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Milena Stillfried1, Robert Hagen1, Sophia Kimmig1†,
Tanja M. Straka2 and Stephanie Kramer-Schadt1,2,3
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Universität Berlin, Berlin, Germany, 3Berlin-Brandenburg Institute of Advanced Biodiversity
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The prevailing trend of increasing urbanization and habitat fragmentation

makes knowledge of species’ habitat requirements and distribution a crucial

factor in conservation and urban planning. Species distribution models (SDMs)

offer powerful toolboxes for discriminating the underlying environmental

factors driving habitat suitability. Nevertheless, challenges in SDMs emerge

if multiple data sets - often sampled with different intention and therefore

sampling scheme – can complement each other and increase predictive

accuracy. Here, we investigate the potential of using recent data integration

techniques to model potential habitat and movement corridors for Eurasian

red squirrels (Sciurus vulgaris), in an urban area. We constructed hierarchical

models integrating data sets of different quality stemming from unstructured

on one side and semi-structured wildlife observation campaigns on the other

side in a combined likelihood approach and compared the results to modeling

techniques based on only one data source - wherein all models were fit

with the same selection of environmental variables. Our study highlights the

increasing importance of considering multiple data sets for SDMs to enhance

their predictive performance. We finally used Circuitscape (version 4.0.5)

on the most robust SDM to delineate suitable movement corridors for red

squirrels as a basis for planning road mortality mitigation measures. Our results

indicate that even though red squirrels are common, urban habitats are rather
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small and partially lack connectivity along natural connectivity corridors in

Berlin. Thus, additional fragmentation could bring the species closer to its limit

to persist in urban environments, where our results can act as a template for

conservation and management implications.

KEYWORDS

species distribution models, data-integration models, occupancy models, point
process models, urban ecology, circuitscape analysis, MaxEnt models, connectivity

Introduction

Although urban sprawl is among the main drivers of
habitat loss and degradation, cities also offer suitable habitat
islands (Angold et al., 2006; Niesner et al., 2021) and can
function as stepping stones (Saura et al., 2014; Lynch, 2019), if
functional connectivity - exchange of genes, biomass or energy
- is prevailing (Baker and Harris, 2007; Braaker et al., 2014).
However, urban wildlife faces increasing challenges due to
growing anthropogenic pressure and predicting the distribution
of species in anthropogenic areas is therefore a crucial factor for
urban wildlife conservation and should build the basis for urban
planning (Fajardo et al., 2014; Casazza et al., 2021). Species
distribution models (SDMs) quantify the relationship between
observations of a species and the underlying environmental
gradients (Araújo and Guisan, 2006; Guisan et al., 2017),
and they encompass occupancy frameworks, machine-learning
algorithms and hierarchical modeling frameworks (Elith and
Leathwick, 2009; Kéry et al., 2010; Dorazio, 2014; Hefley and
Hooten, 2016). Occupancy models can be considered as SDMs,
as they allow for the estimation of the probability that an area
is occupied by a species based on (environmental) covariates
(Guillera-Arroita et al., 2015).

In order to receive accurate predictions by SDMs, it is
important to collect many observations, which allow a spatial
coverage of the heterogeneous, underlying landscape variables
(Phillips et al., 2006a; Guillera-Arroita et al., 2015; Guisan
et al., 2017). SDM methods are versatile, but routinely rely
on information about sampling locations and protocols to
model the species distribution as a function of environmental
covariates (Renner et al., 2015; Guisan et al., 2017). Structured
sampling, which determines spatial and temporal sampling
design for participants, is a formal procedure in distribution
modeling that offers high quality data by adding information
about the detection process (Royle et al., 2009; Guisan et al.,
2017). On the contrary, unstructured presence-only data that
has been collected opportunistically is often strongly biased and
needs correction before being considered for SDMs (Kramer-
Schadt et al., 2013; Guillera-Arroita et al., 2015). However,
results of SDMs based solely on unstructured data sets strongly
differ in their predictive performance compared to structured

designs (Tiago et al., 2017; Kelling et al., 2019; Planillo et al.,
2021).

Referring to SDMs, making use of multiple data sources
simultaneously is a promising avenue to improve ecological
inferences and predictions on dynamics of wildlife populations
(Koshkina et al., 2017; Farr et al., 2021). Therefore, data
integration frameworks have been developed linking multiple
data sources via combined likelihood estimation (Fletcher et al.,
2016; Farr et al., 2019). Although unified frameworks remain
rare, models using thinned point processes, which remove or
retain points according to probabilistic rules, showed superior
performance of combining unstructured and structured data
sources compared to inferences obtained from single data
sources (Dorazio, 2014; Fletcher et al., 2016; Koshkina et al.,
2017; Guilbault et al., 2021). A recent hierarchical modeling
approach by Renner et al. (2019) utilizes multiple data sources
while accounting for overfitting and spatial dependence of
observations via combined likelihood maximization.

