s Island

Cameras per km2 number of cameras sites per study site divided by patch size of study site
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which the best supported model yielded the same
results regardless of spatial scale, we report and discuss
the model results based on land cover within 500 m
(Gallo et al., 2017).

6. Region. We classified region into four categories:
(1) Long Island; (2) Manhattan; (3) mainland
(Bronx and Westchester); and (4) Randall’s
Island.

Statistical Analyses
All statistical analyses were completed using the R Project for
Statistical Computing.4 To calculate measures of biodiversity,
we used the R package vegan.5 First, we created a species
accumulation curve of the 31 sampling sites to ensure adequate
sampling effort (Supplementary Figure 1). Second, we calculated
alpha diversity (mammal taxa richness) of each study site
and gamma diversity (total mammal taxa richness) across
all study sites. Third, we used capture frequencies of each
mammalian taxon as a proxy for relative abundance (Pardo et al.,
2018; Knowlton et al., 2019). To calculate relative abundance,
we used the following calculation: number of independent
photographs ÷ sampling effort × 100. Sampling effort was
calculated as the sum of the number of active camera days.
Independent photographs were calculated by counting the
maximum number of individuals from the same taxon in the
same photograph during hourly intervals. Only detections of
the same taxon taken at durations greater than 60 minutes
were considered as independent (Cusack et al., 2015; Lewis
et al., 2015; Stark et al., 2020). Lastly, we calculated Shannon–
Wiener diversity and evenness using the diversity function in
vegan.

We performed multiple linear regressions to test for predictors
of mammal taxa richness, Shannon–Wiener diversity, and
evenness. Because carnivores might be more sensitive to the
impacts of urbanization (Woodroffe, 2000; Crooks, 2002; Šálek
et al., 2014), we also performed multiple linear regressions to
detect patterns of species richness, Shannon–Wiener diversity,
and evenness with a subset of the data that only included
carnivores. For these analyses, we classified carnivores as
a functional feeding group (Stark et al., 2020). Therefore,
carnivores included all species from the order Carnivora as well
as the Virginia opossum (D. virginiana), a marsupial that behaves
functionally as a carnivore (Stark et al., 2020).

To perform all multiple linear regression models, we used
the stats package in R. All predictor variables and response
variables are described in Table 2. Because measures of richness
incorporated count data, we modeled these response variables
using the glm function with Poisson error distribution. Because
Shannon diversity indices are strictly positive and continuous, we
modeled Shannon diversity using the glm function with Gamma
error distribution. Finally, we modeled evenness using the lm
function and tested for model assumptions using the gvlma
package (Peña and Slate, 2006). We found no violations of any
of the model assumptions of linear models.

4https://www.R-project.org/
5http://vegan.r-forge.r-project.org/

For all analyses, we performed multiple comparison tests of
all possible parameter combinations using the MuMIn package,6

and we used Akaike information criterion (AIC) to select the
best fitting models (Burnham and Anderson, 2004). In cases in
which more than one model yielded an AICc difference of <2,
we performed model averaging using the summed weight method
(Burnham and Anderson, 2004; Grueber et al., 2011). The
model-averaged coefficients were calculated using conditional R2

(Nakagawa and Schielzeth, 2013).
Lastly, to detect for multicollinearity, we calculated

generalized variance inflation factors (GVIFs) for model
predictor variables using the package car (Fox and Weisberg,
2011). We found no evidence of problematic multicollinearity as
all GVIFs were <2.5 (Fox, 2015).

