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As a significant threat to agriculture, pests have caused a great disservice to crop
production and food security. Understanding the mechanisms of pests’ outbreaks and
invasion is critical in giving sound suggestions on their control and prevention strategies.
The African rhinoceros beetle, Oryctes monoceros (Olivier), as the most damaging pest
of palms, banana, sugarcane, and pineapple, severely threatens their production due to
its ability to kill both young and matured hosts. Analyzing the effect of climate change
on major parameters of O. monoceros life history has been an important issue recently,
given its sensitivity to thermal conditions. However, information on how climate change
alters geographical distribution of O. monoceros is poorly understood. By combining
environmental variables and occurrence records, we were able to assess environmental
risk factors for O. monoceros and create risk maps for the pest using the Boosted
Regression Tree model. Our results significance of environmental variables showed that
the annual temperature variation (39.45%), seasonality of temperature (23.00%), the
isothermality (18.76%), precipitation of the hottest quarter months (6.07%), average
variation of day time temperature (3.27%), were relatively important environmental
factors that affected the distribution O. monoceros. We also found that the projected
potential distributions of the pest’s habitats in all future global warming scenarios
exceeded its present known distribution. The model predicts that habitat suitability for
O. monoceros is predominantly concentrated along Africa’s west and east coastlines,
Asia’s south coasts, South America’s north and east coasts, and a few locations spread
over North America’s southern coasts and coastal regions. These outputs provide a
solid theoretical foundation for O. monoceros risk evaluations and control.
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INTRODUCTION

The African rhinoceros beetle, Oryctes monoceros (Olivier;
Coleoptera: Scarabaeidae), as a serious pest of palms such as
Phoenix dactylifera L. (Kabiru et al., 2014), Elaeis guineensis,
Jacq. (Bedford, 2014), and Cocos nucifera L., is responsible for
about 40% of coconut losses in tropical Africa (Allou et al.,
2006). Apart from palms, O. monoceros attacks non-palm hosts,
such as Saccharum officinarum L., Ananas comosus L., and Musa
paradisiaca L. O. monoceros inflicts damage to palms in both
direct and indirect ways. The beetle directly stunts the growth
of the palms by boring and laying eggs in the soft growing
points (Bedford, 2013). Indirectly, O. monoceros feeding exposes
palms to secondary infestation by the African palm weevil,
Rhynchophorus phoenicis L., which enters the palms via holes or
galleries created by O. monoceros. At present, O. monoceros has
been reported primarily in Africa (Philippe and Dery, 2004; Allou
et al., 2006; Edijala et al., 2009; Bila et al., 2019; EPPO, 2021), and
Middle East (Arrow, 1937; NHM, 1938; Lepesme, 1947; EPPO,
2021). However, predictions of potential suitable climate regions
for preventive and quarantine measures are generally lacking for
O. monoceros.

There are over 40 Oryctes species worldwide (Bedford,
1976). Despite the species’ similarities, morphometric features on
different life stages, such as adults and larvae, have been critical
in distinguishing these species. For example, in O. monoceros,
the anteroventral border of the prothoracic shield is rectilinear,
whereas in Oryctes rhinoceros Linnaeus, it is scalloped and more
concave (Hurpin and Fresneau, 1970). Adults of O. rhinoceros are
gregarious, however just a single O. monoceros is seen feeding
on the growing point of palms in most occasions (Philippe
and Dery, 2004). O. monoceros is found across Africa, whereas
O. rhinoceros is widely distributed in South and Southeast
Asia (EPPO, 2021). O. monoceros differs from other Oryctes
species like Oryctes boas Fabricius and Oryctes gigas Verkrüzen
by having a third tooth on the right mandible between the
scissorial and molar sections. Furthermore, O. monoceros has
raster teges with 78–120 small sharp setae and a lower anal lip
with 60–80 similar setae (Bedford, 1979). On the other hand,
each claw of O. gigas has three to five long setae, whereas
each claw of O. boas has two long setae. The diameter of the
O. boas prothoracic shield is almost equal to its length, according
to Hurpin (1969), with rectilinear and parallel anterior and
posterior edges.

