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Editorial on the Research Topic

Evidential Statistics, Model Identification, and Science

WHY THIS RESEARCH TOPIC

We have undertaken this Research Topic for several reasons: First to promote and disseminate the
ideas and techniques of evidential statistics to ecologists and evolutionary biologists so that their
research might benefit from the increased clarity that evidential thinking engenders. And, second
to encourage statisticians to think how their own work relates to this emerging approach to the
fundamental problems of statistics.

HOW TO READ THIS VOLUME

Selecting an optimal order to read the papers of this Research Topic requires decisions on the part
of the reader. The papers are not ordered in any developmental fashion, but simply by the order that
they were first published. Another difficulty is that there are two target audiences for this Research
Topic: First, quantitative scientists, primarily ecologists, and evolutionary biologists, who might
wish to apply evidential thinking to their own research; and second, statisticians who might be
interested in furthering the technical development of evidential statistics.

Table 1 lays out the primary themes considered in each paper and identifies authorship
abbreviations. Those readers who would like to begin with statistical principles, then move to
applications, and conclude with more philosophical considerations might read the topic in the
order of Dennis et al., Ponciano and Taper, Lele b, Taper et al., Shimodaira and Terada, Markatou
and Sofikitou, Ferguson et al., Claeskens et al., Toquenaga and Gagné, Stewart and Blume, Jerde
et al., Lele a, Brittan and Bandyopadhyay, Scheiner and Holt. For readers whomight prefer to begin
with philosophy, then move to application, and finish with technical details, a reasonable order
might be: (Brittan and Bandyopadhyay, Scheiner and Holt, Jerde et al., Toquenaga and Gagné, Lele
a, Stewart and Blume, Ferguson et al., Claeskens et al., Dennis et al., Ponciano and Taper, Lele b,
Taper et al., Markatou and Sofikitou, Shimodaira and Terada).

WHAT IS EVIDENTIAL STATISTICS

Statistics is arguably the most powerful of all scientific instruments. For the last century, statistics
has been dominated by two alternative approaches: Error statistics1 and Bayesian statistics.

1By error statistics we mean that subcategory of frequentist statistics that uses error probabilities as the primary inferential

quantity including Fisherian significance, null hypothesis significance testing, Neyman-Pearson hypothesis testing, and severe

testing. The term classical statistics is sometimes applied to this grouping, but this can be considered a misnomer as Bayesian

statistics predates these methods considerably.
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Unfortunately, both approaches suffer from technical and
philosophical problems (see Taper and Ponciano, 2016 for
discussion). These problemsmake the instrument of statistics like
the Hubble telescope before its optics were corrected in 1993: A
fantastic tool not living up to its full potential.

We believe that the evidential approach can provide a similar
technical correction to statistics. Evidential statistics is a cluster of
statistical methods and approaches being developed to meet a set
of desiderata or meta-criteria that were selected so as to impose
desirable inferential properties on those methods (see Jerde et al.,
for a list of desiderata).

The central question for evidence is simple: Which of
two models of reality is better supported by the data? More
technically, evidence is a data-based estimate of the difference
of the divergences of each of the distributions implicit in two
models to the data distribution resulting from an unknown true
generating process (see Lele, 2004; Taper et al.). Several salient
features of the evidentialist perspective are immediately obvious:
First, evidence is comparative, second, neither model is given a
favored status, and third, that a “true” model is not assumed to be
in the model set.

These guiding principles allows evidential statistics to draw on
and refine elements from error statistics, likelihoodism, Bayesian
statistics, information criteria, and robust methods to create
an approach that smoothly incorporates model identification,
model uncertainty, model comparison, parameter estimation,
parameter uncertainty, pre-data control of error, post-data
assessment of uncertainty, and post-data strength of evidence
into a single coherent framework.

SOME IMPLICATIONS OF EVIDENTIAL
STATISTICS FOR SCIENCE

The implications of evidential statistics for science are manifold.
For brevity, we focus here on the impact an evidential approach
could have on the replication crisis (Pashler and Wagenmakers,
2012). The replication crisis presents a profound challenge to
both statistics and science. As more replication of scientific
studies is attempted, it is being found that studies tend not
to replicate at their nominal rates. This is undermining both
trust in statistics by scientists and trust in science by the
general population.

Virtually all models are to some degree misspecified (see
Taper et al., for a technical definition of “misspecified”).
Misspecification in itself is not a bad thing. A true model would
be enormously complex and would be neither comprehensible
nor estimable. What is dangerous is inference that doesn’t
acknowledge misspecification. With Neyman-Person Hypothesis
testing (NPHT), error rates become distorted when both models
are misspecified. Error rates can be less than, equal to, or
greater than their nominal rates (Dennis et al.) making nominal
rate replication extremely unlikely. Furthermore, under some
reasonable model space geometries, a NPHTwill select the wrong
model with probabilities that go to 1 as sample size increases
(Dennis et al.). In contrast, evidential model selection reliability
seems in simulation to be estimated unbiasedly (Taper et al., T
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2019) and all evidential error rates go to 0 as sample size increases
(Dennis et al.).

