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Linking animal behavior to
ecosystem change in disturbed
environments
Tawfiqur Rahman and Ulrika Candolin *

Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland

Environmental disturbances often cause individuals to change their behavior.

The behavioral responses can induce a chain of reactions through the

network of species interactions, via consumptive and trait mediated

connections. Given that species interactions define ecosystem structure

and functioning, changes to these interactions often have ecological

repercussions. Here, we explore the transmission of behavioral responses

through the network of species interactions, and how the responses

influence ecological conditions. We describe the underlying mechanisms

and the ultimate impact that the behavioral responses can have on

ecosystem structure and functioning, including biodiversity and ecosystems

stability and services. We explain why behavioral responses of some

species have a larger impact than that of others on ecosystems, and why

research should focus on these species and their interactions. With the

work, we synthesize existing theory and empirical evidence to provide

a conceptual framework that links behavior responses to altered species

interactions, community dynamics, and ecosystem processes. Considering

that species interactions link biodiversity to ecosystem functioning, a deeper

understanding of behavioral responses and their causes and consequences

can improve our knowledge of the mechanisms and pathways through

which human activities alter ecosystems. This knowledge can improve

our ability to predict the effects of ongoing disturbances on communities

and ecosystems and decide on the interventions needed to mitigate

negative effects.

KEYWORDS

anthropogenic disturbances, climate change, environmental change, food webs,
keystone species, phenology, species interactions, trophic interactions

Introduction

Environments around the world are rapidly changing mainly because of human
activities. Habitat destruction, climate change, pollution, invasion of foreign species,
and harvesting are drastically altering the living conditions for species (Ceballos
et al., 2015; Blowes et al., 2019). The changes influence species directly as well as
indirectly through interactions with other affected species and altered abiotic conditions
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(Tylianakis et al., 2008; Gilman et al., 2010). These direct
and indirect impacts influence in turn population dynamics
and thereby ecosystem structure, function, and stability
(i.e., the ability of the ecosystem to resist change or
return to the original state following a perturbation)
(Ives and Carpenter, 2007).

The impact that environmental changes have on populations
is often mediated by behavioral responses of individuals,
particularly at the early stage of environmental change before
evolutionary changes have occurred (Tuomainen and Candolin,
2011; Sih, 2013; Wong and Candolin, 2015). The behavioral
responses can be direct reactions to the environmental change,
such as when animals move away from a disturbed area,
or a consequence of changes in physiology or life history
traits, such as higher stress levels or reduced size at maturity.
These behavioral responses influence in turn other species
in the community and can cause cascading effects that
ripple through the community via the network of species
interactions (Tylianakis et al., 2008; Hoover and Tylianakis,
2012; Palkovacs and Dalton, 2012; Bartley et al., 2019). These
cascading effects increase the pathways through which an
environmental change reaches a species, and they can have
a larger impact on species than the direct impact of the
environmental change (Ockendon et al., 2014). The impact of
the behavioral responses can be further altered by feedbacks
among species and time lags, and result in complex changes to
the species community.

The impact that behavioral responses of individuals have
on community structure and ecosystem function depends on
the traits and abundance of the species, with some species have
a larger impact than others, such as keystone species (Paine,
1966; Power et al., 1996), dominant species (Avolio et al., 2019),
foundation species (Ellison, 2019), and ecosystem engineers
(Jones et al., 1994; Wright and Jones, 2006). Such species have
been termed ‘biotic multipliers’ (Zarnetske et al., 2012; Urban
et al., 2017). Focusing research on these species and their
behavioral responses can provide essential information of the
effects that environmental disturbances have on ecosystems and
the underlying mechanisms (Urban et al., 2017).

Here, the aim is to give an overview of our current
knowledge of how changes in the behavior of ecologically central
species influence species interaction networks and thereby
ecosystem structure, function, and stability. We provide a
conceptual framework that links behavioral responses to species
interactions, communities, and ecosystems, and discuss the
factors that influence these links (Figure 1). We begin by
explaining the central role that behavioral responses of biotic
multipliers have in mediating impacts of environmental change
on ecosystems. We then sketch out the impact that various
environmental changes have on the behavior of species, and how
these behavioral responses in turn influence species interactions
and community composition. Next, we explain how changes in
the behavior of individuals and species interactions influence

ecological processes, such as biogeochemical cycles, biodiversity,
and ecosystem stability and services. We end by outlining key
avenues and priorities for future research.

