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Insects have evolved highly diverse genetic sex-determination mechanisms and a
relatively balanced male to female sex ratio is generally expected. However, selection
may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can
result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and
CRISPR/Cas9-mediated genome editing brought significant insights into the molecular
regulators of sex determination in an increasing number of insects and provided new
ways to engineer SRD. We review these advances and discuss both naturally occurring
and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated
biological control of insects to help improve One Health, sustain agriculture, and
conserve endangered species.
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INTRODUCTION

Sex of an insect is determined by the chromosome complement it inherits from its parents. The
chromosome systems that underly genetic sex-determination are quite diverse among insect species
(Bachtrog et al., 2014; Beukeboom and Perrin, 2014; Biedler and Tu, 2016). Flies and mosquitoes are
among the many insects that evolved the XX/XY sex chromosome system, where the heterogametic
(XY) individuals are males and the homogametic (XX) individuals are females. Lepidopterans such
as the silkworm, Bombyxmori, evolved the ZZ/ZW sex chromosome system where ZZ males are the
homogametic sex while heterogametic ZW individuals are females. Hemizygous sex chromosome
systems are also found including XX/XO in several insect orders, where the males are hemizygous as
they only have one X chromosome (XO); and ZZ/ZO in some lepidopteran and tricopteran species,
where the females are hemizygous (ZO). Although species within an insect order tend to share the
same type of sex chromosome system, variations can occur within an order or even a family. In
the aforementioned systems, the sex of an offspring is determined by the genotype of the gamete of
the heterogametic or hemigametic parent. In Hymenopteran and Thysanopteran insects, however,
sex is instead determined by the haplodiploidy of the individual, where fertilized diploid eggs (2n)
develop to females while unfertilized haploid eggs (n) develop as males (reviewed in Beukeboom
and Perrin, 2014; Biedler and Tu, 2016).

In contrast to the apparent plasticity and diversity of the sex-determining chromosome
systems, two highly conserved transcription factors doublesex (dsx) and fruitless (fru) control the
development of sexual dimorphism in all insects studied thus far (Herpin and Schartl, 2015; Biedler
and Tu, 2016; Hopkins and Kopp, 2021). Sex-specific isoforms of the DSX and FRU proteins, which
result from sex-specific splicing of their primary RNA transcripts, program sexual differentiation
(Figure 1). Therefore, sex determination is a process in which the primary sex-specific signals,
which reflect the sex-specific chromosome composition of the early embryo, are transduced in a
signal cascade to modulate sex-specific splicing of the RNA transcripts of dsx and fru. Figure 1
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presents two simplified models using dsx as an example. In the
vinegar fly Drosophila melanogaster, the double dosage of the X
chromosome in the females (XX) initiates the transcription of the
sex lethal (sxl) gene in the early embryo, leading to the production
of the primary signal which is the SXL protein (Figure 1A). The
presence of SXL leads to the production of a functional protein
isoform of transformer (TRA), which in turn enables female-
specific splicing of the primary RNA transcripts of dsx and fru.
In the male (XY) embryo, the single X chromosome fails to
initiate the production of the primary signal SXL, leading to the
default male-specific splicing of dsx and fru transcripts and hence
the production of male-specific DSX and FRU protein isoforms.
In the Mediterranean fruit fly Ceratitis capitata, however, the
default sex is female (Figure 1B). The primary signal, a male-
determining factor (M factor) MoY (Meccariello et al., 2019),
resides on the Y chromosome. The presence of the M factor in
the early male (XY) embryos results in male-specific splicing of
the tra pre-mRNA, leading to the production of a non-functional
TRA protein and subsequently, male-specific splicing of dsx and
fru. The lack of the Y chromosome in females (XX) enables the
TRA protein complex to catalyze the female-specific splicing of
dsx and fru. The TRA intermediate evolved much faster than
DSX and FRU and TRA is not found in all insects (Biedler and
Tu, 2016). Recent advances have brought significant molecular
insights into the diverse mechanisms of sex determination in an
increasing number of insects (e.g., Kiuchi et al., 2014; Hall et al.,
2015, 2016; Criscione et al., 2016; Krzywinska et al., 2016, 2021;
Sharma et al., 2017; Meccariello et al., 2019; Qi et al., 2019; Wexler
et al., 2019; Aryan et al., 2020; Liu et al., 2020; Zou et al., 2020;
Lutrat et al., 2021; Zhuo et al., 2021).

