
fevo-10-875000 April 26, 2022 Time: 11:57 # 1

ORIGINAL RESEARCH
published: 02 May 2022

doi: 10.3389/fevo.2022.875000

Edited by:
Yan Hao,

Shandong Normal University, China

Reviewed by:
Yunxuan Dong,

University of Macau, China
Ling Xiao,

Xuzhou University of Technology,
China

*Correspondence:
Yongzhong Sha

shayzh@lzu.edu.cn

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Ecology and Evolution

Received: 13 February 2022
Accepted: 25 March 2022

Published: 02 May 2022

Citation:
Qu Z, Sha Y, Xu Q and Li Y (2022)

Forecasting New COVID-19 Cases
and Deaths Based on an Intelligent
Point and Interval System Coupled

With Environmental Variables.
Front. Ecol. Evol. 10:875000.

doi: 10.3389/fevo.2022.875000

Forecasting New COVID-19 Cases
and Deaths Based on an Intelligent
Point and Interval System Coupled
With Environmental Variables
Zongxi Qu1,2, Yongzhong Sha1,2* , Qian Xu1,2 and Yutong Li1,2

1 School of Management, Lanzhou University, Lanzhou, China, 2 Research Center for Emergency Management, Lanzhou
University, Lanzhou, China

The outbreak of Coronavirus disease 2019 (COVID-19) has become a global public
health event. Effective forecasting of COVID-19 outbreak trends is still a complex and
challenging issue due to the significant fluctuations and non-stationarity inherent in
new COVID-19 cases and deaths. Most previous studies mainly focused on univariate
prediction and ignored the uncertainty prediction of COVID-19 pandemic trends, which
may lead to insufficient results. Therefore, this study utilized a novel intelligent point and
interval multivariate forecasting system that consists of a distribution function analysis
module, an intelligent point prediction module, and an interval forecasting module.
Aimed at the characteristics of the COVID-19 series, eight hybrid models composed of
various distribution functions (DFs) and optimization algorithms were effectively designed
in the analysis module to determine the exact distribution of the COVID-19 series. Then,
the point prediction module presents a hybrid multivariate model with environmental
variables. Finally, interval forecasting was calculated based on DFs and point prediction
results to obtain uncertainty information for decision-making. The new cases and new
deaths of COVID-19 were collected from three highly-affected countries to conduct
an empirical study. Empirical results demonstrated that the proposed system achieved
better prediction results than other comparable models and enables the informative
and practical quantification of future COVID-19 pandemic trends, which offers more
constructive suggestions for governmental administrators and the general public.

Keywords: COVID-19, point forecasting, interval forecasting, artificial intelligence, environmental variables

INTRODUCTION

Risk prevention and control of major infectious diseases are essential for human health and social
stability. In recent years, with global warming, the deterioration of the ecological environment,
and the acceleration of urbanization, an increasing number of pathogenic microorganisms have
mutated, leading to the outbreak of major infectious diseases more frequently (Wu et al., 2017).

Abbreviations: ARIMA, auto regressive integrated moving average model; BPNN, back propagation neural network;
GRNN, general regression neural network; ANFIS, Adaptive Neuro-Fuzzy Inference System; LSSVM, least square support
vector machine; SCA, sine cosine algorithm; DFs, distribution functions; MLE, maximum likelihood estimation; TN-SCA-
LSSVM, SCA-LSSVM with NO2 and temperature; ECDC, European Center for Disease Prevention and Control; WAQI,
World Air Quality Index project.
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In December 2019, infectious pneumonia caused by a novel
coronavirus disease (COVID-19) was discovered and quickly
spread to more than 200 countries worldwide. With the global
novel coronavirus epidemic becoming more serious, the World
Health Organization raised the global risk of the COVID-19
epidemic to the highest level.