Biotic multipliers of disturbances

Biotic multipliers are ecologically important species that
regulate or influence the abundance and function of a range
of other species, directly or indirectly (Zarnetske et al., 2012).
Changes in their behavior can initiate a cascade of effects
through species interaction networks. Such species are keystone
species, ecosystem engineers, and dominant species. These
concepts partly overlap as a species can have multiple functions
and belong to several groups (de Visser et al., 2013).

Keystone species

Keystone species are those with a disproportionately large
effect on the ecosystems relative to their low biomass (Paine,
1966; Power et al., 1996). They have low functional redundancy,
with no other species being able to fill their ecological niche
should they disappear from the ecosystem. Thus, without them,
the ecosystem would be dramatically different. Typical keystone
species are top predators that regulate the abundance and
distribution of several prey species and, hence, cause top-down
effects that can be transmitted down to primary producers.
A classic example is wolves (Canis lupus) that control the
abundance of herbivores (if wolf populations are allowed to
grow large enough and are not decimated by humans). These
keystone predators are not necessarily large, or even at the top of
the food web, as demonstrated by the sea star Pisaster ochraceus,
which was the first species to be assigned a keystone role in
regulating the biodiversity of intertidal plains (Paine, 1966).
Similarly, pollinators can be keystone species as they are vital
for plant reproduction and diversity.

Ecosystem engineers

Ecosystem engineers are species that modify the habitat
and directly or indirectly modulate the availability of resources
to other species (Jones et al., 1994). Typical examples are
beavers (Castor sp.) and earthworms (Lumbricus sp.). They
cause physical changes to biotic and abiotic components of
the environment, either via their own physical structures,
which can be living or dead (autogenic engineers), or by
transforming living or non-living materials from one state to
another by mechanical or other means (allogenic engineers).
Foundation species, which create conditions required for the
persistence of other species, are a subgroup of ecosystem
engineers (Jones et al., 1994).
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FIGURE 1

A conceptual overview of the impact that behavioral responses to environmental change can have on populations, communities, and
ecosystems, mediateds by species interactions.

Dominant species

Dominant species are abundant species whose effects
on the community and ecosystem is proportional to their
abundance (Avolio et al., 2019). They are linked to many
species and are main contributors to ecosystem function,
such as bioturbation and carbon storage and flows (Dangles
and Malmqvist, 2004; Solan et al., 2004; Taylor et al.,
2006). Thus, they underpin the provision of many ecosystem
services to people. Some dominant species are also ecosystem
engineers and foundation species. Changes in their abundance
and behavior can significantly impact ecosystem functioning.
Examples of dominant species are large bodied zooplankton in
lakes without fish predators.

Influence of environmental
change on behavior

Mechanisms behind behavioral
responses

Human activities that alter abiotic or biotic components of
an ecosystem often cause behavioral changes in animals either
directly or indirectly through the responses of other individuals
or species. How animals respond depends on their genetically
determined innate reaction norms, and their experiences and
learning possibilities during lifetime (Tuomainen and Candolin,
2011; Sih, 2013; Wong and Candolin, 2015). In some species,

experiences of earlier generations can additionally influence
responses through transgenerational effects (Bell and Hellmann,
2019)(Figure 1).

Behavioral responses can be adaptive or maladaptive, much
depending on the similarity of the new conditions to the
past ones; responses are more likely to be adaptive when the
environmental change extends earlier encountered conditions,
such as a rise in temperature, than when it results in completely
new conditions, such as exposure to traffic noise. Yet, the
extension of earlier encountered conditions can also result in
maladaptive responses, especially when non-linear responses are
required to improve fitness. For instance, an animal that linearly
increases its activity with increasing temperature may suffer
from reduced fitness if the adaptive response would be decrease
activity when temperature rises above a certain threshold.

Behavioral responses to disturbances

Animals may respond to environmental change
immediately or after a time lag, depending on whether
physiological modifications or learning is needed, and whether
the change affects them directly (such as higher temperature) or
indirectly through interactions with other affected organisms. In
addition, the phenotype of an animal influences responses, such
as age, sex, body condition, personality, and social dominance
(Sih, 2013; McCallum et al., 2021).

Response can be modified over time, depending
on the responses of other individuals and species,
and on gradual changes in environmental conditions
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(Tuomainen and Candolin, 2011). In addition, feedback among
biotic and abiotic components can modify the responses, as can
other environmental disturbances (Jackson et al., 2021). Thus,
individuals in a population can show large individual, as well as
spatial and temporal variation, in responses.