RESULTS

Mammalian Taxa Richness, Diversity,
and Evenness
Across the 31 study sites that were sampled, we observed a
total of 15 mammal taxa including 8 carnivore species (Table 3
and Supplementary Table 3). A species accumulation curve
indicated that there was adequate sampling effort (Soberón
and Llorente, 1993; Supplementary Figure 1). Measures of
diversity (mean ± SD) varied across study sites. Across all
mammals, taxa richness ranged from five taxa at both Starlight
Park and Willow Lake to a maximum of 13 taxa at Riverdale
Park (8.23 ± 2.43; Table 4). Shannon–Wiener diversity ranged
from 0.703 at Ridgewood Highland to 1.788 at Van Cortlandt
Park (1.26 ± 0.289; Table 4). Evenness ranged from 0.392 at
Ridgewood Highland to 0.856 at Railroad Park (0.61 ± 0.12;
Table 4). The three most common mammal taxa were free-
ranging cats (F. catus), gray squirrels (Sciurus carolinensis), and
raccoons (P. lotor); these were found at all 31 study sites.
The most common carnivores were free-ranging cats (100%
of study sites), raccoons (100% of study sites), and opossums
(D. virginiana; 87% of study sites) (Supplementary Table 3). The
three rarest taxa were mink (Mustela vison; 3% of study sites;
n = 1 study site), groundhogs (M. monax; 19% of study sites;
n = 6 study sites), and white-tailed deer (Odocoileus virginianus;
19% of study sites; n = 6 study sites). Carnivore species richness
ranged from three species at Highbridge Park, Ridgewood Park,
and Starlight Park to seven species at Inwood Hill Park, Pelham
Bay Park, and Riverdale Park (4.58 ± 2.12). Carnivore Shannon–
Wiener diversity ranged from 0.14 at Central Park to 1.32 at
Ferry Point Park (0.71 ± 0.26). Carnivore evenness ranged from
0.13 at Central Park to 0.81 at Railroad Park (0.47 ± 0.02). The
parks with the lowest diversity were mainly comprised of free-
ranging cats, gray squirrels, humans, raccoons, small rodents
(family Muridae), and opossums (Supplementary Table 3).

Predictors of Mammalian Taxa Richness
Based on model averages, we found that patch size and region
were significant predictors of mammalian taxa richness at a scale

6https://r-forge.r-project.org/projects/mumin/
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TABLE 3 | Mammal taxa identified across the 31 study sites by region and number of sites.

Taxa Mainland Manhattan Long Island Randall’s Island Number of sites

Chipmunk (Tamias striatus) X X X 7

Cottontail (Sylvilagus floridanus) X X X 15

Coyote (Canis latrans)* X X X 11

Domestic Cat (Felis catus)* X X X X 31

Domestic Dog (Canis familiaris)* X X X X 23

Gray Squirrel (Sciurus carolinensis) X X X X 31

Groundhog (Marmota monax) X X X 6

Human (Homo sapiens) X X X X 27

Mink (Mustela vison)* X 1

Raccoon (Procyon lotor)* X X X X 31

Red Fox (Vulpes vulpes)* X X X 7

Small Rodent (family Muridae) X X X X 21

Striped Skunk (Mephitis mephitis)* X X X 11

Virginia Opossum (Didelphis virginiana)* X X X X 27

White-Tailed Deer (Odocoileus virginianus) X X 6

*Denotes species included in carnivore analysis.

of 500 m. Specifically, study sites with larger patch sizes harbored
significantly more mammal taxa than study sites with smaller
patch sizes (β = 0.109; 95% CI: 1.594–2.578; p = 0.046; Figure 2A
and Table 5). Moreover, mammal taxa richness was lower in
Long Island than on the mainland (Bronx and Westchester)
(β = –0.408; 95% CI: –6.938 to –1.213; p = 0.005; Figure 2B and
Table 5). However, at a scale of 1000 m, the effect of patch size
and region on mammalian species richness was masked by the
percent developed land cover surrounding urban greenspaces.
Specifically, greenspaces surrounded by more developed land
cover harbored significantly lower mammalian taxa richness than
greenspaces surrounded by less developed land cover (β = –0.006;
95% CI: –0.012 to –0.0003; p = 0.038; Figure 2C and Table 5).

Predictors of Mammalian
Shannon–Wiener Diversity
Across all mammal taxa, there were two model parameters that
best predicted Shannon–Wiener Diversity at the scale of 500 m:
habitat type and region. Specifically, Shannon–Wiener diversity
was significantly higher in greenspaces where the dominant
habitat type was an urban natural habitat rather than a human
altered habitat (β = –0.154; 95% CI: –2.860 to –2.138; p = 0.023;
Figure 3A and Table 5) and on the mainland (Bronx and
Westchester) than Long Island (β = 0.192; 95% CI: 6.546 to
3.193; p = 0.003; Figure 3B and Table 5). When we excluded
humans and domestic dogs from our analysis, at a scale of 500 m,
one additional model parameter best predicted Shannon–Wiener
diversity: human population density. Specifically, Shannon–
Wiener diversity was significantly higher in greenspaces with
lower human population densities than in greenspaces with
higher human population densities (β = 0.000002; 95% CI:
0.0000002–0.000005; p = 0.035). At a scale of 1000 m, greenspaces
surrounded by less developed land cover exhibited higher
Shannon–Wiener diversity indices than greenspaces surrounded
by more developed land cover (β = 0.003; 95% CI: 0.0003–0.005;
p = 0.030; Figure 3C and Table 5).