The COVID-19 epidemic was non-linear, dynamic, and
fuzzy, thereby increasing the difficulty of prevention and
control decision-making. Practical modeling approaches to
predict the spread of a novel virus in the population play
an essential role in the preparation and formulation of health
and economic policies of any government or authority figure.
When new cases increase at rates of thousands per day,
health care systems of even the most developed countries
are overwhelmed and unable to handle influxes of such large
numbers of patients. In overwhelming situations, timely outbreak
forecasting supports responsible agencies in being prepared and
in managing the response effectively. For example, by targeting
exclusion zones and scheduling economic activities, managing
medical resources, and planning for emergency hospitals,
effective forecasting is strategically essential for decision-makers
(Swapnarekha et al., 2020).

Recently, various models have been developed to forecast
the upcoming number of COVID-19 cases and its spread
in the near future. Epidemiological models have been widely
adopted in predicting COVID-19 cases and deaths. Many of
these models were based on the traditional SEIR model and
have been widely adopted (Li et al., 1999; Barmparis and
Tsironis, 2020; He et al., 2020; Ndaïrou et al., 2020; Pandey
et al., 2020). Additionally, statistical forecasting models, artificial
intelligence (AI) models, and hybrid forecasting models have
also been practical for epidemic prediction. For example, Ceylan
(2020) applied auto regressive integrated moving average model
(ARIMA) to forecast the epidemiological trend in Italy, Spain,
and France. Ghosal et al. (2020) used linear and multiple linear
regression methods to predict the number of deaths in India
over a short period of 6 weeks. Moftakhar and Seif (2020)
used the ARIMA model to forecast the number of patients
with COVID-19 in Iran in the next 30 days. Ala’raj et al.
(2021) developed a dynamic hybrid model based on SEIRD and
ARIMA models to provide long- and short-term forecasts with
confidence intervals. Ly (2020) employed an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to predict COVID-19 cases
in the United Kingdom. The results showed that data from
Spain and Italy increased the ability to forecast COVID-19
cases in the United Kingdom. Borghi et al. (2021) used a
machine learning model based on the multilayer Perceptron
artificial neural network structure, which effectively predicted
the behavior of four time series (accumulated infected cases,
new cases, accumulated deaths, and new deaths). Parbat and
Chakraborty (2020) used support vector regression (SVR) for
a 60-day forecast of COVID-19 cases in India based on time-
series data reported from March 01, 2020, to April 30, 2020.
Meanwhile, the combination and mixing of different models have
also regarded as effective ways to improve prediction, including
applications in different fields, such as economic modeling and
policy-making [18,19] (Stock and Watson, 2004; McAdam and

McNelis, 2005), electricity price forecasting (Yang et al., 2022),
environmental pollution (Hao et al., 2021), and COVID-19
forecasting (Castillo and Melin, 2020).

Although these methods have contributed significantly to the
field of COVID-19 prediction, most of the models mainly focused
on deterministic forecasts and ignored the uncertain information
in the forecasts, resulting in the inability of the government
disease control department to assess and manage epidemic risk.
Additionally, one area of research has been on the impact of
air pollution on new cases and deaths from COVID-19. It is
known that air pollution can result in several diseases, including
chronic respiratory diseases, stroke and cardiovascular problems.
Recent studies have identified links between air pollution (mainly
nitrogen oxides NO2 and PM2.5) and deaths and cases of
COVID-19. Travaglio et al. (2021) explored potential links
between air pollutants and COVID-19 mortality and infectivity.
They found that air pollutant concentrations, especially nitrogen
oxides and PM2.5, were positively associated with COVID-19
mortality and infectivity. Konstantinoudis et al. (2021) used
high geographical resolution to investigate the effect of long-
term exposure to NO2 and PM2.5 on COVID-19 mortality in
England. They found some evidence of an association of NO2
with COVID-19 mortality, while the effect of long-term exposure
to PM2.5 remained uncertain. Lian et al. (2021) reported that
urban lockdown was an effective method to reduce the number
of new cases, and nitrogen dioxide (NO2) concentrations can
be used as an indicator of environmental lockdown to assess
the effectiveness of lockdown measures. In some studies, the
influence of meteorological parameters on the transmission of
COVID-19 was discussed, and it was found that weather factors
could affect the spread of COVID-19 (Malki et al., 2020; Shi et al.,
2020). For example, Wu et al. (2020) analyzed the relationship
between temperature change and n COVID-19 pneumonia and
its impact on 166 countries. Wang et al. (2020) demonstrated that
temperature can significantly modify the spread of COVID-19 to
a certain extent and that there may be an optimal temperature for
virus transmission. The above studies have pointed out the effects
of environmental and meteorological factors on the survival and
spread of the virus. A tremendous number of studies support
that both nitrogen oxides and temperature play an important
role in the spread and infection of COVID-19, motivating the
current study to take environmental and meteorological factors
into account in the prediction of COVID-19. We sought to
determine whether the addition of these variables would improve
the outbreak prediction.