In the following, we outline the main responses of
animals to ongoing human-induced disturbances. We
describe their underlying mechanisms and consequences,
drawing on theoretical predictions and empirical examples
from the literature.

Harvesting

The removal of individuals from a population can influence
the behavior of remaining individuals, either by inducing
direct behavioral responses or through the selective removal
of individuals with particular characteristics, such as bolder
individuals (Diaz Pauli and Sih, 2017; Palkovacs et al., 2018;
Sbragaglia et al., 2021b). For instance, fisheries that remove the
individuals most vulnerable to the specific fishing techniques
used alter the composition and behavior of the remaining
population (Sbragaglia et al., 2021a).

Harvesting can also alter social interactions, such as
aggression, mate choice, and parental care, through effects on
the density, structure, or distribution of the population. These
changes in social interactions can have further implications for
population characteristics, through effects on birth and death
rates and dispersal (Diaz Pauli and Sih, 2017; Palkovacs et al.,
2018). Similarly, changes in population characteristics, such as
its size or age structure, can influence interspecific interactions
and influence the dynamics of the involved populations
(Hoover and Tylianakis, 2012).

Correspondingly, the decimation of other species, or
changes in their populations structure, can alter both intra- and
interspecific behavior, such as competition for resources both
within and between populations.

Habitat change

Changes in habitat characteristics - through modification,
fragmentation, and destruction of the habitat - are common
causes of behavioral modifications. For instance, the removal
of shielding vegetation causes predators to alter their
predatory tactics to prevent prey from detecting them too
early in the hunting process (Michel and Adams, 2009).
Behavioral responses that influence birth or mortality rates,
or dispersal, can in turn influence population characteristics
and thereby both intra- and interspecific interactions, as
discussed for harvesting.

The responses of other species to changes in the habitat can
similarly influence behavior. For instance, the disappearance of

prey because of altered vegetation structure may force predators
to alter their prey selection (Michel and Adams, 2009).

Pollution

Pollution takes many forms, such as noise, light, and
chemical pollution. It creates novel conditions that influence
the behavior of individuals, such as their habitat choice and
activity (Swaddle et al., 2015; Shannon et al., 2016). Pollution
that influences physiological processes, often through hormonal
changes, can induce a range of behavioral modifications, from
altered activity to reduced investment in reproductive behaviors
(Zala and Penn, 2004; Wingfield, 2013; Candolin, 2019a;
Candolin and Wong, 2019).

In addition to the direct effects of pollution, indirect effects
through species interactions cause behavioral modifications
(Willems et al., 2022). In particular, the trophic transmission of
chemical pollutants can influence species not directly exposed
to the pollutant (Arnot and Gobas, 2006; Previsic et al.,
2021). Many compounds, such as heavy metals, pesticides,
pharmaceuticals, and microplastics, accumulate in the tissue of
organisms, with the concentration increasing for each trophic
level (Gall et al., 2015; Puckowski et al., 2016).

Non-native species

Human activities are promoting the spread of species and
their possibility of successfully invading new areas (Pysek
et al., 2020). These invaders influence the behavior of native
species as novel predators, prey, competitors, parasites, and
mutualists (Simberloff et al., 2013). Native species may respond
with adaptive or maladaptive behavioral responses, which may
cause further changes to their population dynamics and species
interactions (Simberloff et al., 2013; Pysek et al., 2020).

Non-native species that outcompete native species in
resource acquisition often force native species to alter their
behavior, such as habitat choice, activity, or aggression (Ricciardi
et al., 2013). Similarly, the appearance of a new predator
often induce behavioral changes (Sih et al., 2010), as does new
parasites by altering the body condition of the species they
infect (Barber, 2007). Indirect effects of invaders, through effects
on other species, are especially common, given that invaders
often alter the structure of food webs and species interactions
(Candolin et al., 2018).

Climate change

Global warming and linked effects on the climate, such
as altered precipitation and wind patterns, influence the
behavior of species, particularly through effects on habitat
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quality and physiological processes (Buchholz et al., 2019).
The impact is often mediated by altered resource availability
and quality (Rosenblatt and Schmitz, 2016). For instance,
changes in temperature and water availability alters the nutrient
content of plants, which influence the foraging behavior of
herbivores. If the alteration in behavior influences birth and
death rates, or dispersal, the characteristics of the population
may change and induce further behavioral modifications
(Pelletier and Garant, 2012).