The presence of multiple data sources is often fueled by the
increasing interest of people to participate in citizen science,
or, in a wider and more inclusive sense, community science
projects (CS, see also: National Audubon Society., 2018), often
in urban areas. With wider and more consistent availability of
smartphones and internet access, CS projects offer opportunities
to create valuable data sets by non-academic scientists, through
mobile apps for instance (Bonney et al., 2009; McKinley et al.,
2017). Even though structured designs are possible in CS
projects (e.g., Sullivan et al., 2009; Louvrier et al., 2021; Planillo
et al., 2021), the majority follow unstructured designs (van Strien
et al., 2013; Kamp et al., 2016; Arazy and Malkinson, 2021).
A common bias in unstructured CS projects is that they follow
a gradient toward easily accessible areas, which are sampled
intensely by participants, while other areas stay non-sampled
(Boakes et al., 2010; Geldmann et al., 2016). Therefore, results of
SDMs based solely on CS unstructured projects are potentially
distorted and often less accurate. Recent efforts combine CS
data with structured sampled data sets (Sullivan et al., 2014;
Starkey et al., 2017) and use supplementary sightings to validate
models from regularly sampled data sets for example, but also
to train model algorithms and boost their overall predictive
power in combined modeling frameworks (Fletcher et al., 2019;
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Renner et al., 2019; Isaac et al., 2020). Here, we assessed the
predictive accuracy of combined penalized hierarchical models
using semi-structured and unstructured mammal monitoring
data from CS projects in the metropolitan area of Berlin,
Germany. We selected Eurasian red squirrels (Sciurus vulgaris,
henceforth: red squirrel) as our model species given their wide
distribution across Berlin, their presence in a range of CS
projects, respectively, and their unmistakable appearance, which
makes them easy to identify by non-scientists, thus subsequent
results could be verified reliably.

Here, we asked how multiple available data sets could be
best used for constructing SDMs and how well models would
perform if based only on one data source. We hypothesized that
hierarchical SDM methods using data-integration techniques
would outperform those only considering a single data source.
We predict that models based on only one data source show
a clear bias to the conditions they were collected in despite
bias correction techniques. Furthermore, we hypothesized that
more reliable spatial predictions would allow us to determine
important movement corridors that maintain connectivity.

Methods

Study area

The city of Berlin (52◦31′ N, 13◦24′ E), located in
Eastern Germany, is completely surrounded by the federal state
Brandenburg, covers an area of 892 km2 with a population
of more than 3.75 million people (Statistical Office for Berlin-
Brandenburg., 2021). The green areas of Berlin vary from highly
frequented parks in the dense city center to large fragmented
forest remnants closer to the administrative border. The built-up
area and streets contribute to 58.8% of the surface, greenspaces
12.2%, forest 18.1%, water bodies 6.7 and 4.1% agriculture
(Senate Department for the Environment., 2019). Berlin is
located in a zone of moderate continental climate with a low
mean annual precipitation of 570 mm and mean temperatures
of 8◦C-10◦C (Senate Department for Urban Development und
Housing., 2018).

Study species

The red squirrel is a small, diurnal mammalian species
with a widespread distribution throughout the forests in Europe
and northern Asia (Thorington et al., 2012). The International
Union for Conservation of Nature lists the species as least
concern, but highlights a decreasing population trend, mainly
because of loss of natural habitats (Thorington et al., 2012;
Turkia et al., 2018). However, red squirrels successfully dwell in
urban habitats, where they can yield high abundances (Reher
et al., 2016; Hämäläinen et al., 2018, 2020). Red squirrels are

an example of a common urban adapter (Fischer et al., 2015),
although urban habitat suitability in the face of climate change
and increasing urbanization is still an open question. Red
squirrels are appreciated (e.g., fed and taken care of) by many
people due to their charismatic appearance (Lurz and Bosch,
2012; Shuttleworth et al., 2015). In our study area red squirrels
occur frequently, however without any reliable estimate of
the population size. They are accompanied by other typical
urban dwellers of all orders, including four mesocarnivores like
marten species (Louvrier et al., 2021) and a community of ∼90
bird species with raptors such as northern goshawk (Accipiter
gentilis) (Planillo et al., 2020).