None of Fisherian significance (FS), null hypothesis
significance tests (NHST), or NPHT can produce evidence
for the null model (Dennis et al.). This is problematic because
often it is the null which of scientific interest. Statisticians teach
that “absence of evidence is not evidence of absence,” but the
need of scientists to say something about the null model forces
this warning to be often ignored. In evidential statistics reference
and alternative models are always correctly treated symmetrically
(Dennis et al., Taper et al., Jerde et al.) for inference, although this
does not imply that decision thresholds need to be symmetric.

When scientists, reviewers, and journals recognize that FS,
NHST, and NPHT do not produce evidence for the null, a
common response is publication bias, the tendency not to publish
studies with attained P < 0.05 (Franco et al., 2014). This “file
drawer problem” creates several biases in the literature. First,
of course, is the lack of studies showing evidence for the null.
More insidiously, because all tests are stochastic, a number of
studies are published falsely showing significant evidence for
the alternative (Type I errors). These are not balanced in the
literature by the many studies in the file drawer.

The immense pressure on scientists to publish leads many,
intentionally or unintentionally, into questionable research
practices to avoid the file drawer problem. One of these is “cherry
picking,” the retroactive selection of data and/or statistics so as
to achieve significance (Ioannidis, 2019). Another is HARKing,
Hypothesizing After Results are Known (Kerr, 1998). Both have
drastic effects on the replication crisis.

Evidential analysis gives scientists statistically correct
language (Taper et al.) to speak about strong evidence for the
null vs. the alternative, strong evidence for the alternative vs. the
null, and evidence that doesn’t clearly distinguish between the
two models. All of which are of scientific interest. Even results
that can’t distinguish between models tell us where more data
is needed. The results of any well-designed scientific study now
have meaning and could potentially be publishable—regardless
of significance.

Undertaken in an evidential statistics context, HARKing is
a legitimate and even beneficial practice (Taper and Gogan,
2002). The evidence in HARKing has always been clear, although
estimation of the uncertainty remained a problem (Taper
and Lele, 2004). Bootstrapping of evidential comparisons now
improves the understanding of the uncertainty of even HARKed
results (Taper and Lele, 2011; Taper et al., 2019, Taper et al.).

COMMENTS ON THE ARTICLES

Shimodaira and Terada
At the heart of ecology is a search to better understand and
characterize the relationship between species as well as that of
a group of species and their environmental variables. On the
other hand, a central topic in evolutionary studies is inferring
the ancestral relationships of a set of extant species. In both
cases, graph theory has become the theoretical foundation upon
which the biological edifices in these two fields are constructed.
In ecology, species are thought as nodes in a diagram and the

relationships between species are represented as edges uniting
any two nodes. In evolution, a phylogenetic binary tree is a
diagram representing the evolutionary relationships among a set
of extant species, which are shown as the tips (leaves) of the tree.
Each interior node in the tree connects with three other nodes:
two descendants and one ancestor.

The binary phylogenetic trees are called bifurcating trees
because there are two branches leading out from each interior
node. Proceeding from the present-day species of interest
backwards in time under this binary framework eventually leads
to a common ancestor, the root of the tree. In that context,
one particular “tree topology” is one specific construction of the
possible set of relationships among the species of interest and
represents a single hypothesis about the ancestral relationships
between these species, all the way back to their most recent
common ancestor. How many such hypotheses can one posit
with n species? With two species the answer is one, with
three species the answer is three, with four it’s fifteen, with
five it’s one hundred and five and in general, with n species
it’s (2n− 3)!/

(

2n−2 (n− 2)!
)

. For example, for six species, the
number considered by Shimodaira and Terada one could posit
945 such trees.

In such setting, it quickly becomes obvious that good
treatments of the statistical problems of multi-model selection
and multiple hypotheses testing are key to making any progress
in this area. Previously, the leading approach to deal with the
problem of selecting among these models (hypotheses) the best
representation of reality used NHST. This body of work was
started by Kishino and Hasegawa (1989), and continued by
Shimodaira (1998, 2002) and Shimodaira and Hasegawa (1999).
Shimodaira and Terada now goes one step further and provides a
novel methodology of shifting the phylogenetics question away
from: “is a newly estimated tree topology significantly similar
to the unknown, true species topology?” and instead ask: “from
this set of models, which tree topology and group of models
are significantly closer, in a KL distance spatial configuration
sense, to the unknown, true topology?” To do so, Shimodaira
and Terada estimate a spatial configuration of models in a three-
dimensional model space, a geometrical construction very much
like that of Ponciano and Taper. However, these two approaches
differ in that while Shimodaira and Terada rely on a shifting
combination of NHSTs and NPHTs for inference, Ponciano and
Taper use a non-parametric self-entropy estimation to construct
a model projection in a model space that can be used as
the point to do a science-based examination of critical model
attributes that allow a model to get closer to the generating
process. The methodology of Ponciano and Taper is geared
toward being coupled with uncertainty estimation and examining
the strength of the evidence for a given model using the
approach suggested by Taper et al. One should note that although
(Shimodaira and Terada) are testing alternative hypotheses
(H0:µ ∈ R versus H1:µ ∈ Rc), the tests are not standard NP
tests. Truth does not lie in either hypothesis, but instead is being
projected onto themanifoldR∪Rc. Further, the pseudo data being
used to generate the distribution of the test statistic does not come
from H0, but is generated by a non-parametric bootstrap. Thus,
the difference between the inference in Shimodaira and Terada
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and Taper et al. may be little more than the statistics they choose
to present.