Changes in the earth’s temperature due to an increase in
greenhouse gases have been shown to alter the distribution
of species (Dhaliwal et al., 2010; Netherer and Schopf, 2010).
Insect life cycles and population dynamics will undoubtedly
be affected by global warming, including their growth rate,
voltinism, and dispersal patterns (Bale et al., 2002), which
influence the distribution and seasonal activity of species (Halsch
et al., 2021). It can also induce changes in the habitat suitability
of agricultural pests, thereby increasing invasion or exacerbating
outbreaks and eventually optimizing the likelihood of damage to
food production and food security.

Environmental niche models (ENMs) combine species
occurrence records and environmental datasets, build

a model using a machine learning algorithm, simulate
environmental requirements of species, and project the
analysis at a different time and space to predict its habitat
suitability (Warren and Seifert, 2011; Valencia-Rodríguez
et al., 2021). Environmental niche modeling uses correlation
and mechanistic or process-based models to estimate species’
habitat requirements. The mechanistic species distribution
model (e.g., CLIMEX) considers how environmental conditions
constrain the physiological characteristics of species at a
given location (Louvrier et al., 2020). In contrast, correlative
models establish mathematical correlations between observable
species distributions (presence or absence) and environmental
variables [e.g., Maximum Entropy, Boosted Regression Trees
(BRT), and Random Forest (RF)] (Phillips et al., 2006; Yu
et al., 2020). Each model is theoretically distinct, has distinct
data requirements, and employs unique analytic techniques.
However, the BRT model is considered as a more robust
technique than the other ecological niche models (Yu et al.,
2020). The model works well with large datasets or when
there are a lot of environmental factors compared to the
number of observations (Elith et al., 2008). No prior data
modification or outlier removal is required to fit the BRT
model’s complicated non-linear relationships and automatically
manage predictor interaction effects (De’Ath, 2007). The
main limitation of single tree models is its low predictive
powers, which can be improved by using BRT to fit multiple
trees (Elith and Leathwick, 2017). The BRT model has been
used to identify habitat suitability for Aedes aegypti and
Aedes albopictus (the arbovirus vectors), based on land-cover
and environmental variables (Kraemer et al., 2015). The
model has also been used to model a mountain pine beetle
distribution (Ramazi et al., 2021). The output from such models
provides baseline information for monitoring, surveillance, and
development of ecologically friendly management strategies
(Mu et al., 2013).

Several studies on O. monoceros have focused on its biology
and ecology (Ukeh et al., 2003; Allou et al., 2006; Edijala et al.,
2009; Kabiru et al., 2014; Gbangboche et al., 2016), and cultural
management practices, such as farm sanitation by destroying
felled wood and palms or covering them with cover crops to
minimize larval breeding (Mariau and Calvez, 1973).

However, due to the high planting density of palms and
the expensive expense of these management measures, they
are rarely adopted (Allou et al., 2006). Attempts to manage
the pests using biological control have been unsuccessful
because none of the parasitoids or pathogens (Baculovirus
oryctes) have provided a long-lasting solution to the threat
posed by O. monoceros (Seguni et al., 1999). In addition,
application of synthetic pesticides has not been recommended
due to environmental and health risks (Parven et al., 2021). In
Ghana, a new method for controlling O. monoceros in coconut
plantations is extracting adults using a metal mini-harpoon
from their feeding galleries (Philippe and Dery, 2004). This
mechanical control strategy is labor-intensive and costly in high-
density palm plantations. Also, since preventive measures are
economically cheaper than post entry management (Arthur et al.,
2015), creating risk maps would serve as an early warning
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against the future spread, especially in areas where the pest is
currently absent.