Data collection

We analyzed red squirrel observations from two CS projects
with different sampling schemes (Figure 1):

(1) Camera trap data (n = 669 camera trap locations) formed
the semi-structured data set and were collected through a CS
project (“Wildtierforscher Berlin”). Camera traps were set up
in five phases in private or allotment gardens: autumn 2018,
spring and autumn 2019, and spring and autumn 2020. Camera
trap locations were selected by dividing the study area into
2 × 2 km grid cells (n = 287) to ensure spatial independence.
Camera traps were set up by participants following a strict
protocol, i.e., in a corner of the garden approx. 50 cm above
ground and pointing to an open area, i.e., the lawn, to capture
a wide angle (Louvrier et al., 2021). Each phase consisted of
four consecutive weeks, resulting in a binary detection/non-
detection matrix of four weeks for each of the five phases
(Table 2). (2) In parallel, unstructured presence-only data
of red squirrel sightings (n = 1450), were collected through
the platform “StadtWildTiere Berlin” (SWT)1 in another CS
project, containing only opportunistic observations. The Leibniz
Institute for Zoo and Wildlife Research collected and verified
sightings by participants since September 2018. Data considered
here included all observations until November 2020 and was
further pre-processed to reduce bias of inaccurate samples
(Appendix A: Presence-only data set pre-processing).

Environmental data

Environmental and anthropogenic covariates considered
as explanatory variables for the occurrence of red squirrels
were obtained from public online resources (Table 1).
Selection of covariates was motivated by existing literature
and important for red squirrel distribution (Lurz et al., 2005;
Kopij, 2014; Krauze-Gryz and Gryz, 2015; Reher et al., 2016;
Hämäläinen et al., 2018; Thomas et al., 2018). All covariates

1 https://berlin.stadtwildtiere.de/
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FIGURE 1

Study area with sampling locations of red squirrels. Camera trap surveys (black and orange dots) represent a semi-structured sampling design.
Unstructured presence-only data (red dots). Background map of Berlin created with R package d6berlin (Scherer 2021).

were tested for multicollinearity based on Pearson’s correlation
and only covariates with (r) < | 0.7| (Boslaugh and Watters,
2008) were considered (Appendix A: Supplementary Figure 6).

Species distribution models

We built five SDMs (M1-M5, Figure 2) with the semi-
structured and unstructured data sets. (M1) The unstructured
data set (presence-only) was fitted to MaxEnt model (Phillips
et al., 2006a; M2). A second MaxEnt model was fitted
including both the unstructured and the semi-structured
data set. (M3) The semi-structured data set was processed
in single season occupancy models accounting for imperfect
detection (MacKenzie et al., 2002). (M4) A combined likelihood
model based on inhomogeneous Poisson-Point-Process
models (IPPPM) integrated both data sets, accounted for
imperfect detection in both data sets via bias layers and
overfitting by adaptive least absolute shrinkage and selection
operator (LASSO) penalty and combined both likelihoods via
complementary log-log functions (Renner et al., 2019). This
model was taken as a reference model to compare the other
modeling approaches with. (M5) The same model was also
fitted as an area-interaction model (AIM) accounting for spatial
dependence of observations (Renner et al., 2019). Models
(M1-M5) were fitted with the same full set of environmental

covariates subsequently subject to individual model selection
processes based on Area Under the Curve (AUC) in MaxEnt
models (M1-2); Akaike Information Criterion (AIC) in
occupancy models (M3) or Bayesian Information Criterion
(BIC) in combined likelihood models (M4-5) respectively.
Consequently, the final models vary in their subsets of
environmental variables, hence are partially different in model
input parameters due to the model selection and fitting process
(Appendix B: Model parameters). Furthermore, models
vary in resolution, if computational burden required coarser
resolutions. If stated, bilinear interpolation was conducted in
the package raster (Hijmans, 2020).

MaxEnt models for presence-only data

(M1) The unstructured data set was sampled irregularly
across the study area, hence we used a bias file and restricted
background for the MaxEnt models to account for differences
in sampling effort and area (Kramer-Schadt et al., 2013; Steen
et al., 2019). To account for differences in the sampling effort,
we assigned raster cells without observations with a value of
0.1 (10% probability of sampling). Accordingly, areas with
overlapping observational buffers have higher probability to be
sampled by participants corresponding to counted observations
(Planillo et al., 2021). Additionally, we assume areas within
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a buffer of 500 m around every observation to be sampled
by participants (approx. 5 min walking distance; see Planillo
et al., 2021), restricting the background from which MaxEnt
determines environmental variation (Phillips, 2008). We ran
MaxEnt version 3.4.1 (Phillips et al., 2006b), included all
environmental variables (resolution: 10m) with the settings as
follows: maximum iterations = 2,000, maximum background

points = 100,000, replicates = 10 and a logistic model output.
The observation points were randomly assigned into 80%
training and 20% testing sets for a 5-fold cross-validation to
assess model performance and to obtain the AUC value that was
used to compared MaxEnt models (Fiedling and Bell, 1997). All
analyses were done in R 4.0.3 (R Core Team., 2020), MaxEnt
models were built with package dismo (Hijmans et al., 2020).

TABLE 1 Environmental variables considered for the SDMs (plots for all variables in Appendix A: Supplementary Figures 4, 5) based on red squirrel’s
needs and human influence factors (see main text).