Predictors of Mammalian Taxa Evenness
Across all mammal taxa, the model parameter that best predicted
evenness across the 31 study sites was habitat type. Specifically,
evenness was significantly higher in study sites where the
dominant habitat type was an urban natural habitat than study
sites where the dominant habitat type was a human-altered
habitat (β = 0.091; 95% CI: 0.008–0.175; p = 0.032; Figure 4 and
Table 5). However, habitat type was not a significant predictor
of evenness when we excluded domestic dogs and humans
from the analysis.

Predictors of Carnivore Diversity
In analyses that specifically focused on carnivores, there were
no significant predictors of carnivore species richness. Carnivore
Shannon–Wiener diversity was higher in greenspaces with lower
human population densities than in greenspaces with higher
human population densities (β = 0.00001; 95% CI: 3.3 e-
06–1.6 e-05; p = 0.007; Figure 5A and Table 6). Carnivore
Shannon–Wiener diversity was also significantly higher on the
mainland (Bronx and Westchester) than Long Island (β = 0.777;
95% CI: 3.438–1.225; p = 0.002; Figure 5B and Table 6).
Further, Shannon–Wiener diversity of carnivores was higher in
greenspaces where the dominant habitat type was urban natural
rather than human altered (β = –0.528; 95% CI: –1.065 to –
5.737; p = 0.049; Figure 5C and Table 6). Finally, the best
model parameter for predicting carnivore evenness was region.
Specifically, evenness was significantly lower in Long Island
than on the mainland (β = –0.203; 95% CI: –3.411 to –6.5678;
p = 0.004; Figure 6 and Table 7).

DISCUSSION

In this investigation of predictors of mammalian diversity in
the New York metropolitan area, we found ample support
for the hypothesis that mammalian diversity is associated with
anthropogenic factors and geographical barriers. Consistent
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TABLE 4 | Average mammal taxa richness, Shannon Wiener diversity, and
evenness for each of the 31 study sites.

Study site Richness Shannon–Wiener Evenness

Alley Pond Park 11 1.484 0.619

Bronx Park 11 1.425 0.594

Central Park 8 1.292 0.621

Clearview Golf Course 7 0.888 0.456

Cunningham Park 8 1.098 0.528

Elmjack Ingrams Field 7 0.768 0.395

Ferry Point Park 12 1.605 0.646

Forest Park 7 1.217 0.625

Fort Washington Park 10 1.599 0.695

Francis Lewis Park 5 1.331 0.827

Green-wood Cemetery 8 0.835 0.401

Highbridge Park 6 0.944 0.527

Hutchinson 8 1.339 0.644

Idlewild Park 7 1.241 0.638

Inwood Hill Park 10 1.632 0.709

Kings Point Park 8 1.212 0.583

Maple Grove Cemetery 6 1.151 0.642

Pelham Bay Park 13 1.437 0.560

Prospect Park 7 1.035 0.532

Pugsley Creek Park 11 1.194 0.498

Queensline 9 1.353 0.616

Railroad Park 6 1.534 0.856

Randall’s Island 7 1.272 0.654

Ridgewood Highland 6 0.703 0.392

Riverdale Park 13 1.617 0.631

Riverside Park 6 0.940 0.525

Smiling Hogshead Ranch 6 1.016 0.567

Soundview Park 10 1.787 0.766

Starlight Park 5 1.181 0.734

Van Cortlandt Park 12 1.788 0.720

Willow Lake 5 1.188 0.738

Mean (SD) 8.23 (2.43) 1.26 (0.289) 0.61 (0.12)

with our predictions, we found that mammal taxa richness
was higher in greenspaces with larger patch sizes and less
developed land cover suggesting that species richness is
a function of habitat area (Arrhenius, 1921). Moreover,
mammal taxa richness and Shannon–Wiener diversity were
greater on the continent (Bronx/Westchester) than Long Island
suggesting that there are barriers to dispersal that limit
the movement of species between regions (Weckel et al.,
2015). Further, both Shannon–Wiener diversity and evenness
were higher in urban natural habitats than human-altered
habitats. Measures of carnivore diversity were also associated
with anthropogenic factors and geographical barriers. Among
carnivores, Shannon–Wiener diversity was significantly lower
in greenspaces with higher human population densities and in
human-altered habitats. Further, both Shannon–Wiener diversity
and evenness were significantly higher among carnivores
on the mainland (Bronx/Westchester) than in Long Island.
Collectively, these results provide insights into the drivers of
mammalian community composition and are helpful for drawing

inferences on what factors contribute to mammalian diversity in
urban environments.