The average global temperatures would rise ranging from 2
and 9.7◦F (1.1 to 5.4◦C) by 2100 in a variety of greenhouse
gas emission scenarios (Herring, 2012). In recent decades, it
is accepted that a rise in global temperature is considered as
one of the causes of the drastic change in climate (Soytas and
Sari, 2006; Karki, 2007). Climate change is an important factor
restricting insects’ survival and population growth (Vanhanen
et al., 2007). However, there is a scarcity of information on
the effects of climate change on the global distribution of O.
monoceros as well as identifying environmental factors driving
the geographical distribution for surveillance, monitoring and
preventive programs is generally lacking. To address this research
gap, we simulated the potential distribution of O. monoceros
under different climate change scenarios to identify climate
suitable areas for biosecurity and risk assessment.

MATERIALS AND METHODS

Our research included two key procedures: (i) obtaining
occurrence records and climate datasets; and (ii) predicting
the pest’s existing and future potential environmental niche
shifts. The BRT modeling framework is a prominent technique
to ecological studies that has been used to accurately forecast
the potential geographic range of many species (Jiang et al.,
2019; Kraemer et al., 2019; Chen et al., 2020; Ding et al.,
2020). The BRT modeling approach combines the advantages
of regression trees (Breiman et al., 1984) and gradient boosting
(Friedman, 2001), and has a good ability in fitting complex

TABLE 1 | The environmental variables with code and units used for the present
study.

Code Environmental variable Unit

Bio1 Annual average temperature ◦C

Bio2 Average variation of day time temperature ◦C

Bio3 Isothermality ◦C

Bio4 Seasonality of temperature (SD × 100) ◦C

Bio5 Highest temperature of the hottest month ◦C

Bio6 Lowest temperature of the coldest month ◦C

Bio7 Annual temperature variation ◦C

Bio8 Average temperature of the rainy quarter months ◦C

Bio9 Average temperature of the driest quarter months ◦C

Bio10 Average temperature of the hottest quarter months ◦C

Bio11 Average temperature of the coldest quarter months ◦C

Bio12 Annual precipitation mm

Bio13 Precipitation of the rainiest month mm

Bio14 Precipitation of the driest month mm

Bio15 Precipitation seasonality mm

Bio16 Precipitation of the rainiest quarter months mm

Bi017 Precipitation of the driest quarter months mm

Bio18 Precipitation of the hottest quarter months mm

Bio19 Precipitation of the coldest quarter months mm

Elevation m

non-linear response functions from outcomes based on given
environmental covariates. To assess the effects of climate change
on environmental suitability for O. monoceros, we used the
following datasets as key input data for modeling analysis: (a)
the assembled contemporary occurrence records of O. monoceros,
and a set of pseudo-absence points of pest; (b) a set of
environmental covariates reflecting a baseline scenario for the
year 2020; and (c) a set of environmental covariates reflecting two
representative concentration pathways (RCPs) (R 4.5 and 8.5)
scenarios on future periods (the 2030s, 2050s, and 2080s).