Scheiner and Holt
This paper takes the readers out of the weeds and forces them to
look simultaneously at the trees and the forest. Deeply informed
by both the history and the philosophy of science, the manuscript
points out that evidential statistics formally only deals with the
relationships among models and data; Scheiner and Holt then
ask how evidential statistics can inform either the generation
or the support for general and constitutive theories. Clearly it
can because Peirce’s abduction (Peirce, 1974) can be thought
of as a conceptual adequacy measure for models, hypotheses,
or theories, while modern abduction, i.e., inference to the
best explanation (Haig, 2009) can be thought of as conceptual
evidence for the same.

In an analogy to biological evolutionary theory, Scheiner and
Holt discuss how model selection, an evidential process, can act
as a selective force to winnow the models included in constitutive
theories. Scheiner and Holt further suggest that pattern matching
as well as Whewell’s consilience and coherence (Forster and
Wolfe, 1999) might possibly be utilized in formal procedures for
quantifying the evidence supporting one theory over another.

Despite the excellence of this article, Scheiner and Holt do
sin against science in suggesting that sometimes statistics is
not necessary2. They claim for instance that if something never
occurs then no statistics is necessary. To which a statistician
would query, “never occurs in how many trials?” The evidential
impact of something never occurring is very different in
experiments of 1 trial, 4 trials, or 8 trials (see Jerde et al.). Because
they are writing as theoreticians, Scheiner and Holt’s sin is only
venal. For theoreticians, statistics and even data, are always
optional. The job of theoretical science is to construct alternative
internally consistent possible worlds. The job of empirical science
is to determine which of those possible worlds best describes the
real world—and for that, statistics is always needed.

Jerde, Kraskura, Eliason, Csik, Stier, and
Taper
Jerde et al. describe the motivation for, and the logic of, scientific
inference using evidential statistics and demonstrate the utility of
the evidential approach by tackling a long-standing controversial
question in ecological physiology: How does standard metabolic
rate (SMR) scale (intra-specifically) with individual body mass,
and is this scaling similar among species? For fish, theoretical
scaling rates of 0.67, 0.75, and 1.00 have been proposed. Empirical
estimates of scaling coefficients vary tremendously among studies
and generally all have large uncertainties leaving the theoretical
question unprobed. Jerde et al. curate a large data set composed of
a total of 1,456 observations in 55 separate trials on 12 species, all
using current state of the art techniques for measuring SMR. The
use of linear mixed effect models allowed (Jerde et al.) to combine
all of these trials for inference.

2In prepublication conversations on this point, we told the authors that they could

say whatever they wanted in their paper, but that the final word would belong to

the editors.

Four suites of four models using random and fixed effects
carefully explore the impacts of species, trial (within species),
and temperature on the scaling of SMR with body mass. Model
families were evaluated using the Schwarz information criterion
(SIC, also known as the BIC). The SIC is a consistent criterion and
the comparison of SIC values is an evidential procedure. Within
and between model suites, evidence for specific values of the
scaling coefficient were compared using profile 1SIC curves. A
1SIC value comparing two models >7 indicates strong evidence
for the model with lower SIC.

Two model suites with a free parameter estimate of the
metabolic scaling, separated themselves only by a 1SIC of 1.5,
were strongly differentiated from all others. Both had fixed effects
for temperature and random effects (intercepts) for species. The
best model had the log(weight) slope vary randomly across
species (with modest variation), while the second-best model
had a common slope over all species. In the best model the ML
estimate for the mean scaling coefficient is 0.89 with a strong
evidence profile 1SIC interval spanning 0.82–0.99.

The evidence strongly indicates that none of the a priori
theoretical scaling coefficients describe the scaling behavior in
real fish.

Dennis, Ponciano, Taper, and Lele
Mathematics, and in particular probability, have long been
intertwined with biology. The theoretician J. E. Cohen adroitly
summarized the transcendence of the synergy between these
fields with his essay “Mathematics is biology’s next microscope,
only better; biology is mathematics’ next physics, only better”
(Cohen, 2004). Key to the success of this interaction between
these fields is the recognition that fundamental hypotheses in
biology can be translated using the languages of mathematics,
probability, and statistics into propositions than can be clearly
probed. The increase in possibilities with such synergism is
so dramatic that in some cases, it’s as if a new portal to
a field of scientific inquiry becomes available. Yet, becoming
enamored with model construction and the phrasing of novel
explanations of biological phenomena can sometimes obscure
the analyst’s vision and the realization that by its very human
nature, mathematical models are limited constructs of biological
processes. Mathematical models are indeed misspecifications
of natural processes. Understanding the effects of model
misspecification in our scientific inquiry should be paramount.
This is the focus of Dennis et al. These authors assess analytically
and numerically the performance of Neyman-Person Hypothesis
testing (NPHT), Fisher significance testing (NHST), information
criteria, and evidential statistics under model misspecification.