Variable (units) Description & Processing Resolution Year Source

Supply green (cat.) Supply with greenspace Processing: forest
types added as greenspace, the original
data assigns forests in a different category

10 m 2016 1(P)

Distance greenspace (m) Distance to closest greenspace Processing:
forest included as greenspace with mosaic
function from the R-package raster
(Hijmans, 2020).

10 m 2020 1(P)

Distance to trees (m) Distance to closest tree Processing: 1)
Merge Forest and single tree layer 2)
distance calculations in R-package raster
(Hijmans, 2020)

10 m 2020 1(P)

Distance to old tree patches (m) Distance to tree patches > 25 years with
more than 10 cells (10× 10m). Filtered
with R-package grainscape (Chubaty et al.,
2020).

10 m 2020 1(P)

Temperature (◦C) Air temperature in 2 m height at 4.00 AM 10 m 2015 1

Green Capacity (m3/m2) 3D-model of green volume. Simplified
model with cylinder instead of treetop
calculation

10 m 2017 1

Coniferous trees (%) Percentage of coniferous trees
(100× 100m) with R-package raster
(Hijmans, 2020).

10 m 2020 1(P)

Favorable trees (%) Percentage of favorable trees for red
squirrels. Tree species selection is based
on earlier publications (Krauze-Gryz and
Gryz, 2015). (Appendix A:
Supplementary Table 3)

10 m 2020 1(P)

Distance to streets (m) Distance to closest road 10 m 2015 2

Traffic volume (count) Median of daily motorized vehicles using
a specific street. Processing: Focal mean
analyses with moving window approach
(300× 300m) with R-package raster
(Hijmans, 2020).

10 m 2014 1(P)

Population density (inhabitants/m2) Human population density 10 m 2017 1

Imperviousness (%) Percentage of impervious surfaces
Processing: Streets added as impervious
surface, the Copernicus map excludes
streets. Combined map was created by
using the mosaic function from the R
package raster (Hijmans, 2020).

10 m 2015/2018 3(P)

Multiple Burdens (count) Count of single environmental burden of
air pollution, noise pollution, climatic
stress, lack of greenspace,

10 m 2015 1

Distance to border (m) Distance to administrative border as
urbanity metric

10 m 2020 4

Source 1: Berlin Environmental Atlas, 2020; (https://www.stadtentwicklung.berlin.de/geoinformation/fis-broker/index_en.shtml).
Source 2: Federal Agency for Cartography and Geodesy, 2020; (https://www.bkg.bund.de/DE/Home/home.html).
Source 3: European Union, Copernicus Land Monitoring Service, 2010; (http://land.copernicus.eu/pan-european/high-resolution-laye).
Source 4: Geofabrik GmbH, 2018 (https://download.geofabrik.de/europe/germany/berlin.html).
P = Data was further processed (Appendix A: Environmental covariates).

Frontiers in Ecology and Evolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2022.881247
https://www.stadtentwicklung.berlin.de/geoinformation/fis-broker/index_en.shtml
https://www.bkg.bund.de/DE/Home/home.html
http://land.copernicus.eu/pan-european/high-resolution-laye
https://download.geofabrik.de/europe/germany/berlin.html
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-881247 July 28, 2022 Time: 15:10 # 6

Grabow et al. 10.3389/fevo.2022.881247

FIGURE 2

General workflow for generating species distribution models with different data input. *IPPPM: Inhomogeneous point process model (reference
model); **AIM: Area interaction model.

(M2) The second MaxEnt model was run with the previous
settings, but with the additional camera trap locations with red
squirrel sightings (n = 229). Camera trap locations were not
considered to be biased regarding inaccurate samplings and
therefore not corrected additionally.

Occupancy model for camera trap data

(M3) We fitted single season occupancy models. We chose
a static model without colonization or extinction rates, because
camera trap locations varied spatially between sampling seasons
[see Appendix B: Occupancy model (M3)]. However, seasonal
effects were considered as possible covariates on detection and
occupancy. We designed 18 candidate models guided by two
main hypotheses: 1) Red squirrels are highly dependent on
natural resources, especially older tree patches. 2) Red squirrels
prefer to avoid areas with increased human disturbance, such
as impervious surfaces. We selected the most promising model
within a model selection process (Appendix B: Supplementary
Figures 1–3) by AIC corrected for small sample size (AICc,
Burnham et al., 2002) and AICc weight (AICcw). Models with
1AICc > 2 were considered different and models with an
AICcw value greater than 0.4 were considered to have more
support and relative goodness-of-fit. All occupancy analyses
were conducted with unmarked (Fiske and Chandler, 2011). The

model with the lowest AICc and highest AICcw was retained
for predicting occupancy across the study area. The R-package
AICcmodavg (Mazerolle, 2020) was used for a MacKenzie and
Bailey goodness-of-fit test, an applied parametric bootstrap
approach of 1,000 samples, calculating observed and expected
values, a chi-square (X2) test and overdispersion parameters
for the most reliable model based on the prior model selection
process (MacKenzie et al., 2004; Mazerolle, 2020). In addition to
the 10 m resolution of the environmental data, we applied the
same set of occupancy candidate models on a coarser grid cell
resolution of 500 m to be sure to capture important features of
the surroundings as well.