A relatively balanced male to female sex ratio is expected for
most insects. However, selection may shift the optimal sex ratios
and meiotic drive and microbial manipulation can result in sex
ratio distortion (SRD). In the following sections, we will review
both naturally occurring and engineered SRD in the context of
developing biological control of insects to help improve One
Health, sustain agriculture, and conserve endangered species.

Naturally Occurring Meiotic Drives Can
Lead to Sex Ratio Distortion by Biased
Production or Transmission of Gametes
Gene drive refers to the phenomena in which one of the
homologous chromosome pair, or an allele on one of the
homologous chromosome pair, is transmitted to the next
generation at a frequency greater than the expected 50%
Mendelian segregation. If this bias results from a bias in
the representation of gametes of a certain chromosome or
genotype during meiosis (Figure 1C), then it is a meiotic
drive. If this bias involves the sex chromosomes during meiosis
in the heterogametic sex (e.g., during spermatogenesis in XY
males), SRD will ensue. Meiotic and sex-linked drives have
been discussed in a number of reviews including Jaenike (2001)
and Courret et al. (2019). We will highlight a few examples
emphasizing the concept and recent advances (Table 1). Meiotic
drives typically involve two loci: a drive allele/locus and a drive-
sensitive allele targeted by the drive locus (Lyttle, 1991). For

example, the D. simulans Winters drive is comprised of the
Distorter on the X (Dox) that targets Y-chromosome repeats and
kills the Y-bearing sperm, leading to a female sex ratio bias (Tao
et al., 2007a,b). Two autosomal suppressor alleles were found that
counteract the drive (Tao et al., 2001, 2007a) and suppress Dox
via RNA interference (Lin et al., 2018). The intragenomic arms
race between an SRD drive and its suppressor and resistance
alleles may have resulted in cryptic SRDs that are derived from
multiple waves of SRD invasion followed by suppression and/or
resistance (e.g., Muirhead and Presgraves, 2021). In Aedes aegypti
mosquitoes a Y-linked distorter locus (D) is thought to disrupt
the formation of the X-bearing sperm by causing X-chromosome
breakage mainly at one of four sites during male meiosis I (Craig
et al., 1960; Newton et al., 1976). Thus, D increases its own
transmission and causes male-biased sex distortion (Figure 1C).
This male bias is especially attractive in the context of controlling
mosquito-borne infectious diseases as only female mosquitoes
bite and transmit disease-causing pathogens. Suppressor alleles,
resistant X chromosomes, and distortion enhancers associated
with the D drive have been reported in various laboratory strains
and wild populations (Wood, 1976; Suguna et al., 1977; Wood
and Ouda, 1987; Owusu-Daaku et al., 1997). The Ae. aegypti Y
chromosome is also called the M chromosome and it is similar to
the X chromosome (or the m chromosome) except for its male-
determining locus M (Matthews et al., 2018). Strictly speaking,
these M- and m-bearing chromosomes are homomorphic sex-
determining chromosomes.

Sex Ratio Can Be Skewed by Maternally
Inherited Bacterial Endosymbionts
Bacterial endosymbionts such as Wolbachia, Rickettsia,
Cardinium and Spiroplasma can infect and manipulate the
germline of insects that harbor them (reviewed in Werren
et al., 2008; Ma et al., 2014; Hurst and Frost, 2015; Landmann,
2019). They are normally transmitted through the maternal
germline. Wolbachia is thought to infect more than half
of all arthropod species (Weinert et al., 2015) and is well
known for its induction of cytoplasmic incompatibility (CI)
and CI-related applications in pest control (e.g., Laven,
1967; Dobson et al., 2002; Zheng et al., 2019). Wolbachia
can cause SRD by feminizing or killing males, inducing
parthenogenesis, and regulating sex allocation. For example,
Wolbachia can cause damage in the dosage compensated X
chromosome that is only found in males to confer male-
specific lethality in Drosophila (Harumoto et al., 2018).
Wolbachia can also feminize and kill males by mis-regulating
the factors in the sex determination pathway to shift dsx
splicing (Sugimoto and Ishikawa, 2012). Wolbachia in female
Eurema mandarina butterflies (genotype ZW) prevents the
production of Z-bearing oocytes during oogenesis and initiates
female development in ZO individuals, resulting in all-female
offspring through a dual-acting meiotic drive (Kern et al.,
2015; Kageyama et al., 2017). Wolbachia and other intracellular
symbionts can also mediate higher fertilization rates leading
to a female bias in haplodiploid species (Wang et al., 2020;
Bagheri et al., 2022).