Throughout the greenspaces of the New York metropolitan
area, some mammalian taxa were more common than others.
Three species were identified in all 31 study sites: free-ranging
cats, gray squirrels, and raccoons. In addition to these three
species, the greenspaces that exhibited low taxa diversity also
tended to harbor small rodents (family Muridae) and opossums.
The five taxa found at these low diversity sites—free-ranging
cats, gray squirrels, raccoons, small rodents (family Muridae),
and opossums—are known as urban adapters (McKinney, 2002;
Adams and Lindsey, 2010; Gehrt et al., 2013; Lombardi et al.,
2017). This is largely because these mammals have the capacity
to exploit both urban greenspaces while also supplementing
their diets with anthropogenic food sources (Cove et al., 2018;
Guiry and Buckley, 2018; Nicholson and Cove, 2022). One of
these urban adapters, free-ranging cats, is associated with several
negative impacts, including the local extinction of native wildlife
and the spread of certain pathogens (Gehrt et al., 2013).

In contrast to these animals, three mammalian species were
rare among the greenspaces of the New York metropolitan area:
minks, groundhogs, and white-tailed deer. Minks were identified
in only one of the 31 greenspaces. This is probably because
minks require wetland habitats and tend to reside in freshwater
streams and rivers (Allen, 1984). Most of our study sites were
not situated in wetland habitats, which might explain why the
only mink identified was located in a greenspace adjacent to the
Hudson River. Previous studies indicate that minks are typically
found in sparsely populated rural areas and only occasionally
in urban settings (Silva-Rodríguez et al., 2020). White-tailed
deer were identified in six of the 31 greenspaces surveyed
in this study. Five of these greenspaces were located on the
mainland; one was located on Long Island. These findings suggest
that the roads and waterways that separate the mainland from
the islands make it particularly challenging for large-bodied
mammals such as deer to disperse to highly urbanized islands
with high human population densities (Michael, 1965; Long et al.,
2010). Like deer, groundhogs were also identified in six of the 31
greenspaces surveyed in this study. Surveys indicate that both
white-tailed deer and groundhogs are more likely to reside in
rural and suburban habitats; however, both of these species have
increasingly become more abundant in urban greenspaces in
recent years (Gaughan and Destefano, 2005; Lehrer and Schooley,
2010). These findings suggest that minks, groundhogs, and white-
tailed deer are urban avoiders (McKinney, 2002), but still have
the capacity to exploit some urban habitats. Our findings suggest
that urban greenspaces can be refuges for many mammalian taxa,
especially urban adapters; however, in some cases, even urban
avoiders can make use of certain urban greenspaces.

We found support for the idea that mammalian diversity
is characterized by species-area effects. In support of this idea,
patch size was positively correlated with species richness. This
result is consistent with other studies that have also reported
higher mammal taxa richness in greenspaces with relatively larger
patch sizes (Yates et al., 1997; Hodgkison et al., 2007; Nielsen
et al., 2014). These results also lend support to the species-
area hypothesis, the idea that species richness is a function of
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FIGURE 2 | Patterns among mammalian taxa richness and (A) patch size (km2); (B) region; and (C) percent developed land cover (1,000 m scale) surrounding the
31 study sites.

TABLE 5 | Best supported models for each response variable for mammalian diversity based on averaging of parameter estimates.