Hence, by taking into consideration the results of the above
works, this study utilized a novel point and interval data-
driven forecasting model consisting of a distribution function
analysis module, an intelligent point prediction module, and an
interval forecasting module. First, several distribution functions
(DFs) optimized by a metaheuristic algorithm were effectively
designed to analyze the characteristics of the COVID-19 series.
Furthermore, we used environmental features, such as nitrogen
dioxide (NO2) and temperature, as inputs to the multivariable
hybrid prediction model, which is a combination of the sine
cosine algorithm (SCA) and least square support vector machine
(LSSVM). Based on the DFs and point forecasting results, interval
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forecasting was designed to obtain uncertain information. The
new case and new death series collected from the top three
affected countries were used for the empirical study. We
compared the performance of the best data-driven univariate
model and the best multivariate model in an attempt to generate
better predictions.

Our main contributions are as follows:

1 A practical epidemic analysis and prediction tool based on
distribution function analysis, intelligent point prediction,
and interval forecasting modules are proposed for the
government and the public.

2 Environmental variables, such as NO2 and temperature,
were selected as inputs to construct a multivariable hybrid
prediction model.

3 Interval forecasting based on DFs and point forecasting results
can provide more uncertainty information for decision-
making.

The rest of the paper is organized as follows. Section
“Methodology” introduces the related Methodologies. Section
“A Framework of the Developed Hybrid Forecasting System”
describes the primary process of the proposed framework
of the developed hybrid system. Section “Data Description
and Evaluation Criteria” describes the research datasets and
the evaluation criteria of this study. Section “Experimental
Results and Analysis” discusses the forecasting results of
the proposed model and the comparative results with other
models. Finally, Section “Conclusion” concludes the critical
conclusions of this paper.

METHODOLOGY

Some related methodologies are introduced in this section,
including LSSVM, SCA, DFs, and interval prediction theory.

Least Squares Support Vector Machine
The support vector machine (SVM) proposed by Vapnik is an
essential method in machine learning that effectively resolved
pattern identification and classification tasks. The support vector
machine is aimed at a small sample problem, is based on
structural risk minimization, better solves the previous machine
learning model overlearning, non-linear, dimensional disaster
and local minimum problems, and has a good generalization
ability. However, this method has some defects, such as slow
training speed and poor stability when training samples on a
large scale, limiting its application scope (quadratic programming
problem needs to be solved in the learning process). Therefore,
Suykens and Vandewalle (1999) proposed the least squares
support vector machine (LSSVM) based on SVM, which
significantly reduced the algorithm’s computational complexity
and improved the training speed. The LSSVM is an extension
of the standard SVM. The algorithm transforms the solution
of the support vector machine from a quadratic programming
problem to linear equations. More details on the LSSVM can be
found in Suykens and Vandewalle (1999).