Frontiers in Ecology and Evolution | www.frontiersin.org 2 June 2022 | Volume 10 | Article 884159

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-884159 June 9, 2022 Time: 16:45 # 3

Compton and Tu Sex Ratio Distortion in Insects

FIGURE 1 | Simplified models of the sex-determination pathways in the vinegar fly Drosophila melanogaster (A) and the Mediterranean fruit fly Ceratitis capitata (B),
and meiotic sex ratio distortion (C). (A) In D. melanogaster, embryos that inherit two X chromosomes (depicted as red DNA molecules) express the primary signal
Sex-lethal (SXL) which effects the female-specific splicing of the transformer (tra) transcript, leading to the production of a functional TRA protein (TRAF). The TRAF

protein complex enables the female-specific splicing of the doublesex pre-mRNA, leading to the production of the female DSX protein isoform (DSXF) which
programs female differentiation (left). In contrast, embryos with a single X chromosome do not express a functional SXL, resulting in a truncated non-functional TRA
(TRAM) and subsequently the default male-specific splicing of dsx. This leads to the production of DSXM, which programs male differentiation (right). The Y
chromosome (depicted as a blue DNA molecule) does not directly participate in sex-determination. (B) In C. capitata, a dominant male-determining factor,
Maleness-on-the-Y (MoY ) resides on the Y chromosome (in blue). Expression of MoY somehow induces male-specific splicing of the tra pre-mRNA, leading to the
production of truncated and non-functional TRA proteins (TRAM). The lack of a functional TRA results in male DSXM isoform and male differentiation (left). Embryos
that do not inherit the Y chromosome (or MoY ) produce a functional TRA protein (TRAF) complex by default, which leads to the production of DSXF and female
differentiation (right). See Meccariello et al. (2019) and Primo et al. (2020) for details and for the concept of an autoregulatory loop. (C) Normal spermatogenesis of a
heterogametic male with XY chromosomes will produce X- or Y-bearing sperms in equal proportion (left). In a hypothetical Y-linked X-shredder system (right), either
natural or engineered, double-stranded DNA breaks along the X chromosome could lead to non-functional X-bearing sperms without affecting the Y
chromosome-bearing sperms. As a result, sex ratio distortion will occur in the progeny of an affected heterogametic male (XY).
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TABLE 1 | Examples of natural and engineered sex ratio distortion.

Classification Description Species References Doi

Meiotic Male-linked Distorter Aedes aegypti Craig et al., 1960; Newton
et al., 1976

doi: 10.1126/science.132.3443.188;
doi: 10.1007/BF000554

Meiotic X-linked Distorter Drosophila simulans Muirhead and Presgraves,
2021

doi: 10.1038/s41559-021-01543-8

Meiotic X-shredder by I-PpoI Anopheles gambiae Galizi et al., 2014 doi: 10.1038/ncomms4977

Meiotic X-shredding by Cas9 Anopheles gambiae Galizi et al., 2016 doi: 10.1038/srep3113

Meiotic X-shredding by Cas9 Drosophila melanogaster Fasulo et al., 2020 doi: 10.1371/journal.pgen.100864

Meiotic X-shredding by Cas9 Ceratitis capitata Meccariello et al., 2021 doi: 10.1186/s12915-021-01010-7