Response Variables Fixed effects Estimate Std. error Adjusted SE z-value P-value

Mammal taxa richness (500 m scale) Patch size 0.109 0.052 0.054 1.995 0.046*

Heterogeneity (fine scale) 0.025 0.025 0.026 0.979 0.327

Percent developed –0.003 0.003 0.003 1.232 0.218

Human population density 1E-06 1E-06 1E-06 0.886 0.376

Cameras per km2 –0.004 0.003 0.003 1.534 0.125

Region—Long Island –0.408 0.139 0.146 2.79 0.005**

Region—Manhattan –0.299 0.19 0.199 1.498 0.134

Region—Randall’s Island –0.4 0.392 0.411 0.974 0.33

Habitat Type (natural) 0.091 0.132 0.138 0.659 0.51

Mammal taxa richness (1000 m scale) Percent developed –0.006 0.003 0.003 2.074 0.038*

Patch size 0.07 0.054 0.057 1.243 0.214

Habitat type (natural) 0.119 0.131 0.137 0.871 0.384

Heterogeneity (fine scale) 0.036 0.028 0.029 1.248 0.212

Shannon–Wiener diversity (500 m scale) Human population density 1E-06 1E-06 1E-06 1.746 0.081

Habitat type (natural) –0.154 0.065 0.068 2.277 0.023*

Region—Long Island 0.192 0.062 0.065 2.971 0.003**

Region—Manhattan 0.014 0.11 0.114 0.121 0.904

Region—Randall’s Island –0.001 0.163 0.172 0.007 0.995

Shannon–Wiener diversity (1,000 m scale) Habitat type (natural) –0.164 0.061 0.064 2.555 0.011*

Percent developed 0.003 0.001 0.001 2.172 0.030*

Region—Long Island 0.152 0.062 0.065 2.349 0.019*

Region – Manhattan 0.09 0.078 0.082 1.104 0.27

Region – Randall’s Island –0.038 0.162 0.17 0.224 0.823

Mammalian taxa evenness (500 m scale) Habitat type (natural) 0.091 0.041 0.043 2.142 0.032*

Patch size –0.021 0.017 0.017 1.205 0.228

Percent developed 0.001 0.001 0.001 0.881 0.378

Model-average coefficients (conditional average), standard error, adjusted SE, z-value, and P value of the averaged models are shown. *Denotes significance of <0.05.
**Denotes significance of <0.01.
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FIGURE 3 | Patterns among mammalian taxa diversity (Shannon–Wiener index) and (A) type of habitat; (B) region; and (C) percent developed land cover (1,000 m
scale) across the 31 study sites. Points and whiskers on the plot represent the mean and standard error.

FIGURE 4 | Patterns among mammalian taxa evenness and type of habitat across 31 study sites. Points and whiskers on the plot represent the mean and standard
error.

the amount of available habitat (Arrhenius, 1921; Turner et al.,
2005). In the case of the current study, we find evidence of the
species-area effect in an urban context.

Habitat type was a significant predictor of two measures of
biodiversity: Shannon–Wiener diversity and evenness. First, we
found that Shannon–Wiener diversity was higher in study sites
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FIGURE 5 | Patterns among Carnivore taxa diversity (Shannon–Wiener index) and (A) human population density; (B) region; and (C) habitat type across the 31
study sites. Points and whiskers on the plot represent the mean and standard error.

TABLE 6 | Best supported model for Carnivore Shannon–Wiener diversity (500 m scale) based on averaging of parameter estimates.

Predictor variable Fixed effects Estimate Std. error t-value P-value

Carnivore Shannon–Wiener diversity (500 m scale) Human population density 0.00001 3E-06 2.942 0.007**

Region—Long Island 0.777 0.223 3.484 0.002**

Region—Manhattan 0.157 0.474 0.331 0.743

Region—Randall’s Island –0.124 0.591 –0.21 0.836

Habitat type (natural) –0.528 0.256 –2.065 0.049*

Model-average coefficients (conditional average), standard error, t-value, and P value of the averaged models are shown. *Denotes significance of <0.05. **Denotes
significance of <0.01.

where the dominant habitat was an urban natural habitat rather
than a human-altered habitat. Although some mammals may
thrive in human-altered habitats, like golf courses and cemeteries
(Gallo et al., 2017; Wurth et al., 2020), most mammals tend
to have higher persistence in urban natural areas, or habitats
that consist of large patches of secondary growth forest and
shrubs (Atwood et al., 2004; Baker and Harris, 2007). It has
also been found that manicured lawns and artificial nocturnal
illumination, as seen in parks, golf courses, and cemeteries, may
limit dispersal (Mahan and O’Connell, 2005; Fitzgibbon et al.,
2007). Second, we also found a positive correlation between
habitat type and evenness. Specifically, we found that evenness
was higher in study sites where more than fifty percent of
the patch area was secondary growth forest. These findings are
consistent with previous research that suggest that diversity in
urban natural habitats is higher than in human-altered habitats
(Parsons et al., 2018). Taken together, these two findings—higher
Shannon–Wiener diversity and higher taxa evenness among

mammals in urban natural habitats—suggest that it is important
for park managers to maintain at least 50% natural area within
urban parks to support mammalian diversity.