It is worth noting that different types of kernel functions can
be used in the LSSVM model, such as sigmoid, polynomial, and
radial basis function (RBF), which are commonly used in the
LSSVM model. RBF is a general choice of the kernel function
proposed in Keerthi and Lin (2003), requiring fewer parameters
and superior performance in applications. Accordingly, this study
identifies RBF as the appropriate kernel function:

K
(
xi, xj

)
= exp

{
−
∣∣∣∣xj − xi

∣∣∣∣ 2
/2 σ2} (1)

Sine Cosine Algorithm
Mirjalili (2016) proposed the SCA, which is based on sine
and cosine functions to explore different regions of the search
space. It can effectively avoid local optimization, converge to
global optimization, and effectively use the promising area of
the search space during optimization. In SCA, the search space
dimension is determined by the number of parameters required
for optimization. The SCA creates different initial random agent
solutions and requires them to use mathematical models based
on sine and cosine functions to swing outward or toward the best
solution.
−−→
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where
−→
xti is the current position at the tth iteration in

the ith dimension, lti is the targeted optimal global solution
and rand1, rand2, rand3 ∈ [0, 1] are random numbers. Eqs. (2)
and (3) use 0.5 ≤ rand4 < 0.5 conditions for exploitation and
exploration.

−−→
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(
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)
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(
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)
×

∣∣∣rand3 × lti −
−→
xti
∣∣∣ , rand4 ≥ 0.5

(4)

Distribution Functions
The probability distribution function has played an essential
role in time series analysis, resource evaluation, and interval
prediction in recent years. Researchers have tried to fit the basic
characteristics of historical data by various DFs, hoping to mine
the relevant characteristics, thereby deeply understanding data
uncertainty. This study used the weibull distribution, gamma
distribution, lognormal distribution, and Rayleigh DFs to study
the statistical characteristics of new Covid-19 cases and deaths in
three countries. The above DFs are shown in Table 1.

Interval Prediction Theory
Based on deterministic prediction, many studies (Song et al.,
2015; Xu et al., 2017; Tian and Hao, 2020) have proposed interval
prediction technology that can reflect the uncertain trend of
future values to provide uncertain information about time series,
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TABLE 1 | Four distribution functions.

Distribution functions Equations Parameters

Lognormal f (x,µ, σ) = 1
x
√

2πσ
exp

(
−
(ln(x)−µ)2

)
µ, σ

Gamma f (x, ξ, θ) = xξ−1

θξ0(ξ)
exp

(
−

x
θ

)
σ

Weibull f (x, k, c) = k
c

( x
c

)k−1 exp
(
−
( x

c

)k)
ξ, θ

Rayleigh f (x, σ) = 1
σ2 exp

(
−

x2

2πσ2

)
k, c

such as air pollutants, wind energy, macroeconomic economy,
and carbon trading prices. This type of interval prediction
is a dynamic interval prediction method that calculates the
uncertain information of future values based on point prediction
and DFs. Therefore, the performance of the interval prediction
model depends on the accuracy of the point prediction and
the estimation of the distribution function. To be specific,
assuming that the observation is Yt , at the significance level α,
the probability formula for the lower limit: L and upper limit: U
can be expressed:

P (Lt ≤ Yt ≤ Ut) = 1− 2α (5)

The above formula can also be described by the following
equation.

P
{
Lt ≤ Yt ≤ Ut

∣∣E (Yt) = ŷ
}
· P
{
E (Yt) = ŷ

}
= 1− 2α (6)

Additionally, we suppose that the forecasting values possess
similar DFs with the historical datasets. Therefore, once the DFs
of the original time series are determined, the estimated variance
can be obtained. As a result, the values of the upper and lower
bounds can be calculated with a certain confidence levelα.{

(Lt,Ut)| Lt ≤ Yt ≤ Ut,

∫ Ut

Lt
f
(
t
∣∣2̂ ) dt = 1− 2α

}
(7)

The above equation can also be expressed as:{
[̂L,Û]=[̂L,̂y][̂y,Û]∫ ŷ
L̂ f (t|2̂ )dt+

∫ Û
ŷ f (t|2̂ )dt=1−2α

(8)

A FRAMEWORK OF THE DEVELOPED
HYBRID FORECASTING SYSTEM

This section describes the details of the developed hybrid
architecture framework, as shown in Figure 1. The framework
consists of three modules: distribution function analysis,
intelligent point prediction with environmental features, and
interval forecasting.