Meiotic,
postzygotic

X-poisoning by Cas9 knockout
of haploinsufficient genes

Drosophila melanogaster Fasulo et al., 2020 doi: 10.1371/journal.pgen.100864

Sex determination Female-to-male conversion by
expression of Nix

Aedes aegypti Hall et al., 2015; Aryan
et al., 2020

doi: 10.1126/science.aaa285; doi:
10.1073/pnas.20011321

Sex determination Female-to-male conversion by
expression of Nix

Aedes albopictus Liu et al., 2020; Lutrat
et al., 2021

doi: 10.1016/j.ibmb.2019.10331;
doi: 10.1101/2021.07.28.4541

Sex determination Male-to-female conversion by
disruption of Mdmd

Musca domestica Sharma et al., 2017 doi: 10.1126/science.aam549

Sex determination Maternal knockdown of tra
results in all-male offspring

Blattella germanica Wexler et al., 2019 doi: 10.7554/eLife.4749

Sex determination Knockdown of Masc results in
male-specific lethality 1

Bombyx mori Kiuchi et al., 2014 doi: 10.1038/nature1331

Sex determination Female-specific lethality by
expression of Guy11

Anopheles stephensi Criscione et al., 2016; Qi
et al., 2019

doi: 10.7554/eLife.192; doi:
10.7554/eLife.435

Sex determination Female-specific lethality by
expression of Yob and fle1

Anopheles gambiae Krzywinska and Krzywinski,
2018; Krzywinska et al.,
2021

doi: 10.1186/s13071-018-3211-z;
doi: 10.1016/j.cub.2020.12.0

Sex determination Female-specific lethality by
depletion of Nlfmd in embryos 1

Nilaparvata lugens Zhuo et al., 2021 doi: 10.1126/sciadv.abf923

Sex determination Gene drive targeting
transformer

Ceratitis capitata Carrami et al., 2018 doi: 10.1073/pnas.171382511

Sex determination Knockdown of MoY feminizes
males; ectopic expression
masculinizes females

Ceratitis capitata Meccariello et al., 2019 doi: 10.1126/science.aax131

Sex determination Gene drive targeting female
doublesex

Anopheles gambiae Kyrou et al., 2018; Simoni
et al., 2020

doi: 10.1038/nbt.424; doi:
10.1038/s41587-020-0508

Sex determination Female-specific lethality by
Cas9 knockout of transformer 2

Bombyx mori Zhang et al., 2018 doi: 10.1073/pnas.1810945115

Endosymbiont-
induced

Meiotic drive and Feminization
mediated by Wolbachia

Eurema mandarina Kern et al., 2015;
Kageyama et al., 2017

doi: 10.1098/rsbl.2015.009; doi:
10.1002/evl3

Endosymbiont-
induced

Hamiltonella manipulation of
fertilization

Bemisia tabaci Shan et al., 2019 doi.org/10.1098/rspb.2019.167

Endosymbiont-
induced

Sex ratio distortion by inhibition
of fertilization

Trialeurodes vaporariorum Wang et al., 2020 doi: 10.1038/s41396-020-0717-0

Endosymbiont-
induced

Temperature-sensitive effects
on sex allocation

Pezothrips kellyanus Katlav et al., 2022 doi: 10.1038/s41437-022-00505-5

Endosymbiont-
induced

Male killing Wolbachia Drosophila bifasciata Harumoto et al., 2018 doi: 10.1098/rspb.2017.216

Endosymbiont-
induced

Male-killing Spiroplasma:
mis-regulating dosage
compensation/sex
determination

Drosophila melanogaster Cheng et al., 2016;
Harumoto et al., 2016

doi: 10.1016/j.cub.2016.03.05; doi:
10.1038/ncomms127

Endosymbiont-
induced

A male-killing Wolbachia:
interacts with sex determination
and dosage compensation

Ostrinia scapulalis Sugimoto and Ishikawa,
2012; Sugimoto et al.,
2015; Fukui et al., 2015

doi: 10.1098/rsbl.2011.111; doi:
10.1016/j.ibmb.2015.10.00; doi:
10.1371/journal.ppat.10050