Occurrence Records and
Pseudo-Absence Points
A 3-year nationwide survey for O. monoceros was conducted
in palm plantations in Ghana to obtain the pest’s occurrence
records. The sampling consisted of visual observation for the
presence of any developmental stage (eggs, larvae, pupae, and
adults), as well as symptomatic fronds, feeding galleries, and
debris. A handheld GPS device (Garmin eTrex 22x), was used
to obtain GPS coordinates of locations where O. monoceros was
collected in the field. Having enough data points for accurate
modeling is critical for optimal model performance, therefore
the field data were supplemented by a comprehensive scientific
literature search using internet sources, such as Web of Science,
Science Direct, Google Scholar, and PubMed (Arrow, 1937;
NHM, 1938; Lepesme, 1947; Julia and Mariau, 1976; Lomer, 1986;
Gries et al., 1994; Seguni et al., 1999; Ukeh et al., 2003; Philippe
and Dery, 2004; Allou et al., 2006, 2008, 2012; Edijala et al., 2009;
Bedford, 2013; Kabiru et al., 2014; Gbangboche et al., 2016; Séré
et al., 2018; Bila et al., 2019; Idowu et al., 2019). Google Earth
Pro version 7.3 was used to extract the coordinates (i.e., latitudes
and longitudes) and elevation information if only locations
were provided. In addition, we manually deleted redundant and
ambiguous datasets, and those with evident geocoding issues.
Finally, 323 O. monoceros records were discovered worldwide
(Supplementary Table 1). An equivalent number of pseudo-
absence points were randomly selected from a previously
described approach (Senay et al., 2013). The following steps
were used to obtain the pseudo-absence records; to begin with,
the pseudo-absence locations were randomly selected from the
background points. In addition, the pseudo-absence locations
were created within a delimited geographical distance from
recorded occurrence points. Finally, we selected pseudo-absence
locations with environmentally dissimilar conditions from the
occurrence points.

TABLE 2 | Environmental variables’ proportional contributions to predicting global
habitat suitability for O. monoceros occurrence.

Environmental variables Mean (%) SD

Bio7 39.445 11.401

Bio4 23.008 8.501

Bio6 18.756 11.998

Bio3 6.071 3.458

Bio18 3.271 1.950

Bio2 1.489 0.617
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FIGURE 1 | Suitability of the environment for the occurrence of O. monoceros. Data for (A) global probability (B) South America and sections of Central America,
(C) Africa, and (D) Asia and Oceania.

Environmental Variables
The environmental factors chosen as the starting variables to be
used in the modeling in this study are shown in Table 1, for the
various reasons described above. The environmental variables,
which included 19 bioclimatic variables, were downloaded
with a spatial resolution of 5 km from the WorldClim
Global environmental database.1 In its AR5 assessment, the
Intergovernmental Panel on Climate Change (IPCC) chose four
RCPs to depict the future climate scenario, namely RCPs 2.6, 4.5,
6.0, and RCP8.5 (Remya et al., 2015). The future environmental
variables generated by the MIROC-ESM-CHEM model for two
climatic scenarios (RCPs 4.5 and 8.5) were taken from the
Climatic Change, Agriculture and Food Security website.2

Modeling Analysis
The “dismo” package was used to run the modeling analysis
process in the R 3.3.3 statistical programming environment. Also,

1http://www.worldclim.org/
2www.ccafs-climate.org

recommendations from scientific literature were consulted for
the BRT model projections (Jiang et al., 2019, 2021; Zheng et al.,
2019). This allowed us to specify key BRT model parameter
values. As an initial step, we used O. monoceros records and
pseudo-absence points as well as environmental variables to
create a baseline scenario for 2020. Pseudo-absence points were
minimized by constructing an ensemble of 30 BRT models, and
this helped make our modeling technique more resilient. Then,
the BRT models were merged with a set of future environmental
covariates to generate O. monoceros environmental suitability
maps for the future. By averaging 30 BRT models, the maps of
the world’s future geographic distribution were created. In order
to avoid overfitting, a tenfold cross-validation area under the
receiver operating characteristic curve (ROC-AUC) was chosen.
The ROC curve and the area under the ROC curve were used to
evaluate the model’s accuracy. AUC values range between 0 and
1. As a general rule, an AUC less than 0.9 implies that a model’s
prediction accuracy is low, while an AUC more than 0.9 suggests
that the model’s accuracy is outstanding. As this value approaches
1, the model’s performance improves (Phillips et al., 2006). We
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utilized the ArcGIS software’s inbuilt Tabulate Area tool (version
10.1) to calculate the habitat suitability for O. monoceros.