Combined likelihood models
(IPPPM + AIM)

(M4) IPPPM: For the combined modeling framework
considering both data sets, we fitted the model with a
combined penalized likelihood presented in Renner et al. (2019).
The assumption of spatial independence of the observation
locations was tested via inhomogeneous K-function simulation
envelopes (Ripley, 1977; Diggle, 2013) performing Monte-
Carlo simulations (n = 10) in R-package spatstat (Baddeley
and Turner, 2005). (M5) AIM: A second approach was
considered, because presence-only locations indicated minimal
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spatial dependence. Thus, we fitted an area interaction model
(AIM) considering both data sets instead of an IPPPM
(Renner et al., 2019) by measuring the overlap of spatial buffers
around observation points within a given distance (here: 200m)
and fits the likelihood with a maximum pseudo-likelihood
(Besag, 1977).

Both models (M4 + M5) were run with the settings of
1,000 model fits with 25 iterations. Detection probabilities were
modeled as a complementary log-log function of environmental
variables. As penalty function, we used the adaptive lasso penalty
pre-supplied with additional information from one prior run
with the standard lasso penalty. For the canonical link, the
Poisson distribution was selected as the link family and BIC was
used for model selection (Schwarz, 1978). To model red squirrel
distribution, we considered a smaller set of environmental
covariates and used a stepwise selection of input parameters.
Due to computational burden, environmental covariates were
resampled in a bilinear interpolation into 100× 100 m grid cells
in the raster package (Hijmans, 2020).

Urban habitat connectivity

To identify the most important habitat patches, we used the
reference model (M4), delineated patches of 500 × 500 m for
connectivity and applied a threshold of MaxKappa after model
evaluation with 10,000 random background points in R-package
dismo (Hijmans et al., 2020). After applying threshold cut-off
values, important habitat patches (n = 384) were assigned and
connectivity between these was assessed.

We created a resistance map that relies on the previous
habitat suitability map of the reference model and inform this
cost layer with additional biological barriers and corridors based
on the species’ ecology. We extended the pure habitat suitability
map with additional ecological knowledge on our target species,
because previous work points out that connectivity models that
are based on SDMs are established but rather conservative and
provide lower values of connectivity, thus rather underestimate
flow between patches (Blazquez-Cabrera et al., 2016). Although
connectivity measurements that are solely based on habitat
suitability are potentially misleading (Scharf et al., 2018), they
can be further informed by expert opinion or biological traits
(Stuart et al., 2021). First, we inverted the habitat suitability
values to assign low resistance values to highly suitable habitats
and vice versa (Poor et al., 2012; Stevenson-Holt et al., 2014;
Stuart et al., 2021). Second, we assumed all waterbodies and
roads with average daily traffic equals or higher than 25,000
vehicles (approx. 17 cars/min) as complete barriers for red
squirrel crossings. On the other hand, we assumed all trees,
given as a concrete number by the environmental layer, and
forest patches as important corridors for connectivity. We
assigned the tree raster cells with low resistance values based
on the number of trees, even though the underlying habitat

suitability was low in those grid cells. We choose a manipulation
of the inverted habitat suitability map to gain finer scaled
and more appropriate corridors, which would also connect
areas that are unsuitable habitats, but potentially important
connectivity corridors. All calculations were conducted using
Circuitscape 4.0.5 (McRae et al., 2008) with focus on all possible
connections between important habitat patches (see Appendix
B: Circuitscape).

Results

The semi-structured camera trap data set consisted of
669 sampling locations, of which 192 camera traps had at
least one red squirrel detection. Detection rates differed over
the five seasons (proportion of camera trap with detection
range from 0.24 to 0.39; Table 2). The unstructured presence-
only data set originally covered 1,450 observations, but spatial
filtering reduced observations to 800 to be potentially included
in SDMs. Underlying environmental gradients differed within
the sampling locations regarding the two different sampling
schemes with the semi-structured data set being distributed
closer to the outskirt areas, while presence-only observations are
biased towards urbanized areas (Figure 3).

To test the performance of our reference model (M4), results
of other model approaches were assessed in direct comparison
(Figure 5):

The IPPPM (M4) corrected the sampling bias individually,
which resulted in a very strong bias towards the city centre in
the unstructured data set (Figure 4C) and just a minor bias
in the semi-structured data set of camera traps (Figure 4B).
However, results of the inhomogeneous K-function simulation
envelopes still highlight minimal spatial clustering, even after
spatial filtering. Consequently, area-interaction terms instead
of point processes were tested additionally (M5, Appendix B:
Supplementary Figure 6–8) and selected based on the K.inhom
function of R-package spatstat. The adaptive lasso penalty
(0.0545) was applied as a safeguard against overfitting, resulting
in a reduced influence of covariates in the global model. Model
estimates indicate red squirrels to be negatively related to
impervious surfaces (β = −0.221 ± 0.098) and areas with high

TABLE 2 Detection histories of camera trap survey data set.