Distribution Function Analysis Module
This module mainly implements characteristic data analysis of
raw epidemic data. First, the Weibull distribution, Rayleigh
distribution, Lognormal distribution, and Gamma distribution
are introduced to fit the epidemic time series. To obtain the
optimal estimation of model parameters, two different estimation
methods, namely, maximum likelihood estimation (MLE) and

a robust heuristic algorithm (SCA), are applied to evaluate the
parameters of different DFs. Finally, the most suitable epidemic
sequence distribution function is obtained by comparing the
fitting ability of 8 hybrid probability DFs.

Intelligent Point Prediction Module With
Environmental Features
The volatility and non-linearity of new cases and new deaths of
COVID-19 make modeling very difficult. A successful predictive
model requires optimization as well as sufficient data to drive it.
Previous studies have shown that some environmental variables
are highly correlated with epidemic changes, especially nitrogen
dioxide and temperature, which have a significant impact on
the epidemic trend of COVID-19 (Bauwens et al., 2020; Shi
et al., 2020; Wang et al., 2020; Travaglio et al., 2021). Thus, we
took environmental features, such as nitrogen dioxide (NO2)
and temperature, as inputs to construct a multivariable hybrid
prediction model. To develop an intelligent point prediction
model, we designed a LSSVM prediction model based on SCA
optimization, namely, the hybrid SCA-LSSVM. Specifically, the
SCA was introduced when training the LSSVM model, and the
parameters (i.e., σ, γ) of the LSSVM model were optimized by
the SCA algorithm to achieve high-performance forecasting.

Interval Forecasting Module
According to interval forecasting theory, interval prediction
of the COVID-19 epidemic can be achieved based on
the appropriate distribution function and point prediction
values of COVID-19.

DATA DESCRIPTION AND EVALUATION
CRITERIA

Data Description
The accuracy of the prediction mainly depends on the quality
of the data and requires sufficient historical data. This study
collected the data from the open dataset Our World in Data
[Coronavirus (COVID-19) Cases – Our World in Data], which
contains global daily data from the European Center for
Disease Prevention and Control (ECDC). Due to the significant
fluctuations and non-stationarity inherent in COVID-19, new
case and death series bring great challenges to predictions. To
verify the performance of the model, we used new cases per
100 thousand of the population per day as one of the predictive
variables:

New cases per 100 thousand =
new cases per day
Total Population

∗100, 000

(9)
The new deaths per thousand of the population calculated

according to Equation (10) were also predicted based on available
data.

New deaths per 100 thousand =
new deaths per day
Total Population

∗100, 000

(10)
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FIGURE 1 | The main procedure of the proposed system.

The World Air Quality Index project (WAQI) (Covid-19
Worldwide Air Quality data) provides a dataset covering air
quality for more than 130 countries, updated daily starting in the
first quarter of 2020. The dataset contains the data of each air
pollutant, i.e., CO, NO2, O3, SO2, PM10, and PM2.5, as well as
meteorological data including humidity and temperature.

We focused on the three major countries that have been most
strongly affected by COVID-19: the United States, India, and

Brazil. The data of new cases and new deaths per 100 thousand
of the population for the three countries, as well as the data
of NO2 and temperature for the same period, were selected
as input variables for the outbreak modeling. Notably, the first
observation time (or start time) and the length of the time series
are different for each country. Sample data from the United States
were collected from February 29, 2020, to March 10, 2021. Sample
data from India were collected from March 18, 2020 to March
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TABLE 2 | Eight evaluation rules.