Endosymbiont-
induced

Male-killing Wolbachia targeting
the masculinizing gene

Ostrinia furnacalis Fukui et al., 2015 doi: 10.1371/journal.ppat.100504

Endosymbiont-
induced

Potential male-killing by
Wolbachia

Anastrepha fraterculus Conte et al., 2019 doi: 10.1186/s12866-019-1652-y

1 In these cases, sex-specific lethality is caused by mis-regulation of dosage compensation. Additional examples can be found in Hurst and Jiggins (2000), Jaenike (2001),
and Kageyama et al. (2012). Some sex-determination factors listed are examples of good targets for SRD.
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Engineering Sex Ratio Distortion
Through Sex Conversion and
Sex-Specific Lethality
Altering or perturbing factors involved in sex-determination
(Figures 1A,B) could either result in sex conversion, or sex-
specific lethality, or infertile intersex, depending on the relative
position of the factor in the sex-determination pathway (i.e., top
master switch such as SXL or MoY versus bottom effector such as
DSX) and whether or not sex chromosome dosage compensation
is required (reviewed in Biedler and Tu, 2016; Scott, 2021).
Table 1 lists a number of candidates that can be manipulated to
cause SRD in diverse insect species. We will only highlight a few
recent examples in which SRDs were demonstrated over many
generations when the factors were stably inherited as transgenes.
Stable expression of a transgenic copy of Nix, a master switch
for male determination in Ae. aegypti and Ae. albopictus (Hall
et al., 2015), converted genetic females into fertile males and
resulted in a clear SRD (Adelman and Tu, 2016; Aryan et al.,
2020; Lutrat et al., 2021). On the other hand, stable germline
transformation of a Y-linked primary signal Guy1 resulted in
female-specific lethality in An. stephensi (Criscione et al., 2016).
Unlike Ae. aegypti, X chromosome dosage compensation is
needed in An. stephensi (Jiang et al., 2015) and Guy1 regulates
dosage compensation by increasing the transcription of genes on
the X chromosome in XY males (Qi et al., 2019). Transgenic
expression of Guy1 in XX females result in abnormally high
transcription of X-linked genes and hence lethality (Qi et al.,
2019). Targeting the sex-specific exon (or its splicing signal) of
dsx, a gene at the bottom of the sex-determination pathway,
could also result in SRD. A gene drive was developed in An.
gambiae that disrupts the formation of female dsxF transcript
while leaving the male dsxM unaffected (Kyrou et al., 2018, see
below for details), resulting in sterile intersex XX individuals
without affecting the development or fertility of XY males. In
addition to genetic manipulations mentioned above, SRD can
also be achieved by silencing genes in the sex-determination
pathway using interfering RNA (e.g., Pane et al., 2002; Whyard
et al., 2015; Meccariello et al., 2019; Taracena et al., 2019). Other
sex-specific phenomena can also be used to engineer SRD (e.g.,
Fu et al., 2010; Kandul et al., 2020; Li et al., 2021).

CRISPR/Cas9 Technology Expands Ways
to Engineer Sex Ratio Distortion
An engineered X-shredder was developed in the malaria
mosquito An. gambiae that uses an endonuclease I-PpoI to
target ribosomal DNA repeats exclusive to the X chromosome to
induce X chromosome breakage during spermatogenesis (Galizi
et al., 2014). This results in the reduction of X-bearing sperm
and > 95% male progeny. Releasing this X-shredder mosquito
strain successfully suppressed a cage population, confirming
its potential for genetic control. Unlike the D-locus in Ae.
aegypti which is Y-linked and thus favors its own transmission
at the expense of the X chromosome, the I-PpoI X-shredder
is on an autosome and is transmitted at a 50% probability.
Attempts to engineer a more powerful Y-linked sex ratio distorter
have not been successful presumably due to inactivation of

the Y-linked distorter transgene during meiosis (Turner, 2007;
Taxiarchi et al., 2019; Alcalay et al., 2021). As an alternative,
the I-PpoI X-shredder in An. gambiae was integrated into a
CRISPR/Cas9-based gene drive (Simoni et al., 2020) that targets
the female doublesex (dsx) isoform as previously described
(Kyrou et al., 2018). This new strain produces male-only
progeny and eventually crashed cage populations in only 10–
14 generations with a starting gene drive frequency as low as
2.5%, demonstrating the potential for large-scale applications
(Simoni et al., 2020). Large cage trials that incorporated mosquito
ecology showed further promise as the dsx gene drive suppressed
the mosquito population within a year without selecting for
resistance to the drive (Hammond et al., 2021).

An X-shedder was also developed using an RNA-guided
CRISPR/Cas9 nuclease to target the X chromosome in An.
gambiae (Galizi et al., 2016). The use of a programmable
CRISPR/Cas9 nuclease has facilitated the development of
X-shredders in other insect species including D. melanogaster
(Fasulo et al., 2020) and C. capitata (Meccariello et al.,
2021). All that are required are guide RNAs that target
X-specific sequences/repeats and a male germline promoter
that directs the expression of the Cas9 nuclease at the
appropriate stage during meiosis. A bioinformatic pipeline
was developed to identify X-specific sequences for shredding
(Papathanos and Windbichler, 2018). Single cell RNA sequencing
could enable discovery of appropriate promoters [reviewed
in Compton et al. (2020)].