Consistent with our predictions, we found that greenspaces
surrounded by more developed land cover exhibited lower
mammal taxa richness than greenspaces surrounded by less
developed land cover. This result was only significant at a scale
of 1000 meters, but at this scale, it masked the effects of any of
the other predictor variables. This finding appears to contradict
the urban refugia hypothesis (Stark et al., 2020), which suggests
that urban greenspaces in highly developed areas are oases for
biodiversity. More specifically, our results differ from the findings
of a recent study in the New York metropolitan area that found
support for the urban refugia hypothesis: Stark et al. (2020) found
that the relative abundance of mammalian carnivores was higher
in greenspaces with higher surrounding human development. In
our analysis of mammalian carnivores, we found no significant
relationship between human development and carnivore species
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FIGURE 6 | Patterns among Carnivore evenness and region across the 31 study sites. Points and whiskers on the plot represent the mean and standard error.

TABLE 7 | Best supported model for Carnivore evenness (500 m scale).

Predictor variable Fixed effects Estimate Std. error Adjusted SE z-value P-value

Carnivore evenness (500 m scale) Patch size –0.040 0.024 0.026 1.581 0.114

Percent developed 0.001 0.001 0.001 1.193 0.233

Human population density –0.000001 1E-06 1E-06 1.813 0.070 ·

Region—Long Island –0.203 0.067 0.07 2.895 0.004**

Region—Manhattan –0.177 0.132 0.136 1.3 0.194

Region—Randall’s Island 0.003 0.172 0.18 0.016 0.988

Habitat type (natural) 0.122 0.06 0.063 1.956 0.050 ·

Standard error, adjusted SE, z-value, and P value of the best model is shown. · Denotes P < 0.1. **Denotes significance of <0.01.

richness. However, the Stark et al. (2020) study was conducted
in nature preserves outside of New York City and in less
populous areas than the current study. Specifically, the mean
(± SD) human population density for the Stark et al. (2020)
study was 7,305 (± 11,222) humans per square kilometer while
the mean human population density in the current study was
81,451 (± 60,515) humans per square kilometer. Perhaps in
highly urbanized, densely populated areas, a minimum amount
of greenspace is required for urban greenspaces to function
as refugia for mammals, especially carnivores. Another factor
that might explain our result is that in highly developed areas,
buildings, roads, and other anthropogenic structures reduce
connectivity between habitats (LaPoint et al., 2015; Beninde
et al., 2016). Obstruction in connectivity can also lead to
resource depletion, habitat disturbance, and ultimately reduced
species richness (Blair and Launer, 1997; Fidino et al., 2020).
Additionally, our result might also be attributed to higher
mortality rates caused by humans, including vehicle collisions
(Trombulak and Frissell, 2000; Seiler, 2001; Collins and Kays,
2011) and poisoning (Brooks et al., 2020). Overall, our results
suggest that highly developed areas pose a particularly daunting
challenge for maintaining high levels of mammalian diversity.

Urban greenspaces located on the mainland (Bronx and
Westchester) harbored greater mammal taxa richness and
Shannon–Wiener diversity than urban greenspaces located on

urban islands (Long Island, Manhattan, Randall’s Island). These
findings suggest that geographical barriers to dispersal might
impact patterns of mammalian diversity. In support of this idea,
previous studies have documented multiple barriers to dispersal
between the mainland (Bronx and Westchester) and the other
three regions (Long Island, Manhattan, and Randall’s Island)
(Weckel et al., 2015; Nagy et al., 2016). Additionally, roads
and waterways, as well as other barriers, play a large role in
limiting dispersal (Oxley et al., 1974; Merriam et al., 1989; Baker
and Harris, 2007). For example, coyotes have not established
strong breeding populations yet in Long Island mainly because
of bridges and rivers that separate the island from the Bronx
and Westchester (Nagy et al., 2017). Our results lend support to
the hypothesis that islands, even those in close proximity to the
continent, can serve as barriers to dispersal.