Season Cameras set up Cameras with detection
(*at least 1 red squirrel
detection in 4 weeks)

Autumn 2018 (4 weeks) 150 58 (38.7%)

Spring 2019 (4 weeks) 116 28 (24.1%)

Autumn 2019 (4 weeks) 133 34 (25.5%)

Spring 2020 (4 weeks) 122 33 (27%)

Autumn 2020 (4 weeks) 148 39 (26.4%)
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FIGURE 3

Examples for differences in environmental gradients covered by the different sampling data sets. (A) Impervious surfaces. (B) Distance to
administrative border (see Appendix A: Supplementary Figures 7–12 for a complete comparison of sampling locations).

FIGURE 4

(A) Reference model (M4): Red squirrel distribution model. Data integration approach using an inhomogeneous Poisson-Point-Process-model
and a combined likelihood maximization. (B) Bias correction for semi-structured data set. (C) Bias correction for unstructured data set.

focal green capacities (β = −0.167 ± 0.076), but positively with
short distance to greenspaces (β = −0.213 ± 0.089), and short
distance to tree patches with older trees (β = −0.175 ± 0.076).
Areas with higher human population were tended to be avoided
(β = −0.07 ± 0.032), Suitable habitats were largely predicted in
suburban areas, but also in larger parks, graveyards or housing
areas in more urbanized area (Figure 4A).

(M1/M2) Both MaxEnt models showed similar results, but
contrary to the IPPPM (M4): highly suitable habitat identified

by the reference model was neglected, but urban areas that are
unlikely to suit as considerable habitat were assigned with high
suitability values (Figures 5A–D). M1 (sighting data; training
AUC = 0.777, test AUC = 0.821) and M2 (sightings + camera
trap presences; training AUC = 0.717, test AUC = 0.798)
related relative probability of occurrence with young trees and
impervious surfaces, but differed in their results for the variables
“distance to greenspace” or “distance to administrative border”
(Appendix B: MaxEnt).
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FIGURE 5

Comparison of the single distribution models for red squirrels in Berlin. Left side: predicted models, right side: Difference between reference
model and respective model (overprediction = blue, underprediction = red). (A) MaxEnt model based on unstructured data set provided by
participants. (B) Difference between reference model (M4) and MaxEnt model. (C) MaxEnt model based on unstructured data set provided by
participants and camera traps with ≥1 observations. (D) Difference between reference model (M4) and MaxEnt model. (E) Occupancy model
with semi-structured data set. (F) Difference between reference model (M4) and occupancy model.

(M3) In the occupancy model, detection probability
averaged over all seasons was 0.437 (± 0.024), increasing in the
spring seasons to 0.633 (± 0.036). The modeling results clearly
pointed to one global model after the model selection process,

indicating the same set of covariates as the reference model to be
important for the species distribution. The same global model
was also selected in the coarser resolution of 500 m, and had
an increased support compared to all other models. Occupancy
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FIGURE 6

Circuitscape model for connectivity of important habitat patches. (A) Cumulative current network and flow between important habitat patches.
(B) Identification of critical nodes after threshold application.

was positively influenced by high focal green capacities, areas
with little impervious surfaces and higher human population
densities, but negatively influenced by being close to greenspaces
(Figure 5E). However, the global model should be considered
with caution as the McKenzie and Bailey goodness-of-fit test
showed a high overdispersion with an estimate of c-hat > 4 and
a p-value <0.05, indicating the results as highly questionable
and not adjustable (Mazerolle, 2020). Comparing this model to
the reference model showed a clear neglect of suitable habitats
in the urban parts and potential overprediction of suburban
areas (Figure 5F).

The connectivity model based on M4 identified corridor
networks in the whole metropolitan area of Berlin, but crucial
areas for connectivity are mostly identified in areas with
higher urbanization, where resources for connectivity are rare
(Figure 6A). In these areas, the model highlights the importance
of urban parks and higher tree densities. After applying a fixed
threshold, areas assigned with high importance for connectivity,
a few parks and graveyards could be identified as bottlenecks for
connectivity. Other areas crucial for connectivity (Figure 6B)
were located mostly at very large streets, where a crossing is only
possible at very few intersections (e.g., bridges, tunnels).

Discussion

In this study, we compared SDMs based on single or
multiple CS data sets with different observational biases, data
quality and sampling scheme. As expected, the integrated
model was more likely to estimate red squirrel distribution and
highlighted the advantages of considering multiple data sources
for SDMs (Isaac et al., 2020). In the following, we first discuss

the novelty of the statistical approach integrating CS in an urban
context; and then we discuss the findings in the light of urban
wildlife conservation and green infrastructure planning.