Metric Equation Definition

MAE MAE = 1
N

∑N
n=1

∣∣∣∣yn −
∧

y
n

∣∣∣∣ The average absolute forecast
error of n times forecast results

RMSE RMSE =

(
1
N

∑N
n=1

(
yn −

∧

y
n

)2
)1/2

The root-mean-square forecast
error

MAPE MAPE = 1
N

∑N
n=1

∣∣∣∣ yn−
∧

yn
yn

∣∣∣∣× 100% The average of absolute error

TIC TIC =

√
1
N
∑N

n=1(yn−ŷn)2√
1
N
∑N

n=1 y2
n+

√
1
N
∑N

n=1 ŷ2
n

Theil’s inequality coefficient

IA IA= 1−
1
N
∑N

n=1(yn−ŷn)
2∑N

n=1(|ŷn−ȳ|+|yn−ȳ|)2
The index of agreement of

forecasting results

R2 R2
= 1−

∑N
n=1(yn−ŷn)∑N
n=1(yn−ȳ)

Coefficient of determination

IFAW IFAW= 1
N

∑N
n=1(Un − Ln) Interval forecasting average

width

IFCP IFCP = 1
N

∑N
n=1 bn, bn = {

1, if yn∈[Un, Ln]

0, otherwise Interval forecasting coverage
probability

10, 2021. Sample data from Brazil were collected from March
17, 2020, to March 10, 2021. Sample data were divided into two
parts: a training subset and a testing subset. We used 80% of
the total data as the training subset and the remaining 20% as
the test subset.

Evaluation Criteria
This study considered eight evaluation criteria to effectively
evaluate the model’s performance, as shown in Table 2.
Specifically, the MAE, RMSE, and R2 were chosen as error criteria
to determine the fitting level of these DFs. The MAE, RMSE,
MAPE, IA, DA, and R2 were used to reflect the prediction
performance of the point forecasting models. The PIAW and
PICP were used to measure the validity of the interval prediction.

Here yn and ŷn represent the actual and predicted values at
time n, respectively. N denotes the sample size. Ln and Un are the
lower and upper values of the interval forecasting, and bn means
a Boolean value.

EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we establish three experiments (Experiment I:
DFs of COVID-19 cases; Experiment 2: point prediction of
COVID-19 cases; Experiment 3: interval prediction of COVID-
19 cases) to illustrate that the proposed hybrid system can
effectively analyze the deterministic and uncertain information
of COVID-19. Specifically, Experiment I used four probability
DFs (Weibull, Rayleigh, Lognormal, and Gamma) to fit the
distribution of epidemic cases. The parameters of the four
probability DFs were optimized using the SCA algorithm. In
experiment II, a hybrid model with environmental features, TN-
SCA-LSSVM, was proposed for the point prediction of new cases
and deaths from COVID-19. Three countries were selected as
experimental cases and compared with the benchmark model
to verify the prediction accuracy of the proposed model. To
show the superior forecast performance of the hybrid model, five

benchmark models, namely, ARIMA, back propagation neural
network (BPNN), general regression neural network (GRNN),
LSSVM, and SCA-LSSVM, were introduced. Experiment III
calculated the interval prediction of new cases and new deaths
in three countries based on the best distribution function
determined in Experiment I and the point prediction results with
the highest accuracy in Experiment II. Details are shown in the
following sections.

Experiment I: Distribution Functions of
COVID-19 Cases
To obtain the characteristics of the COVID-19 series and
determine the optimal distribution function, four DFs (Weibull,
Rayleigh, Lognormal, and Gamma), were used to calculate the
distribution function of new COVID-19 cases and deaths. In
addition, the parameter assessment of DFs was an essential step.
Traditionally, the MLE method is used for parameter estimation
of DFS. However, this study employed a robust optimization
algorithm SCA to optimize the relevant parameters, and MLE
was used as a comparison method to illustrate the optimization
performance of SCA. Table 3 shows the estimated parameters of
the different DFs determined by the MLE and SCA methods. To
further select the optimal DFs, the MAE, RMSE, and R2 were
chosen as error criteria to determine the fitting level of these DFs.
Table 4 shows the values of the error results for the different
distributions of new cases and new deaths of the epidemic in
the three countries, and the bold values are the optimal results.
Among the four DFs of all datasets, the R2 determined by the SCA
algorithm was significantly larger than that of the MLE method.
At the same time, the SCA algorithm determined that the values
of MAE and RMSE were also smaller than those of the MLE
method. Thus, the SCA algorithm used in this paper had better
optimization performance and simulated the distribution of the
epidemic data exactly.