Climate change that alters metabolic rate is another
common cause of behavioral modifications, especially in
ectothermic species. Warming and enhanced metabolism often
increase feeding rate through faster locomotion, more frequent
encounters with prey, or faster prey capture, handling time,
or ingestion (Rall et al., 2012; Rosenblatt and Schmitz, 2016).
On the other hand, if energetic demands increase faster than
feeding rates, climate change may eventually lead to starvation
and population decline, with further consequences for behavior
(Boukal et al., 2019).

Climate change also influences the timing of life-history
events, such as the timing of reproduction and migration, given
that these are often sensitive to abiotic conditions (Both et al.,
2009; Buchanan and Partecke, 2012). Changes in the timing can
in turn have implications for population dynamics and species
interactions (Kharouba et al., 2018).

Plastic or evolutionary responses?

Animals often respond to a change in the environment with
an immediate plastic modification of their behavior (Candolin
and Wong, 2012). With time, evolutionary (genetic) changes
may take place and result in behaviors that are better adapted
to the new conditions. The possibility of genetic adaptation
depends, however, on a range of factors, such as the generation
time of the species, the presence and nature of genetic variation
in the behavior, the rate at which new mutations arise, the size
of the population, and the dispersal of individuals and gene flow
(Hoffmann and Sgro, 2011; Bell, 2017).

Adaptive behavioral responses can facilitate genetic
adaptation by preventing rapid population decline and thereby
providing more time for genetic changes (Tuomainen and
Candolin, 2011). Behavioral responses can also expose genetic
variation that selection can then act on (Candolin and Jensen,
2021). Maladaptive behavioral responses, on the other hand,
can have the opposite effect, eventually resulting in population
decline and even extinction.

Species with a central role in regulating communities are
often larger species with longer generation times. These are
unlikely to be able to adapt genetically to rapid human-
induced environmental changes, but have to rely on phenotypic
plasticity and earlier evolved behavioral reaction norms. Species
with shorter generation times and large genetic diversity,

often combined with large population sizes, are more likely
to adapt genetically to rapid environmental changes (Bell,
2017). Thus, many ecologically important species, such as
many top predators with longer generation times, have to
rely on behavioral reaction norms that evolved before the
environment changed, which increases the probability of
maladaptive responses.

The transmission of effects
through species interaction
networks

Mechanisms

Behavioral alterations by one species influence other
species via the network of species interactions (Figure 2).
Behavioral responses can also alter the disturbance itself. For
instance, increased foraging activity by some consumers in
an anthropogenically eutrophied habitat binds nutrients into
biomass,which mitigates the impact of eutrophication on other
species (Candolin, 2019b).

The impact that behavioral responses have on linked species
can be trait or density-mediated, respectively (Abrams, 1995;
Werner and Peacor, 2003; Schmitz and Trussell, 2016). Trait-
mediated effects arise when the behavioral response of a species
directly influences other species. Density-mediated effects arise
when the behavioral response alters the density of the species
itself, through impact on birth, death, or dispersal rates, and
this influences other species (Carpenter and Kitchell, 1988; Lima
and Dill, 1990). These trait- and density-mediated effects can
result in cascades of effects that ripple through the species
interaction network, through top-down, bottom-up, and lateral
effects, as well as through changes in nutrient recycling and
abiotic conditions (Leroux and Loreau, 2010; Heath et al., 2014).

Top-down effects

Top consumers are important regulators of food webs. Their
removal often has cascading impacts on lower trophic levels,
which alters the abundance, biomass, and distribution of species
(Ripple et al., 2014; Rasher et al., 2020). In particular, the current
extinction and decline of top consumers – termed trophic
downgrading - is triggering waves of secondary extinctions and
the disassembly of communities (Estes et al., 2011; Donohue
et al., 2017). For instance, mild winters have decreased the ability
of wolves (Canis lupus) to kill moose (Alces alces) on Isle Royale
in Michigan, which has reduced their abundance and allowed
the moose population to grow (Wilmers et al., 2006).