Advantages of data-integration
approaches

Although data-integration techniques in SDMs are
relatively recent approaches, their potential has been shown
in both, simulation and applied studies: Dorazio (2014)
conducted simulation-based comparisons and found even
limited additional observations from a second data source
to improve SDMs performance. Koshkina et al. (2017)
combined occupancy data and presence-only data via IPPPM
and evaluated model performance by using simulated data
and subsequent application. Fletcher et al. (2016) combined
camera trap data with presence-only observations obtained
from a CS project, but ignored imperfect detection in the
observation process.

In this study, sparse and potentially biased camera trap
data alone estimated red squirrel distributions inadequately.
After integrating the presence-only observations sampled by
participants, we were able to demonstrate red squirrel habitat
being present in both, semi-natural and urban habitats, which –
to our knowledge – describes urban red squirrel habitats in
Berlin adequately and is furthermore in good agreement with
previous studies (Kopij, 2009, 2014; Reher et al., 2016; Thomas
et al., 2018). However, model evaluation and validation for
integrated models remains rather challenging (Zipkin et al.,
2021), especially if known biases exist or prediction errors are
likely influenced by data quantity or quality, hence traditional
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model assessment tools are partially in contrast to the principle
of data-integration itself – to include the maximum amount of
available data (Isaac et al., 2020).

Differences in suitability predictions

To understand the differences in SDMs and the potential of
data-integration approaches for urban planning, it is important
to consider differences in sampling schemes and accompanying
biases respectively. While unstructured sightings are often
biased towards easily accessible (Geldmann et al., 2016) or
biodiversity-rich areas, and not evenly distributed over the
sampling area, biases in camera traps designs are not as
obvious and easy to account for Kays et al. (2009), Kolowski
and Forrester (2017). In unstructured sightings, potential bias
represents mostly spatial distortion of sampling locations and
corrections are well accepted and broadly used. In our case,
models based on unstructured data sets neglected suitable
habitats and assigned nearly contrary results towards higher
number of observations in dense urbanized areas, even though
we corrected for sampling biases, as has been shown for
other species in urban environments (Planillo et al., 2021).
Surprisingly, results based on the semi-structured data set
also failed robust distribution estimation and simplified the
mechanisms of underlying environmental drivers too much,
hence overestimated habitat suitability in the urban outskirt
areas and omitted urban habitats in the center. This is possibly
due to the bias of the CS project focusing on private gardens and
allotments, which are usually not located within the city center
(Louvrier et al., 2021). Additionally, aiming at detecting multiple
species could have influenced detection rates noticeably (Meek
et al., 2014; Dyson et al., 2019).

However, red squirrels are frequent visitors of private
gardens (Baker and Harris, 2007), which compared to natural
or semi-natural habitat show higher varieties of plant species
and partially increased domestic animal densities (Paker et al.,
2014; Louvrier et al., 2021). Hämäläinen et al. (2020) found
an increase in red squirrel occurrence in urban areas explained
by changes in tree species composition and attraction by bird
feeders. On the other hand, Magris and Gurnell (2002) found
domestic cats to be the main death cause of red squirrels,
also corroborated by Fey et al. (2016). Neglecting species
interaction effects hence could further bias the results and
decrease reliability of SDMs (Kolowski and Forrester, 2017).

Besides spatial sampling effort, it is important to consider
detectability of species in surveys (Dickinson et al., 2010;
Dorazio, 2014). While species in urban areas are potentially
reported more easily in unstructured surveys because they
can be observed with less effort by people, it is potentially
challenging to observe them in areas with more vegetation
cover and higher trees typical of the outskirt of urban areas
(Di Cerbo and Biancardi, 2013). Moreover, red squirrels in
urban areas tend to be bolder compared to rural individuals;

potentially increasing detection probabilities in urban areas,
when surrounded by humans (Uchida et al., 2016, 2019;
Kostrzewa and Krauze-Gryz, 2020).

Suggestions for incorporating CS
projects in urban planning

The reference model using a data-integration approach
combining both data sets, showed how to leverage unstructured
data in SDMs, but higher accuracy of models could also
be generated by improved sampling schemes beforehand
(Planillo et al., 2021), for example by including absences,
revisitations or transect sampling. Furthermore, sampling
locations could be restricted or extended, so that sampling
follows the environmental gradients more evenly and represents
the background sufficiently. For example, notifications in apps
could inform participants about insufficiently sampled areas and
ask them to observe these to balance out the sampling design.
Nevertheless, there is the risk of integrating too many additional
parameters ultimately decreasing the motivation of volunteers
(Rotman et al., 2012) and potentially increasing effort for project
coordinators as well.