RESULTS

Performance of the Model and the
Significance of Environmental Variables
The O. monoceros model prediction accuracy was shown to be
“excellent” for the current period (AUC mean = 0.992). The
results showed that the variables chosen correctly predicted the
current O. monoceros distribution. Table 1 listed the relative
contribution of the environmental variables, which showed
that the annual temperature variation contributed most to
the model (39.45 ± 11.40%), followed by the seasonality of
temperature (23.00% ± 8.5%), the isothermality (18.76% ± 12%),
precipitation of the hottest quarter months (6.07% ± 3.46%),
and average variation of day time temperature (3.27% ± 1.95%)
(Table 2). The other variables accounted for less than 1% of the
total contribution.

Global Potential Distribution Oryctes
monoceros
Under the current time, the prediction of habitat suitability
for O. monoceros is illustrated in Figure 1. The model results
are in line with the present-day known distribution of the
pest. According to the model, suitable areas for O. monoceros
are largely found in Africa’s east, south, and west coastlines,
South America’s north and east coasts, Asia’s south and east
coasts, and Oceania’s north coast. The prediction demonstrates

TABLE 3 | The suitable area (10,000 km2) of O. monoceros by continent.

Continent Suitable area (10,000 km2)

Current 2030 2050 2080

RCP 4.5 scenario

Africa 324.91 278.94 286.97 266.62

South America 170.01 261.17 284.53 302.17

Asia 101.78 76.37 84.79 89.56

North America 38.88 46.10 46.75 44.79

Australia 10.56 8.35 6.59 15.13

Oceania 5.11 4.21 4.23 4.35

Antarctica 0.82 0.99 0.98 0.91

Europe 0.47 0.25 0.16 0.08

Total 652.53 676.36 715.01 723.61

RCP 8.5 scenario

Africa 324.91 279.49 260.68 266.23

South America 170.01 252.76 310.20 316.83

Asia 101.78 79.68 86.08 78.20

North America 38.88 43.31 43.29 42.56

Australia 10.56 9.29 11.54 12.15

Oceania 5.11 4.33 4.38 4.49

Antarctica 0.82 0.98 0.98 0.90

Europe 0.47 0.16 0.05 0.62

Total 652.53 669.99 717.18 721.98

that the habitat suitability for the pest spans all continents,
although the high suitability areas are found in Asia, Africa,
Europe, and the Americas. The major oil palm producing
countries, such as Thailand, Indonesia, Malaysia, Nigeria, and
Colombia, are predicted to be favorable for O. monoceros.
Similarly, the model forecasts habitat suitability in Indonesia, the
Philippines, India, Brazil, and Sri Lanka, all of which produce
considerable quantities of coconut. Finally, the predictions show
that generally Egypt, Algeria, Iran, and Saudi Arabia, the
world’s leading producers of date palms are not suitable for
O. monoceros.

In the RCP 4.5 scenario, the BRT model predicted that
high suitability areas are mainly distributed in northern
parts of southern America, central Africa, southern Asia, and
southeastern Asia. In addition, most contraction of suitability was
focused on parts of South America, and scattered throughout
Africa. While suitability in parts of Africa and Asia shows
an expanded trend. The potential geographical distribution
of O. monoceros was quantified and the results presented in
Table 3. The potential global suitable areas of O. monoceros
are shown in Figures 2A–C and presented in Table 3. The
model predicts changes in zones of areas at risk of O. monoceros
invasion (Figures 2D–F). Also, the model predicts more
suitable areas in future (7,236,100 km2) than the current time
(6,525,300 million km2).

In the RCP 8.5 scenario (Figures 3A–C), the suitable areas
will increase from the current time (6,525,300 km2) to 2080
(7,236,100 km2) (Table 3). The suitable areas of O. monoceros
were found in all continents, with the model predicting either
contraction or expansion of suitable areas (Figures 3D–F). The
future expansion of suitable areas suggests that there is a need
for regular monitoring and surveillance, especially where it is
currently absent. Although the model predicts changes in suitable
areas in the RCP 4.5 and 8.5 scenarios, more areas will continue
to be suitable for O. monoceros in the future, especially coastal
belts (Figures 2A–F, 3A–F).