The often profound impact that the decline of top
consumers have on species communities are due their low
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FIGURE 2

Illustration of the direct and indirect pathways through which changes in the behavior of one species can influence other species. Environmental
change influences species 1 and 2 directly (green arrows), and changes in the behavior of species 1 influence in turn species 2 (black arrow), for
instance through predation. Species 1 can influence species 2 also by altering the effect of the environmental change on species 2 (blue arrows
a and b). Examples are (A) declining prey abundance that is amplified by the behavioural response of species 1, and (B) influence of species 1 on
the distribution of species 2 and thereby on its exposure to the environmental change. Changes in species 2 influence in turn species 3 (black
arrow), and the effect can be modulated by species 1 (blue arrow c), for instance by species 1 altering the environment and, thus, encounters
between species 2 and 3. Feedbacks between the species can further alter the impacts of species 1 on the two other species.

diversity and functional redundancy - their loss and function
cannot be compensated by other species (Duffy, 2003).
Top consumers are also more sensitivity to environmental
changes than most species at lower trophic levels, because
of their larger body size and higher metabolic demands
and resource requirements (Urban et al., 2017). Thus, many
human-caused ecosystem changes are mediated by the decline
of top consumers.

The cascading effects that the decline of top consumers
have on species interaction networks can amplify the impact
of other environmental changes on communities (Shurin et al.,
2012). For instance, the loss of a keystone predator, the sea otter
Enhydra lutris, from subarctic marine ecosystems has interacted
with ocean warming in eroding calcareous reefs: the loss has
promoted the growth of herbivore populations, which graze on
the algae that build the calcareous reefs, resulting in overgrazing
and the acceleration of the negative effects of warming on the
reefs (Rasher et al., 2020).

Not all consumers are negatively affected by environmental
change. Some benefit and cause in turn declines in consumers.
For instance, a mesocosm experiment showed that warming
advances zooplankton phenology and that this causes an
earlier top-down control of phytoplankton and, hence, a strong
reduction in their abundance (Velthuis et al., 2017).

Top consumers that are not affected by environmental
change can moderate the effect of environmental change
on lower trophic levels. For instance, the freshwater sculpin
Cottus nozawae - a dominant predator in temperate stream
communities - buffers the negative effects of heatwaves

on benthic algae by reducing macroinvertebrate densities
(Ross et al., 2022).

Bottom-up effects

Bottom-up effects - mediated by nutrient availability - are
important regulators of community composition in ecosystems
with low producer redundancy and where consumers are highly
specialized in their diet (Hunter and Price, 1992). For instance,
a simulation study showed that the extinction of primary
producers in ecosystems with low connectance (complexity)
can cause more secondary extinctions than the removal of
herbivores or top consumers (Eklof and Ebenman, 2006).
Similarly, environmental changes that alter the nutrient content
of plants can change the growth rates of consumers and their
population dynamics, resulting in effects that can propagate
upwards in the food web through altered foraging behavior of
higher trophic levels (Cross et al., 2015).

Interplay between top-down and
bottom-up effects

Top-down effects countervail bottom-up effects and their
interaction determines the ultimate impact of behavioral
responses on food webs. The interaction is often complex
with feedbacks between trophic levels. For instance, climate
change that improves the nutrient content of primary producers
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and promotes the growth of consumers also increases the
consumption rate of the consumers, which can feed back to
influence primary producers (Rosenblatt and Schmitz, 2016).
Such opposing effects of top-down and bottom-up effects can
avert larger shifts in community structure, (Lynam et al., 2017).
This is especially the case when ecosystems are exposed to
several stressors. For instance, the influence of eutrophication
on primary production is counteracted by global warming that
increases foraging activity of consumers (Kratina et al., 2012).

Top-down and bottom-up effects do not always oppose
each other but can also act additively (Shurin et al., 2012).
For instance, nutrient enrichment that promotes primary
production through a bottom-up effect can be strengthened by
global warming that reduces the size of predators and their
foraging pressure (Jochum et al., 2012). This can allow the
biomass of primary producers to increase even further.

Generally the removal of top consumers has a larger
impact on food webs than the removal of herbivores
or primary producers, given that top consumers generally
are more sensitive to environmental changes than species
at lower trophic levels (Duffy, 2003; Voigt et al., 2003;
Borrvall and Ebenman, 2006).

Lateral effects

Interactions within a trophic level, i.e., non-trophic,
lateral interactions (such as competitive, mutualistic and
commensalistic interactions), determine together with trophic
interactions (consumptive and parasitic interactions) the
structure of species interaction networks (Kefi et al., 2012).
Competition, in particular, can drastically alter trophic
interactions (Sih et al., 1998; Davenport and Chalcraft, 2013).
For instance, the intensity of competition among freshwater
insect predators for prey determines their top-down effect on
the prey community, such as the composition of zooplankton
(Sentis et al., 2017b).