As mentioned above, evidential statistics seeks to quantify
the strength of the evidence in the data for a reference model
relative to another model. This goal is achieved through an
evidence function, which is simply a statistic for comparing two
models. Dennis et al.’s evidence function of choice was Schwarz
Information Criterion, or SIC (Schwarz, 1978). The salient
property of this and all evidence functions is that their associated
probabilities of making a wrong model choice approach 0 as
sample size increases. These probabilities, analogous to Type
I and II errors in the Neyman-Pearson Hypothesis Testing
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(NPHT) framework are in fact pre-data error rates. Royall (2000)
showed that these probabilities measure the chances of obtaining
weak misleading-evidence as well as strong misleading-evidence.
Dennis et al. shows that in a context where both models are in
fact mathematical misspecifications of reality, making the wrong
model choice refers to deeming as best a model that is not
the closest to the true generating process model. By the same
token, misleading-evidence simply corresponds to obtaining
observations that either weakly or strongly support a model other
than the one that is the closest to the data-generating process.

Unlike the classic NPHT and Bayesian approaches, the
Evidential Statistics paradigm provides sound guidelines to
evaluate inferential errors when none of the proposed statistical
models are a perfect representation of the natural, data-
generating process. The NPHT framework depends critically on
either the Null or the Alternative hypotheses being a perfect
representation of the data generating mechanism and then
fixes the Type I error probability irrespectively of sample size
and thus problematically assesses the evidence against the null
hypothesis and remains silent with respect to the evidence
for the null hypothesis. The asymmetry of the NPHT error
structure leads to difficulties in interpretation of hypotheses
tests. The decision to pick an alternative model over a null
hypothesis in and of itself is not controversial as it has
some intuitively desirable statistical properties: for example, the
probability to reject the null hypothesis given that the alternative
is true converges to 0 as sample size increases. However, the
probability of erroneously choosing the alternative when the
null is true remains stuck at the chosen level alpha regardless
of how large a sample size is collected. Matters get more
complicated when it is considered that the original Neyman-
Pearson theorem assumes that the data was generated under
one of the two models but provides no guidance whatsoever
in the event of model misspecification, a scenario commonly
encountered in science. The fact that in scientific practice
model comparison rarely stops at two models further muddying
the interpretation of experimental results using the NPHT.
To be fair, overconfidence in model selection procedures also
results when the model misspecification is ignored in Bayesian
Statistics (Yang and Zhu, 2018).

The evidential approach proposes fixing cutoff values for the
evidence statistic, not the error probabilities. Under this concept
of evidence, the value of a statistic like the likelihood ratio is
evidence, not an error rate that is pre-set. Then, the evidential
error probabilities both converge to 0 as sample size grows large.
Finally, under this evidential statistics approach, the conclusion
structure of say, a comparison between two models H1 and H2

has a trichotomy of outcomes: (i) strong evidence for H1, (ii)
weak or inconclusive evidence, and (iii) strong evidence for H2.

Some, not all, information criteria commonly used for model
selection are evidence functions. While the AIC only penalizes
the likelihood function using the number of parameters, the SIC
is also scaled by the sample size. As a result, as sample size
increases, the error in deeming a model as “best” using the SIC
statistics becomes vanishingly small. Dennis et al. show that this
desirable property, called “Information consistency” is lacking in
the AIC. Inconsistent criteria, such as the AIC, tend to overfit

at all sample sizes. Hence, the AIC is not an evidence function
because it is not information consistent.

Although all paradigms of statistical science (NPHT, Bayesian
statistics, Evidential Statistics) have flaws (reviewed in Lele
a, b), the Evidential Statistics paradigm possesses more
desirable characteristics for the quantification of uncertainty and
ultimately, for the design of inferential statements about the
models’ proximity to the true, generating process.

Brittan and Bandyopadhyay
Written by a pair of philosophers of science, Brittan and
Bandyopadhyay provides a good entry into the Research Topic.
Despite maintaining a high level of intellectual rigor, Brittan
and Bandyopadhyay avoids getting bogged down in technical
statistical detail. The authors review the logical structures for
scientific evidence: Hypothetico-deductive testing, Popperian
falsification and corroboration, Fisherian significance, Neyman-
Pearson hypothesis testing, the severe testing of Mayo, Bayesian
confirmation, and statistical evidence.

The authors are equal opportunity balloon poppers pointing
out the limitation of all methodological approaches. Brittan
and Bandyopadhyay focus on the strengths, weaknesses,
and complementarity of statistical evidence and Bayesian
confirmation. Contra the prevailing scientific mythos, Brittan
and Bandyopadhyay demonstrate that Bayesian inference is
“irreducibly personal.” Bayesian methods do a good job of
quantifying personal beliefs, and thus of informing personal
decisions. Echoing Lele a; Brittan and Bandyopadhyay contend
that non-informative priors are not objective and suffer from a
variety of other problems. In contrast, statistical evidence does
objectively quantify the relative support in data for specified pairs
of models even though the models put forth for comparison may
be generated subjectively.