DISCUSSION: INSECT SEX RATIO
DISTORTION IN THE ANTHROPOCENE

We discuss insect SRDs from three main perspectives in the
context of the Anthropocene. First, we consider whether or
not climate change may impact the sex ratio of wild insect
populations. It is not yet clear whether climate change will
introduce instability to the otherwise relatively stable sex-
determination pathways in some insects. It is also not clear how
climate change may affect the naturally occurring SRDs including
those mediated by endosymbiotic bacteria. However, sex-biased
heat-tolerance has been shown in diverse insects which may lead
to shifting sex ratios in response to climate change (Edmands,
2021). Temperature can also affect female fertilization and alter
the sex ratio in Hymenoptera parasitic wasps (Moiroux et al.,
2014). One study demonstrated that longer drought periods
caused by a delay in the timing of summer rainfall in the
Mediterranean region led to a female sex ratio bias in the acorn
Weevil (Bonal et al., 2015). Endosymbiotic manipulation of sex
ratio in Pezothrips kellyanus Thrips is influenced by abiotic
factors such as temperature (Katlav et al., 2022). It has also been
suggested that temperature may differentially impact male and
female body size, mortality, protandry, and population-level sex
ratios of wild bees (Slominski and Burkle, 2019).

Second, engineered SRDs have shown great promise in
controlling insect pests of agricultural and medical importance
as discussed in previous sections. These efforts are critical to
help sustain agriculture and improve human health. However, a
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less discussed but perhaps equally important application of SRDs
relates to conservation of wildlife or endangered species that are
under the threat of insect-borne infectious diseases (National
Academies of Sciences [NAS] et al., 2016). For example, only 20 of
the 46 recorded forest bird species in Hawaii are still extant in the
wild (Fortini et al., 2015). Many of these species are threatened
by avian malaria, transmitted by the Culex quinquefasciatus
mosquito. The presence of avian malaria constrains these birds
to a narrow range of habitats that are unsuitable for the mosquito
(Samuel et al., 2011). Climate change is expected to broaden the
distribution of C. quinquefasciatus, thereby further shrink the
habitat range for susceptible bird species (Benning et al., 2002;
Ahumada et al., 2009; Samuel et al., 2011; Fortini et al., 2015).
Integrating SRD-mediated mosquito population suppression
strategies into the long-term conservation efforts would allow
Hawaiian forest birds to reclaim lost habitat. New genomic
resources1 and newly established genome-editing methods (Feng
et al., 2021; Purusothaman et al., 2021) for C. quinquefasciatus
provide the foundation for SRD development.

Finally, the potential environmental impacts of the engineered
SRD control strategies should be critically evaluated in the
context of current methods. Current insect control methods rely
heavily on insecticides and increasing resistance has significantly
reduced their effectiveness. Some widely used insecticides
such as neonicotinoids, which were previously thought to
be safe and highly target-specific (reviewed in Jeschke and
Nauen, 2008), have been shown to have potential health risks
(Thompson et al., 2020), can impact non-target invertebrates and
insectivorous birds (Hallmann et al., 2014; Pisa et al., 2015), and
potentially contribute to the decline of honeybees (Rundlöf et al.,
2015). Genetic control strategies are species-specific as they all
1 https://www.ncbi.nlm.nih.gov/assembly/GCF_015732765.1

require mating and thus a direct impact on non-target species is
not anticipated. However, some of the SRD-mediated methods,
especially the ones involving gene drives, are very powerful and
could potentially eliminate a pest species from a large region,
which may have ecological consequences. There are ongoing
efforts to fine-tune, confine or neutralize the power of some of
the gene drive systems (Vella et al., 2017; Kandul et al., 2019;
Noble et al., 2019; Li et al., 2020, 2021; Taxiarchi et al., 2021).
It is unlikely that any one control measure will be the “silver
bullet.” Integration or selective implementation of a set of control
measures most appropriate to the specific goals and the social and
environmental context will likely be most effective. Therefore,
continued development of a diverse range of genetic control
methods for insect pests are important for promoting sustainable
agriculture, improving One Health, and preserving wildlife.
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