Trophic and non-trophic (lateral) interactions often differ
in their sensitivity to environmental change, with trophic
interactions generally being more sensitive and, hence, more
often having negative effects on communities (Sentis et al.,
2017b; Vesely et al., 2019). Non-trophic, lateral interactions are
more dependent on species traits, which can stabilize ecological
communities by weakening disrupted trophic interactions and
dampening population oscillations (Rall et al., 2008).

Phenological asynchronies

Human-induced environmental changes that alter the
timing of behaviors, such as migration or reproductive
behaviors, can cause mismatches with optimal abiotic and biotic
conditions (Kharouba et al., 2018; Renner and Zohner, 2018).

For example, birds that breed earlier because of climate change
can suffer from food shortage if the advancement differs from
that of their prey, which can lead to failed reproduction (Visser
et al., 2012). Such mismatches are often caused by species using
cues that differ in their sensitivity to environmental conditions
to time their activities.

Other common causes of mismatches in the timing of
activities are differences in response rate or time lag among
species, because of constraints or costs associated with the
responses (Both et al., 2009; Chen et al., 2019). In addition,
species may differ in their recovery rate, as higher trophic
levels are generally slower in responding to environmental
changes than lower levels (Thackeray et al., 2016). Phenological
mismatches also occur when the environmental change occurs
at a time of the year that promotes one trophic level over another
(Straile et al., 2015). For, instance, higher temperature during the
period when zooplankton populations start to grow increases
their population sizes, but results in food limitation later in the
season (Wagner and Benndorf, 2007).

Finally, abiotic factors can cause mismatches by limiting
the ability of species to respond to environmental change.
For example, while grazers increase their grazing pressure in
response to rising temperature, primary producers may be
unable to respond because of the lack of nutrients, resulting in
overgrazing (Thackeray et al., 2016). This overgrazing can in
turn feed back to influence the grazers and result in complex
changes to the food web.

Individual variation in behavioral
responses

Individuals within a population often vary in their
behavioral responses to environmental change, depending on
traits such as physiology, developmental stage, sex, social status,
and personality (Bolnick et al., 2011; Schmitz and Trussell,
2016). This variation influences species interactions and the
dynamics of populations. For instance, the impact of a predator
on the prey community is smaller if only some of the individuals
switch to an alternative prey when their main prey declines than
if all individuals, or none of them, altered their prey selection
(Toscano and Griffen, 2014; Belgrad and Griffen, 2016; Sommer
and Schmitz, 2020).

Similarly, variation among individuals in responses
to altered resource availability can influence competitive
interactions by alter niche overlap (Violle et al., 2012). Species
with more variable responses may broaden their niches more
than other species and gain a competitive advantage (Hogle
et al., 2022). Likewise, environmental changes that alter the
frequency of specific behavioral types, for instance through
the emigration of bold individuals, can influence species
interactions (Pelletier and Garant, 2012). In addition, changes
in the presence of individuals at different developmental
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stages often influence interactions, given that ontogeny and
individual development is a common cause of temporal changes
in behavior both within and between species (Persson and de
Roos, 2013; Toscano and Rudolf, 2021).

Restructuring of species interaction
networks

Variation among species in their behavioral responses to
environmental change often restructures species interaction
networks. For instance, increased consumption and attack
rate by consumers because of global warming augments the
biomass of higher trophic levels while reducing that of lower
levels (Shurin et al., 2012; Dell et al., 2014). Warming also
decreases the size of individuals, which further modifies
consumer-resource interactions (Horne et al., 2015; Sentis et al.,
2017a). Such changes can reduce the importance of earlier
dominant or keystone species in favor of other species species
(Tanentzap et al., 2020).

Restructuring also occurs when some species amplify or
dampen the impact of environmental change on other species
(Urban et al., 2016). For example, the negative impact of
warming on the survival of a dominant tadpole species,
Hyla versicolor, is dampened by predation by a dragonfly
on a competing tadpole species, as this reduces competitive
interactions between the two tadpole species (Rudolf and
Roman, 2018). Correspondingly, the impact of climate change
on vegetation can be amplified by the grazing activity of
herbivores (Boulangeat et al., 2018).