Science is plagued by a suite of cognitive biases. Being
aware of them can mitigate their impact. The authors note
that each methodology works best to answer fairly narrow but
different questions. Greater methodological self-consciousness
on the part of scientists to match their choice of statistical
approaches to match their scientific questions would promote
scientific progress.

Brittan and Bandyopadhyay close on the same hopeful
note and metaphor as do Scheiner and Holt. Despite the
undeniable subjectivity of individual scientists, Science itself may
achieve a “Darwinian Objectivity” when the mutational force of
subjective scientific creativity is filtered by objective evidential
model selection.

Ponciano and Taper
Information criteria have had a profound impact on modern
science because they allow researchers to overcome the
inadequacies of NPHT and tackle the multi-model selection
process. Although model selection via information criteria gives
the analyst an estimate of which probabilistic approximating
models are closest to the generating process, information
criterion comparison does not solve the problem of knowing
how good the best model is. Indeed, the absolute distance to the
generating process is not estimated through this process.
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This caveat is all the more important when it is considered
that in science, models are commonly misspecified. In this
work, the authors resolve this shortcoming by designing a
methodology to estimate a geometric representation of all the
models under consideration along with the generating process.
Such representation is a projection of all the models at hand into
a two or three-dimensional space. As well, the location of the
generating process in this representation is fully estimated. To
estimate this model projection, the authors examined five key
insights from Hirotsugu Akaike’s original work. These insights
reveal the deep, yet easy to grasp, geometrical nature of Akaike’s
formulation of the AIC. Ponciano and Taper extend Akaike’s
geometrical interpretation and propose visualizing all models at
hand into a reduced space. This reduced space representation
applies ordination techniques to the models themselves so
that the analyst may see and estimate the divergence between
each model and every other model including the generating
process itself.

Ponciano and Taper’s solution starts from the observation
that while standard information criterion analysis considers only
the divergences of each model from the generating process,
the divergences amongst all approximating models, typically
ignored, are indeed estimable. As a test bed for their ideas, the
authors consider two ecological scenarios, one of them involving
an individual-based model simulation framework that generates
data to which different abundance models can be fitted and the
second one involving structural equation models.

The authors also compare their approach to model averaging
and show that model projection is not as sensitive as model
averaging to the composition of the set of candidate models being
investigated. Model averaging artificially favors redundance of
model specification because the more models are developed in
any given region of model space, the more heavily this particular
region gets weighted. Furthermore, examining the resulting
model space configuration can lead to an in-depth analysis of
what are the model attributes that change from one model to the
next that make it so that a model will get closer and closer to the
generating process. This examination is the first step to explore
models outside the bounds of the available model set, whereas by
using model averaging, by definition, the analyst cannot do so.

Uncertainties around the estimation of model space
estimation are yet not fully worked, but Taper et al. offers a
first, non-parametric bootstrap approach to begin examining
such question. Model projection methodology should be the
starting point to do a science-based examination of critical
model attributes that allow a model to get closer to the
generating process (see also Toquenaga and Gagné). Finally,
although Ponciano and Taper use the Kullback-Leibler, KL,
divergence as the fundamental distance measure, the model
projections methodology could be extended or adapted to any
other metric.

Ferguson, Taper, Zenil-Ferguson,
Jasieniuk, and Maxwell
There are a vast number of information criteria. Academic
arguments about which is best are intense and often vitriolic.
Ferguson et al. indicates that these arguments may be a tempest
in teapot.

Seeking to improve model identification techniques for
complex models with inter-dependent parameters, the authors
modify Bozdogan’s Information Complexity Criteria, ICC,
to make them consistent and invariant to more kinds of
transformations. To validate their suggested new criteria,
Ferguson et al. perform a vast array of performance comparisons.
Twenty-five information criteria are investigated: Two classical
efficient criteria (AIC and AICc), two classical consistent criteria
(BIC and BIC∗), three forms of Bozdogan’s ICC, and 18 new
modifications of the ICC. All of these criteria were compared
for their ability in attaining three different model selection goals:
Selecting models with minimum prediction error, identifying the
form of the generating model, and estimating the KL divergence
to the generating process. All of this is done under 3 different
classes of generating and approximating models, 3 different
sample sizes, 3 different levels of process error, and 3 different
levels of collinearity.

Ferguson et al. recommend one of their combined forms
[BIC+2CvE(9)] as achieving all measures of quality well under a
broad range of modeling frameworks and having the theoretical
advantage of being both scale invariant and consistent. However,
it is important to note that No IC was best for any goal over all
conditions and that All IC performed generally well for all goals.

Two important lessons should be taken from Ferguson et al.:
First, much more attention needs to be paid to the uncertainty of
model identification. And second, for these goals to be achieved
sample sizes need to be larger in all model classes than is generally
the case in ecology.