Furthermore, more structured collection of CS project
observations in central registers would increase data
consistency, as many projects aim for equal species with
the same extent (Young et al., 2019). CS data bases, for example
the semi-structured eBird project, show that constant and cross-
border projects can lead to successful scientific contributions
(Sullivan et al., 2009). Walker and Taylor (2017) successfully
modeled population changes in migratory bird species based
on eBird data, compared it to traditional survey methods and
found structured CS projects promising avenues for distribution
modeling. The accuracy of SDMs could also be increased by
considering other modeling techniques than the ones examined
in this study, for example integrating multiple species in joint
species distribution models that take information from other
species observations into account, or use latent variables to
account for additional effects, such as species interactions or
missing environmental covariates predictors (Warton et al.,
2015). However, in case of multiple data sets collected with
an overlapping extent, there is a clear indication that data-
integration approaches still outperform single-source models
(Fletcher et al., 2016; Koshkina et al., 2017; Isaac et al., 2020;
Fidino et al., 2022).

Urban red squirrel habitats and
connectivity

The connectivity model identified important habitat patches
and bottlenecks in connectivity as expected, highlighting
the importance of green structures in urban areas for
connectivity for red squirrels. A major corridor crosses
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the city along the river Spree, combining several parks
as suitable habitat patches and potentially linking the city
borders. However, the corridor does not fully follow the
river line due to massive impervious construction sites,
indicating that urban planning has already lost a huge
opportunity for wildlife-friendly urban development. This
identified most critical area for connectivity could also be
beneficial for other urban wildlife and act as a template for
implementing crossing sections or further conservation of
existing habitat patches.

While habitat fragmentation is a major threat in natural
habitats (Lurz et al., 2005), there are likely other factors
causing red squirrel occurrence in smaller urban habitat
patches. Previous studies on red squirrel habitats found differing
importance of fragmentation in urban areas. While Verbeylen
et al. (2003) associated permanent occupation only for patches
of at least 5 ha, Koprowski (2005) found fragmentation
not necessarily being a problem for red squirrels, if the
negative consequences be dampened by multiple fragmented,
but high quality habitat patches or by supplementary food.
Another survey conducted by Hämäläinen et al. (2018)
found red squirrel occurrence even in single trees, hence
a clear contrast compared to natural habitats. In general,
red squirrels in urban areas tend to travel shorter distances
for dispersal (Fey et al., 2016; Selonen et al., 2018), due to
energy savings or supplementary food, ultimately decreasing
the need for longer dispersal. In this study, the identified
critical nodes depend largely on the need to travel between
patches, resulting in risk to overestimate their importance for
overall connectivity. Surveys of urban red squirrels in Paris,
showed viable populations with high genetic variations, hence
highlighted urban fragmentation to be less important (Rézouki
et al., 2014). However, Thomas et al. (2018) analyzed red squirrel
habitats and found lowered sensitivity to fragmentation in urban
red squirrels, but highlighted that any further fragmentation
would decrease populations, indicating the species being close
to its limits. Furthermore, the importance of streets as barriers
in connectivity shows contrary results and there is a risk of
overestimating their importance; Magris and Gurnell (2002)
carried out a survey and found 36% of death causes were
attributed to roads, but Fey et al. (2016) showed roads would
not influence dispersal movements whilst still being avoided
and concluded that streets with infrequent traffic are more
dangerous, because squirrels are not used to it.

Here, we used circuit theory, based on electric current
flow to analyze red squirrel habitat connectivity, yet many
other options of modeling are available, including least-cost
path modeling, current flow, factorial least-cost path density,
resistant kernels, and randomized shortest path algorithm
(for an overview see: Simpkins et al., 2018; Diniz et al.,
2020), with different applications. However, omnidirectional
methods, such as Circuitscape, often show similar results
(Phillips et al., 2021); comparing the results to empirical data

showed reliable estimates of connectivity corridors, especially
when the species uses random exploration of the underground,
for example during dispersal movements (McClure et al., 2016).
We did not have access to additional movement data (e.g.,
collared animals) to identify the true range of movements in
Berlin (sensu LaPoint et al., 2015), hence research conducted in
that context should be ultimately considered for investigating
urban population dynamics of red squirrels.”

Conclusion

Combined data-integration approaches are more likely to
estimate true biological distribution of species, even if the input
data sets lack a structured sampling design. Our study highlights
that two common modeling techniques, such as MaxEnt and
occupancy, can omit or negate the habitat identified when both
techniques are not combined, pointing out the importance of
considering multiple data sources for urban planning when
conservation decisions should be included. However, data-
integration approaches for ecological studies requires unified
frameworks and implementation of advanced statistical tools
for model validation. Applying the data integration approach,
we identified critical hotspots for red squirrels in Berlin
and delineated an important corridor bridging the forests
outside the urban area. In this study, we showed how data
integration approaches could be used as a tool for combining
multiple CS projects that often depend on different sampling
schemes and efforts.
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