The restructuring of species interaction networks can in
turn facilitate the invasion of new species (Pysek et al.,
2020). Invasion success depends on the behavior of both the
invader and the native species, and changes in either because
of environmental change can influence the invasion success
(Chapple et al., 2012). For instance, aggressive interactions
between an invading shrimp, Palaemon elegans, and a native
fish, the three-spined stickleback, Gasterosteus aculeatus,
reduces the ability of the shrimp to invade habitats occupied
by the fish (Jakubaviciute and Candolin, 2021). However, the
aggression of the fish depends on its population density, which
implies that changes in its density - because of human activities
- can influence the invasion success of the shrimp and, hence, its
impact on the community (Candolin et al., 2018).

The invasion of new species can also introduce non-
native pathogens, which can alter species interaction and affect
population sizes markedly. An example is the outbreak of
the Squirrelpox disease in the native red squirrel (Sciurus
vulgaris) in the United Kingdom with the introduction of the
non-native gray squirrels (S. carolinensis), which carries the
virus. The outbreak has altered the competitive interaction
between the two species, favoring the non-native gray squirrel
(Chantrey et al., 2014).

Ecological consequences: Impact
of behavioral responses on abiotic
components, biodiversity, and
ecosystem services

Biogeochemical cycles and abiotic
conditions

Changes in behaviors that alter species interactions
influence ecological processes, such as the flow of energy
and matter through the food web and between habitats and
ecosystems. These ecological effects are often mediated by
consumers, including detritivores, (Ren et al., 2022). For
instance, a change in the foraging behavior and top-down
control of consumers influences not only the biomass of lower
trophic levels, but also biogeochemical cycles, such as the cycling
of nutrients, carbon, and water through the ecosystem.

If altered consumer behavior influences the biomass of
primary producers, the rate of assimilation can change and
further alter biogeochemical cycles (Bakker et al., 2016; Ren
et al., 2022). Similarly, changes in the behavior of consumers can
influence respiration rate and the carbon dissimilatory process,
through changes in their own metabolism and in the abundance
and activity of other species. Changes in consumer behavior
can also influence decomposition and abiotic conditions, such
as oxygen availability (Ren et al., 2022). For instance, reduced
burial activity of polychetes in aquatic sediments (bioturbation)
reduces oxygen availability for other organisms in the sediments,
which in turn reduces their decomposition activity (Kristensen,
2000). Changes in the activity of terrestrial detritivores can again
alter soil formation and its characteristics. For example, the
ingestion of microplastics by earthworms and other detritivores
increases their mortality rate, which reduces their activity,
especially when combined with other contaminants, such as
heavy metals (Bhagat et al., 2021).

Changes in the consumption by herbivores of vegetation
can in turn alter light conditions, both within and below
the vegetation. Similarly, changes in the consumption by
zooplankton of phytoplankton can alter water turbidity and
light penetration and, hence, assimilation in deeper water.
Reduced assimilation can in turn cause hypoxia and alter
the benthic community. Likewise, changes in the activity
of terrestrial herbivores can change the influx of nutrients
to aquatic ecosystems and affect algae blooms and light
penetration. For instance, the replacement of large wildlife with
livestock on the African savanna has increased the transfer
of organic matter and nutrient from terrestrial to aquatic
ecosystems, with further consequences for these ecosystems
(Iteba et al., 2021). The impact of consumers on vegetation can
also alter the climate, given that the biomass and composition of
vegetation influences humidity, temperature, and the release of
water vapor and cloud formation (Green et al., 2017).
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The transfer of energy and matter between habitats and
ecosystems is obviously also sensitive to changes in animal
movements. Shifts in where animals stay, what they feed on, and
where they die, alter biogeochemical processes within habitats
and, thus, ecological processes and components, such as primary
production and biodiversity (Peller et al., 2022).

Biodiversity and ecosystem stability

Species and their behavioral activities and interactions with
other species determine biodiversity and ecological processes,
which in turn influence the stability of ecosystems - the ability
to resist changes or return to the original state following a
disturbance (Loreau and de Mazancourt, 2013; Hautier et al.,
2015). In particular, the current decline of top predators and
relaxation of their top-down control is likely to destabilize
ecosystems, given that predation moderates competition among
species, which otherwise can cause large fluctuations in
population sizes (Loreau and de Mazancourt, 2013).

Changes in the behavior of dominant and common
species can similarly cause cascades of effects that alter
ecosystem stability (Gaston, 2010). Common species shape
their environments and are involved in a large number of
biotic interactions, and behavioral changes in such species are
especially likely to cause extinction cascades that reduce the
stability of species interaction networks (Dunne et al., 2002).