Claeskens, Cunen, and Hjort
Perhaps the most used statistical tools by ecologists are
abundance count models. Simply counting the number of
individuals of every species observed in a particular community
is the point of entry to deeper studies aiming at understanding the
generation and maintenance of organisms’ diversity. Profound
questions examining the processes driving ecological stability,
resilience, resistance, invasion, and persistence all begin with
being able to accurately ascertain organisms’ abundances. In our
joint decades of teaching and mentoring, time and again count
models keep coming back as some of the main instruments
of statistical inference sustaining masters’ theses and PhD
dissertations in biology, wildlife ecology and conservation.
Ecologists are typically not only interested in estimating one or
the other model parameters leading to particular predictions, but
often see parameter estimation as the by-product of what they are
typically after, which is understanding which hypothesizedmodel
components better represent the underlying natural processes
generating the count data at hand.

Claeskens et al. propose and further elaborate on a
methodology that may revolutionize the reaches of an ecology-
driven statistical analyses and in particular, multi-model selection
for models of count data. The main idea of the Focused
Information Criterion (FIC) approach is to provide a model
selection framework where the comparison and the ranking
is formally defined according to the scientific quest at hand.
Recognizing that different scientific teams might ask different
focused questions of the same data and list of candidate models,
Claeskens et al. design a methodology to focus the model
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selection process using different functions of the parameters
of interest. When mainstream model selection tools are used
in ecology and in a given scenario a model is chosen as the
best model, practitioners are often left wondering why, in a
specific scientific sense, such model is indeed the best model.
FIC offers a theoretically sound methodology to obtain better,
more precise estimates of a quantity of interest. For countmodels,
such quantity is often the probability of a rare event occurring.
As arbitrary or stale as it may sound at first, understanding and
estimating accurately rare events in ecology has always been
at the center of key explanations of diversity. Rarity, or “rare
counts,” have been for a long time (e.g., Patil and Taillie, 1982)
hypothesized to be a critical component of explanations of how
hyper-diverse communities can be maintained. Such was also
the conclusion of one of the most recent and cited explanations
of the maintenance of diversity in tropical forests published by
Levi et al. (2019). As it turns out, the Focused Information
Criterion of Claeskens et al., which seeks to minimize the bias
and the variance of a quantity of interest, works particularly
well for estimating the probability of rare events. In line with
the rarity comments above, Claeskens et al. show as examples a
situation where the focus of the inference is estimation of the
probability of observing counts of a species above an arbitrary
number. Importantly, the authors show how other information
criteria like the BIC, although they may address the problem
of determining which model is the closest to the true data
generating mechanism, may not point toward the models that do
the best job at estimating for instance, the tail of a distribution
of counts. By allowing for a flexible specification of different foci
of interest, Claeskens et al. provide a welcome addition to the
toolbox of the evidentialist. This tool is not only conceptual but
is crystallized in a practical, easy to use library for R users, the
“fic” library.

Markatou and Sofiktou
Most of the papers summarized so far share a key point:
a reliance on the Kullback-Leibler divergence as the main
instrument to develop and exemplify the theory and practice
of Evidential Statistics. A natural reaction of any statistician to
such heavy reliance on a single metric should be to ponder
what would happen if different metrics or distances are used.
Can the desiderata of evidential statistics be kept under different
measures of divergence between the generating process and
any approximating model, or amongst models themselves?
Would the theoretical and asymptotic warrants of evidential
statistics hold under different distance measures? How can
statisticians visualize the strength of evidence under different
measures? How does a measure of strong evidence using the KL
divergence translates to other scales of divergence? These and
other questions are approached using philosophical and rigorous
statistical techniques in the contribution by Markatou and
Sofikitou. Importantly, Markatou and Sofikitou’s contribution
builds upon the pioneering concepts of model adequacy by
Lindsay (2004) and evidence functions by Lele (2004). Notably,
the authors propose an explanatory analysis tool called a
standardized distance ratio plot that can be used to visualize
the strength of evidence provided for or against hypotheses of

interest using different divergence measures. Hence, this paper
represents itself growth in the field and marks a clear path for
future research. Indeed, of all the contributions in this special
issue, this one is perhaps the one topic that is most ripe for further
research and study. An open direction that seems promising is
shining light on the behavior of different statistical divergence
measures under model misspecification. Whenever we give
seminars in statistics departments about evidential statistics, the
question of usage of other divergence measures invariably comes
up. We therefore encourage both, a close reading of this paper
and thinking about building extensions to these results using
Markatou and Sofikitou’s work as the foundation.

Stuart and Blume
New statistical approaches often face resistance from empirical
scientists. It can help acceptance if a new technique seems
familiar. Stuart and Blume cleverly disguise an evidential
procedure with the face of a p-value, something that virtually
every working scientist is familiar with. It does look like a p-value
in that the statistic can take on values of 0, 1, and everything
in between. Stuart and Blume even strengthen the familiarity by
calling it a SGPV or second-generation p-value.