Furthermore, among the four DFs optimized by SCA, SCA-
Lognormal only achieved optimal simulation capability for
the new cases in the United States. SCA-Gamma achieved
optimal simulation performance for both the new deaths in the
United States and the new cases in India. SCA-Weibull obtained
optimal simulation ability for new cases and new deaths in
Brazil and India.

Experiment II: Intelligent Point Prediction
for COVID-19 Cases
In this experiment, an intelligent hybrid prediction model
coupled with environmental variables (TN-SCA-LSSVM) was
used to perform a point prediction analysis of new cases and
new deaths in three countries. The new cases and new deaths
of COVID-19 and the environmental variables (temperature and
NO2) were taken as inputs of the multivariable point prediction.
Thus, the number of input neurons of LSSVM was set to 4. To
evaluate the predictive advantages of the proposed hybrid model,
five univariate approaches, namely, ARIMA, BPNN, GRNN,
LSSVM, and SCA-LSSVM, were selected as benchmark models
for comparison. In addition, six evaluation criteria (MAE, RMSE,
MAPE, IA, DA, and R2) were used to reflect the prediction
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TABLE 3 | The parameters values of the different distribution functions are determined by MLE and SCA.

Countries Types of cases Methods Lognormal Gamma Weibull Rayleigh

µ σ θ k λ k σ

United States New cases MLE 1.5859 4.8799 235.4008 0.9975 232.5667 1.1314 221.8384

SCA 5.0481 0.8191 162.3509 1.3498 238.4217 1.0433 135.1476

New deaths MLE 1.4159 0.9973 2.0827 2.1522 4.5237 1.2630 3.6913

SCA 1.2491 0.7112 2.1612 1.9676 4.5382 1.4115 3.0889

Brazil New cases MLE 1.2901 4.5723 117.6314 1.2773 160.8250 1.3241 126.2440

SCA 4.8261 0.6909 70.6131 2.2244 176.4688 1.4984 122.9704

New deaths MLE 1.1251 0.9589 2.1763 1.6661 3.9725 1.5907 2.9499

SCA 1.2175 0.5933 1.5846 2.4602 4.2921 1.7905 2.9930

India New cases MLE 1.6692 2.4204 27.6680 0.8291 22.3740 0.9368 21.4061

SCA 2.7967 1.0588 27.4867 0.9043 24.9569 0.9138 15.6776

New deaths MLE 1.3955 −1.7107 0.3206 1.0024 0.3273 1.0529 0.2944

SCA −1.4439 1.1266 0.2868 1.0798 0.3507 0.9885 0.2440

TABLE 4 | The criteria values of different distribution functions of six datasets.

Countries Types of cases Criteria Lognormal Gamma Weibull Rayleigh

MLE SCA MLE SCA MLE SCA MLE SCA

United States New cases MAE 0.0839 0.0235 0.0441 0.0375 0.1634 0.0618 0.0420 0.0403