The behavior of species and their interactions can also
buffer the effects of environmental change on communities
and improve ecosystem stability. This is especially likely when
species show redundancy in their ecological functions, as this
gives rise to an ‘insurance effect’ (Yachi and Loreau, 1999).
Species rich communities with multiple interactions, both
within and between trophic levels, are consequently expected to
be most resilient against environmental perturbations (Neutel
et al., 2007; Rooney and McCann, 2012; Oliver et al., 2015).
Correspondingly, ecosystems with few but highly specialized
interactions are more sensitive to environmental disturbances.
Thus, the decline of behavioral interactions among species can
reduce the ability of ecosystems to resist large-scale changes in
the face of human activities.

Ecosystem services

Ecosystems provide a range of services to humans, such
as food security, control of pests and parasites, clean air and
water, and recreational possibilities (Pecl et al., 2017). These
services depend on the behavior of species and changes in these
- because of human activities – can consequently have negative
ramifications for the services.

Food security, in particular, is highly dependent on the
behavior of species. Many plant species, including crops, depend

on insect pollinators. Thus, the current decline of pollinators is
expected to negatively affect pollination success and crop yield
(Wagner et al., 2021). Similarly, the dispersal of seeds depends
on animal resource use and movements, and changes in these
behaviors can consequently influence the population dynamics
of plants (McConkey et al., 2012).

Clear air and water are similarly dependent on the behavior
of species. Plants both bind and emit volatile compounds, which
implies that changes in the behavior of grazers and detritivores
can alter these dynamics (Wang et al., 2018). Correspondingly,
changes in the foraging behavior and resource use of consumers
can influence their waste products and thereby water, air, and
soil quality (Angerer et al., 2021).

Changes in behavior can also influence the dynamics of
pathogens and parasites, particularly by altering encounters
between individuals and species and, hence, the transmission
rate of these organisms, as well as by influencing the
physical condition of individuals and their ability to resist
infection or recover from it (Budria and Candolin, 2014).
Increased transmission or reduced resistance can promote the
introduction and rapid spread of pests that destroy resources,
such as crops and forest products, and allow the transmission of
parasites and pathogens to humans and other animals and cause
pandemics (McNeely, 2021).

Last but not least, human health and well-being depends
on the recreational value of nature. Behavioral responses to
human-induced environmental changes are both a cause and
a consequence of the current loss of species and species
interactions. Thus, human-induced behavioral responses are
further boosting the impact that we humans are having
on ecosystems and their use for recreation and well-being
(Pecl et al., 2017).

In general, the resilience of ecosystem services to human-
induced environmental changes depends on the fragility of
the network of species interactions, i.e., the number of species
functional traits and links between them (Ross et al., 2021).
More diverse communities with many behavioral links between
functionally different species are expected to provide the most
robust ecosystem services (Ross et al., 2021). Thus, the current
loss of biodiversity and behavioral interactions is expected to
reduce the provisioning of the goods and services that we
humans depend on.

Outlook and future avenues of
research

Behavior underlies interactions within and between species
and with the abiotic environment. Behavior consequently links
biotic and abiotic factors together and determines biodiversity
and ecosystem processes. Thus, changes in the behavior of
animals can influence ecosystem structure, dynamics, and
function. Yet, few studies on the impact of human disturbances
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on communities and ecosystems consider the behavior of
animals. In this review, we have shown that critical information
on the mechanisms behind ecosystem changes can be gained
by considering the behavior of animals. Information on the
causes, mechanisms, and consequences of behavioral responses
to environmental disturbances, and how the responses scale
up to influence communities and ecosystems, can improve our
ability to assess and predict the consequences of human activities
for ecosystems, as well as to inform ecosystem management.

Unraveling the links between species and assessing their
sensitivity to human activities is, however, challenging. Species
are linked by a multitude of direct and indirect interactions,
which can be differentially affected by environmental change.
Thus, research has to concentrate on some species and their
interactions. Top predators, ecosystem engineers, and dominant
species are obvious candidates, given the large number of species
they interact with, directly and indirectly, and the major impact
they have on ecological processes. In this review, we have
provided a conceptual framework for understanding the links
between behavior and ecosystem processes and the factors that
influence these links.

The research challenge is further complicated by the
multitude of disturbances animals are exposed to. Future studies
need to consider interactions among these and their combined
effects. Moreover, given the multitude of pathways through
which environmental disturbances influence animals and their
interactions, collaboration among researchers is needed, as
well as open access to data. Only through open, collaborative
research can we gradually gain a deeper understanding of the
pathways and mechanisms through which human activities
influence ecosystems.
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