The New York metropolitan area harbors several carnivore
species that vary in their abundance and distribution. We
found that the greenspaces surveyed in this study supported
one or more of the following carnivores: coyotes (C. latrans),
free-ranging cats (F. catus), domestic dogs (Canis familiaris),
minks (M. vison), opossums (D. virginiana), raccoons (P. lotor),
red foxes (V. vulpes), and striped skunks (Mephitis mephitis).
Because of their low densities, need for large habitat area, and
conflict with humans, many large carnivores once native to
this region, including black bears (Ursus americanus), bobcats
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(Lynx rufus), fishers (Pekania pennanti), and long-tailed weasels
(Neogale franata) were not observed in any of the greenspaces
surveyed in this study, although these mammals persist in nature
preserves outside of New York City (Spinola et al., 2008; Stark
et al., 2020; Nagy, unpublished data). In the present study,
we found that Shannon–Wiener diversity among carnivores
was higher in urban natural habitats and in greenspaces with
lower human population densities. In support of these findings,
previous studies have found that many carnivores tend to avoid
human interaction, preferring less developed urban habitats
with lower human population densities (Grinder and Krausman,
2001; George and Crooks, 2006; Gehrt et al., 2009). We
also found that carnivore evenness was significantly higher
in the mainland than in sites located in Long Island and
Manhattan. This finding suggests that there might be differences
in the habitat characteristics between the mainland sites (Bronx
and Westchester) and the island sites (Manhattan and Long
Island) including differences in floral diversity (Ekernas and
Mertes, 2006), resource availability (Matthies et al., 2017), the
historical range of various species (e.g., Rooney, 2001; Hody
and Kays, 2018), and management strategies (McPhearson et al.,
2016). Furthermore, the asymmetric distribution of carnivore
communities on the islands might also be explained by barriers to
dispersal between the mainland and island sites. Although large
mammals, like carnivores, are more adept at crossing bridges
and waterways than smaller mammals, these barriers still hinder
and reduce the likelihood of movement between regions (Weckel
et al., 2015; Henger et al., 2020). Collectively, these findings
suggest that carnivores are particularly sensitive to urbanization
and barriers to dispersal such as bridges and large bodies of water.

Because we did not trap or tag species and relied solely
on camera data, one limitation of this study was that we
were unable to identify individuals. Therefore, the abundance
indices that we calculated are rough estimates and may not be
representative of actual mammal abundances. In future studies,
the use of mark-recapture or identification techniques to assess
individual sightings would ensure a more accurate representation
of abundance (Ekernas and Mertes, 2006; Lewis et al., 2015;
Lombardi et al., 2017). The current study surveyed sixteen sites
on Long Island, thirteen of which were located in Queens, two in
Brooklyn, and one in Nassau County. Since the majority of the
Long Island study sites were located in Queens, the results may
not be representative of mammal diversity for all of the island.
For future studies, it would be beneficial to have a more even
distribution of study sites across the island to allow for more
accurate comparison of regions.

CONCLUSION AND FUTURE
DIRECTIONS

Our findings suggest that anthropogenic variables, such as
percent developed land cover, patch size, and habitat type,
influence patterns of mammalian diversity, and that it is
crucial to understand and study the consequences of increasing
urbanization on mammalian communities. There were some
mammals in the current study that appeared to flourish across
all urban greenspaces (i.e., urban exploiters) and were less

sensitive to urbanization, apparently because they can take
better advantage of anthropogenic food resources. On a more
nuanced level, our findings suggest that there are some habitat
features that are more suitable for mammals that are sensitive
to urbanization (i.e., urban avoiders), including large patch sizes
and high proportions of secondary growth forest. Hence, while
urbanization is generally detrimental to biodiversity, we found
that there were greenspaces in the New York metropolitan
area where mammalian diversity was high. This suggests that
there is a potential to make cities more suitable habitats for
many mammalian species and that a barren ecology is not
inevitable. The current study provides correlative evidence that
some features of urbanization are associated with patterns of
mammalian biodiversity. Our findings might be helpful in terms
of management and conservation efforts within similarly large
urban centers. Based on our results, we recommend that planners
and managers of cities focus their efforts on maintaining large,
connected, natural greenspaces, especially when surrounded by
highly developed areas with high human population densities.
Urban ecological research would benefit from longitudinal
studies conducted across multiple large cities that can document
changes in diversity, abundance, and evenness of mammals.
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