Of course, a SGPV is not a p-value, it is not even a probability.
The SGPV is better than a p-value. The question of interest
is whether an unknown, but estimated, parameter is in an
interval null or is outside of the interval null. A p-value or a
null hypothesis significance test (NHST) can indicate that the
parameter is likely outside the null, but neither can give you
support that it is inside the null. Conversely, an equivalence test
can give you support for the parameter being inside the interval
but not for being outside the interval.

Evidence like, the procedure divides the range of possible
value for the SGPV into 3 regions: The point SGPV = 0,
which indicates strong evidence the parameter is in the interval
null. The point SGPV = 1, which indicates strong evidence the
parameter is not in the null. And, the region of all values in
between, which indicate that the data are consistent with both
hypotheses and which way the evidence is tipping.

Stuart and Blume also demonstrate another important
evidential property. The SGPV is consistent; the probability of
misleading evidence goes to 0 as sample size increases.

The SGPV is very flexible and can be applied retroactively to
any scientific literature in which a statistical interval is published.
Stuart and Blume claim that SGPV is applicable to any type of
interval confidence, support, or credible. The authors spend the
bulk of the paper demonstrating good statistical properties for
the SGPV under a wide range of circumstances.

Lele a
It is undeniably true that State-Space Models (SMMs) or more
generally, hierarchical statistical models, nowadays occupy a
central role in ecology and evolution. SMMs are used to
study the population dynamics of animals with complex life
histories, to estimate abundances under detection limitations
and heterogeneity (among individuals, across space, and in
time). Entire statistical ecology books for graduate students
and researchers alike with titles around “hierarchical models
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in ecology” now fill the electronic and physical bookshelves of
modern ecologists and academicians. As well, social media with
short instructionals, blogposts and even tweets by the authors
of these books are consumed voraciously by graduate students
needing to solve complex problems in the face of non-standard
datasets. Software authors in turn, face the challenge of putting
out for consumption accessible programs that can weather usage
by anybody interested in applying a given hierarchical model.
Over recent years, this high demand for accessible solutions to
complex problems has facilitated the establishment of uncritical
use of modern statistical machinery.

Lele a approaches the consequences of such uncritical use
head-on by clearly illustrating with real-life examples the
predicaments brought about by using non-informative Bayesian
analysis. Indeed, non-informative Bayesian analysis tends to be
nowadays the default setting under which complex statistical
models in ecology are fitted. In the name of pragmatism, it is
often argued that in modern, extensive big data sets the sample
size is so large that the likelihood information “swamps” any prior
effect and that effectively, the data will “speak for itself.”

Lele a carefully delineates the flaws in such reasoning and
vividly details how and why wildlife management decisions can
vastly suffer from such uncritical use of Bayesian techniques. In
particular, he shows that because of the lack of parameterization
invariance of non-informative Bayesian Analysis, all subjective
Bayesian inferences can be disguised as “objective,” non-
informative Bayesian inferences. Furthermore, cryptic biases can
be introduced in the resulting analyses because the induced priors
on functions of parameters are not non-informative.

Three other serious flaws are then discussed besides these
two. However, even if the author had presented only these two
problems, practitioners, ecologists and wildlife managers should
take note, because if the results of an uncritical non-informative
Bayesian analysis is subject to unstated and unqualified biases, it
may be easily challenged in the legislature and in the court of law.
For completeness, professor Lele emphasizes that hierarchical
models can be and are analyzed using the likelihood and
frequentist methods. That is, any Bayesian analysis can be
transformed to a likelihood analysis by data cloning.

Lele b
Uncertainty is a fundamental part of any inference, but the
depth of its complexity is often not adequately appreciated. This
paper, Lele b, gives a surprisingly readable review of many of
the issues involved with statistical uncertainty. Lele b begins
with a short list, culled from the literature, of desirable features
for uncertainty quantification procedures: (1) transformation
invariance, (2) uncertainty measure reflect data informativeness,
(3) ascertainability, and (4) diagnostic potential.

The first, transformation invariance, implies that the
probability of an event occurring or not occurring is a reasonable
measure of uncertainty. This of course requires understanding
what probability is and the paper next discusses the two major
definitions of probability used by statisticians and scientists
alike: aleatory or frequency-based probability and epistemic or
belief-based probability.

For adherents of frequentist statistics, data (i.e., data sets)
are random realizations from a stochastic generating process.
Consequently, estimates of parameters inherit stochasticity
from the generating process through the stochasticity of data
sets. The distribution of parameter estimates over an infinite
number of random data sets is called the true sampling
distribution of the parameter. One can estimate a parameters
sampling distribution by bootstrap or analytic approximation.
The estimated sampling distribution contains a great deal of
information about the uncertainty of the procedure. Much of this
uncertainty is captured by confidence intervals. While arguing
for the utility of confidence intervals, Lele b points out they are
often misinterpreted.

Lele b points out that the target of a confidence interval is to
cover the true parameter, not to cover the parameter estimated
in another experiment. Another common way that confidence
intervals are misinterpreted is by failing to distinguish between
unconditional/pre-data and conditional/post-data intervals.
Both kinds of intervals are commonly used in the scientific
literature. In separate sections Lele b returns to the questions
of interval construction and interpretation from Bayesian and
evidentialist perspectives.