DISCUSSION

The occurrence datasets used in the modeling were mostly
taken from scientific papers. This is consistent with the
open science movement’s definition, which encourages
data reuse for further research and decision-making (Allen
and Mehler, 2019). As a result, some studies have used
historical species data to estimate invasion risk areas (Jiang
et al., 2018; Kraemer et al., 2019; Guo et al., 2021; Zhou
et al., 2021; Aidoo et al., 2022a,b). The model outputs from
such studies have been utilized in developing surveillance,
monitoring, and preventive measures against invasive pests
(Hao et al., 2022).

The African rhinoceros beetle has been observed in Africa
and Asia (Ukeh et al., 2003), showing an expanding trend
in recent decades. O. monoceros, an important pest of
palms in tropical Africa (Allou et al., 2006), causes server
damage to these plants, thus leading to economic losses.
Therefore, predicting O. monoceros suitable areas can help
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FIGURE 2 | Geographical distribution of O. monoceros predicted by RCP4.5 for the future worldwide [2030 (A), 2050 (B), and 2080 (C)]. Changes in zones
expected to be at risk (D–F).

monitor the pest, and develop early warning, and management
programmes wherever it occurs. In this study, we used the BRT
model and ArcGIS to understand the potential climatic risk
factors and estimate the global distribution of O. monoceros
under climate change.

The environmental factors that influence the pest distribution
were annual temperature variation, followed by the seasonality
of temperature, the isothermality, precipitation of the hottest
quarter months, and average variation of day temperature.
This suggests that temperature factors contribute more to the
global geographical distribution of the pest, which may explain
why temperatures and relative humidity ranging from 27 to
29◦C and 85 to 95%, respectively, are ideal for larval growth
(Bedford, 1980).

The African rhinoceros beetle has been reported in two
Asian countries: Yemen and Saudi Arabia. According to our
predictions, extensive areas of Asia, though remaining uninfested
at present, are highly favorable to the pest. For example,
the southeastern parts of India, Vietnam, Cambodia, and
Thailand are predicted to be suitable for O. monoceros. In
the present study, our model predicts high habitat suitability

in the world’s largest coconut-producing countries, such as
Indonesia, Philippines, India, Sri Lanka, Brazil, Vietnam,
Papua New Guinea, Mexico, Thailand, and Myanmar (FAOSTAT,
2019). These largest coconut-producing countries will remain
suitable to O. monoceros in the future. In addition, Indonesia,
Malaysia, Thailand, Colombia, Nigeria, Guatemala, Honduras,
Papua New Guinea, Ecuador, and Brazil, as the leading producers
of oil palm (FAOSTAT, 2019), were all predicted to have suitable
areas for the pest. Our predictions show habitat suitability
for O. monoceros in Sudan and Saudi Arabia, which is quite
discouraging for the date palm industry in these regions since
these countries are among the major date palm producing
countries in the world. These regions should be alert to the
possibility of O. monoceros invasion.

In this study, the BRT model predicted habitat suitability
for O. monoceros in areas where the Asiatic rhinoceros
beetle O. rhinoceros Linnaeus (Coleoptera: Scarabaeidae) is
currently present. O. monoceros and O. rhinoceros are native
to Africa and Asia, respectively (Hinckley, 1973). Oryctes
rhinoceros has spread outside its native range inflicting damage
to economically important palms in the Americas, Oceania
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FIGURE 3 | Geographical distribution of O. monoceros predicted by RCP8.5 for the future worldwide [2030 (A), 2050 (B), and 2080 (C)]. Changes in zones
expected to be at risk (D–F).

and Africa (Giblin-Davis, 2001). The countries affected by
O. rhinoceros include Mauritius, Nigeria, and Reunion in Africa;
India, Indonesia, Philippines, Sri Lanka, and Vietnam in Asia;
Texas and Hawaii in the Americas; Papua New Guinea and
American Samoa in Oceania (Catley, 1969; Onyeike et al., 2005;
Okaraonye and Ikewuchi, 2009; Olowu et al., 2012; EPPO, 2022).
O. monoceros has not been reported from Oceania, Southeast
Asia, and the Americas. As predicted in this study, parts of these
areas have medium to high habitat suitability for O. monoceros.
Given the substantial economic impacts of Oryctes species, the
invasion of O. monoceros in countries where O. rhinoceros occurs
could pose a severe threat to food security and biodiversity
conservation. Therefore, our risk maps would guide regular
monitoring and surveillance of O. monoceros, thereby controlling
the pest in an ecologically friendly.

Global warming would cause changes in species distributions
(Kiritani, 2006; Freeman et al., 2018; Chen et al., 2019). Our
results indicated that future predicted suitable areas occurred
outside the present distribution of O. monoceros. The new areas
were mainly found in South America, the Caribbean, Asia,
and Oceania. On the one hand, our predictions revealed that
the distribution of O. monoceros would expand under future

climate scenarios (present < 2030 < 2050 < 2080), indicating
that there would be more suitable habitats for O. monoceros
distribution in the future. The range shift was more noticeable in
Central America than in any other region. The predicted range
contraction for O. monoceros in this study could be useful for
pest control and eradication. The range of habitat suitability will
potentially contrast in some parts of the world, making this pest
less competitive and possibly contributing to its eradication. On
the other hand, a few areas are predicted to remain suitable and
may require regular monitory and surveillance for early detection
and control, especially in regions such as parts of Australia
that currently have no occurrence records of O. monoceros.
The predicted suitable areas are primarily in line with earlier
pest occurrence records and show expansion of the pest’s
geographical distribution.

Our study identifies the regions where O. monoceros would
most likely occur, as well as the relationship between the
environmental indicators of this pest and the risk of its invasion,
especially in areas where it has not yet been observed. It
is important to note that there are some limitations in this
study. Firstly, the environmental suitability maps generated from
the ensemble BRT models can be interpreter to predict the
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potential geographical distribution of the O. monoceros, rather
than where the pest will be spread in the future. Secondly,
factors such as the interaction of the invader’s characteristics
(e.g., high propagule output), the abiotic environment (especially
disturbance), and biotic interactions within novel environments
(e.g., enemy-release) (Sakai et al., 2001; Keane and Crawley,
2002; Shea and Chesson, 2002) were not included in the BRT
model because of unavailability of data. However, these biotic and
abiotic factors are involved in the ability of a pest to establish in
a new geographical area. Among them, competitors, the ability
to survive in the absence of hosts, and phenotypic plasticity
are considered important influencers of the establishment of
species outside their native range (Lee and Lee, 2006; Aidoo
et al., 2021). Thirdly, local policies, such as the inspection
of plants, plant parts, farm machinery, and plant by-products
at entry ports, can affect the establishment of this species
outside of its natural range (McNeely, 2000; Pyšek et al.,
2020). It is our recommendation that the implementation of
plant protection and regulatory procedures, the development
of programs to monitor the quality of plant products and
byproducts, as well as an increase in academic awareness and
the transfer of technology can help prevent the spread of this
pest in areas where it has not yet been detected (Shine, 2007;
Early et al., 2016).

CONCLUSION

In this study, we have combined the BRT models with
O. monoceros occurrence and environmental data to predict the
potential geographical distribution of the pest. The AUC value of
the model was excellent, suggesting that our model predictions
are accurate and can be used to inform policy formulation
and preventive measures. From now until 2080, we found that
the worldwide habitat suitability for O. monoceros increased,
as predicted by the BRT model. Therefore, to prevent more
O. monoceros invasions in the face of present and future climate
change scenarios, many of the world’s largest oil palm, coconut,
and date palm plantations must take preventative steps.
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