As pointed out by Brittan and Bandyopadhyay “any adequate
(‘reliable’) hypothesis must be both explanatory and predictive.”
It is only through the verification of predictions that the
ascertainment of models or hypotheses is possible. Lele b takes
this very seriously reviewing the representation of prediction
uncertainty in all three inferential paradigms. Further, a new
flexible approach to the calculation of an evidential predictive
density is suggested and its advantages, both demonstrated and
potential, are discussed.

The paper concludes by rehearsing the key features, strengths,
and weaknesses of the characterization of uncertainty in the
three paradigms in the light of the four desiderata. None is
perfect, but overall, the evidentialist most closely conforms.
All three paradigms require scientists to specify their models
and whether inference should conditional or unconditional.
Bayesian inference further requires the specification of priors,
while evidence requires the specification of an evidence function.
The last thing any reader wants to hear is that the quality of their
scientific inference depends critically on the active choices they
make—regardless of their statistical paradigm. Nevertheless, this
is precisely the last thing that Lele b says.

Toquenaga and Gagné
Genetic sequencing is becoming an increasingly important
tool in ecological and evolutionary studies. This trend has
been accelerated by the new techniques of “next-generation
sequencing,” NGS. These sequencing procedures work by
digesting a genetic sequence into many small fragments (called
reads), sequencing the fragments, and then inferring the original
sequence computationally. This is like the spy novel trope of
pasting a shredded letter back together.

With the scientific opportunities, come many statistical
challenges. There are many programs that make these
calculations. Unfortunately, they don’t agree—with each
other and because many of the programs involve stochastic
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searches, even between multiple runs of the same program.
Toquenaga and Gagné, use evidential principles to develop
methods to choose among the many putative sequences
offered by an array of sequencing software, to assess
how good the proposed sequences are, and even to
improve them.

The thinking in Toquenaga and Gagné is as follows: If
multiple algorithms produce multiple sequences, each must
be a model of the true sequence. If an appropriate function
for measuring the divergence between these sequence models
can be found, then the model projections in model space
methods of Ponciano and Taper can be used to understand the
relationships among the proposed models and even to a true
sequence. The Levenshtein edit distance (Levenshtein, 1966),
as a measure of the minimum number of changes needed to
equate two sequences from finite alphabets, offers itself as an
appropriate divergence.

Toquenaga and Gagné test this proposition by taking
a known genetic sequence and randomly breaking it
into a number of fragments (with potential overlap).
The number and distribution of fragment sizes are set
to mimic typical digestion results. In their test case,
Toquenaga and Gagné are able to construct, using non-metric
dimensional scaling, a two-dimensional map of the sequence
estimates produced by the various sequencing programs
compared by the authors. Their map correctly identifies the
best-proposed sequence.

In this test case, one of the programs is able to correctly
reconstruct the true sequence. However, such a felicitous
occurrence may not be general. Usefully, Toquenaga and Gagné
propose an approach that can suggest sequences likely to
improve on the set of mistaken sequences. They do this
by proposing new sequence models which are consensus
sequences of existing models and seeing where they fit into
the map.

Toquenaga and Gagné confirm their method with a
parametric bootstrap based on a specified true sequence. Implicit
in this is the potential to use similar bootstrapping to assess the
uncertainty in sequence construction.

Taper, Lele, Ponciano, Dennis, and Jerde
Taper et al. develops themes from two other papers in this
Research Topic. Dennis et al. show that in the presence of
model misspecification Royall’s universal bound on the strength
of misleading evidence does not hold. Lele b reminds us that
statical uncertainty comes in two forms: global/unconditional
and local/conditional.

To Royall’s regions of weak and strong evidence (Royall,
2000) the authors intersperse a third category, that of prognostic
evidence. This is evidence not so weak as to be dismissed nor so
strong as to be considered overwhelming. Thus, while evidence
is itself continuous, useful descriptive categories for considering
evidence are constructed.

Taper et al. show that even in the presence of model
misspecification the uncertainty in model identification
can be quantified in the form of non-parametric bootstrap
confidence intervals on evidence. This decouples evidence
and its uncertainty and allows scientists to consider both.
The authors consider evidence (either prognostic or strong)
for one model over another to be “secure” if the lower 5%
confidence limit on the evidence is above the preset prognostic
boundary, kp.

To demonstrate the utility of this approach, Taper et al.
make a detailed reanalysis of model selection in Grace and
Keeley’s (2006) classic structural equation modeling of post-
fire diversity recovery in California shrublands. The use of
evidence confidence intervals develops a much more nuanced
understanding of whichmodel components are likely to be robust
and which are equivocal.

Technically, Taper et al. use an improved version of the EIC
(see Kitagawa and Konishi, 2010). The improvements include:
(1) bootstrapping of the 1SIC rather than individual likelihoods
to incorporate the effects of misspecification geometry. And (2)
identification of components of EIC that correspond to global
and local inference.

The paper finishes with an extended discussion of the
interpretation of global and local inference in science.
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