RMSE 0.1023 0.0351 0.0540 0.0447 0.1930 0.0827 0.0505 0.0476

R2 0.8750 0.9853 0.9652 0.9761 0.5553 0.9184 0.9696 0.9730

New deaths MAE 0.0973 0.0165 0.0287 0.0148 0.0280 0.0214 0.0816 0.0472

RMSE 0.1140 0.0217 0.0349 0.0181 0.0375 0.0245 0.0949 0.0533

R2 0.8455 0.9944 0.9855 0.9961 0.9833 0.9929 0.8930 0.9662

Brazil New cases MAE 0.0930 0.0526 0.0611 0.0327 0.0465 0.0223 0.0503 0.0491

RMSE 0.1084 0.0587 0.0695 0.0392 0.0513 0.0298 0.0585 0.0572

R2 0.8591 0.9587 0.9421 0.9816 0.9684 0.9893 0.9590 0.9608

New deaths MAE 0.0917 0.0386 0.0611 0.0284 0.0424 0.0237 0.0317 0.0323

RMSE 0.1069 0.0486 0.0686 0.0354 0.0464 0.0296 0.0375 0.0368

R2 0.8662 0.9724 0.9449 0.9853 0.9747 0.9897 0.9836 0.9842

India New cases MAE 0.0734 0.0385 0.0353 0.0226 0.0315 0.0232 0.1281 0.1213

RMSE 0.0853 0.0474 0.0408 0.0269 0.0368 0.0279 0.1595 0.1322

R2 0.9131 0.9732 0.9801 0.9913 0.9838 0.9907 0.6962 0.7912

New deaths MAE 0.0565 0.0396 0.0380 0.0325 0.0322 0.0231 0.1140 0.1010

RMSE 0.0673 0.0482 0.0441 0.0380 0.0367 0.0291 0.1366 0.1189

R2 0.9452 0.9719 0.9765 0.9825 0.9838 0.9897 0.7743 0.8290

The bold values present the optimal results.

performance of the models; the results are shown in Tables 5, 6.
The boldly marked values indicate the best values of the model
in different evaluation metrics, and the optimal point prediction
model is selected accordingly. Figure 2 shows the predicted and
observed values between the proposed model and other models.
Further discussion of the experimental results follows.

From Table 5, we can draw the following conclusions:
For the single model comparisons, including ARIMA, BPNN,

GRNN, LSSVM, it can be seen from Table 5 and Figure 3 that
LSSVM had more accurate prediction accuracy than other single
models and had the best performance among a variety of error
indicators of MAE, RMSE, MAPE, IA, DA, and R2. For instance,
the MAPE of new cases predicted by ARIMA, BPNN, GRNN, and

LSSVM in the United States were 39.1424, 17.6103, 15.6918, and
14.1000%, respectively. In Brazil, the MAPE values of ARIMA,
BPNN, GRNN, and LSSVM were 65.3496, 51.0333, 53.7500, and
51.2592%, respectively. In India, the MAPE values of ARIMA,
BPNN, GRNN, and LSSVM were 36.4135, 18.8504, 17.5906, and
15.2222%, respectively.

The proposed hybrid model with environmental features
showed stronger predictive performance compared with other
models. For example, in the United States, compared with the
LSSVM and SCA-LSSVM, TN-SCA-LSSVM led to 7.6160 and
4.3233% reductions in MAE, 3.5175 and 3.7255% reductions
in RMSE, and 7.9957 and 6.2626% reductions in MAPE,
respectively. In Brazil, compared with LSSVM and SCA-LSSVM,
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TABLE 5 | The comparative forecasting error of different models for COVID-19 new cases.

Countries Criteria ARIMA BPNN GRNN LSSVM SCA-LSSVM TN-SCA-LSSVM

United States MAE 103.3365 72.3343 65.6524 60.5696 58.4851 55.9566

RMSE 125.7786 103.3695 102.0531 88.3619 88.5528 85.2538

MAPE (%) 39.1424 17.6103 15.6919 14.1000 13.8393 12.9726

TIC 0.1337 0.1136 0.1131 0.0927 0.0927 0.0951

IA 0.8571 0.9261 0.9250 0.9524 0.9524 0.9533

R2 0.6493 0.7631 0.7710 0.8269 0.8402 0.8262

Brazil MAE 147.5017 80.0527 78.6863 84.3194 59.0297 58.6014

RMSE 191.1310 101.7826 103.0591 105.4444 75.1114 73.9705

MAPE (%) 65.3496 51.0333 53.7500 51.2592 28.9399 28.0350

TIC 0.3616 0.2230 0.2266 0.2369 0.1521 0.1478

IA 0.3509 0.6131 0.6225 0.5957 0.7050 0.7084

R2
−4.2445 −0.4873 −0.5248 −0.5962 0.1901 0.2145

India MAE 3.6180 2.8170 2.3159 1.9432 1.8260 1.7828

RMSE 4.3580 5.4566 3.3962 3.1049 3.2072 3.1651

MAPE (%) 36.4135 18.8504 17.5906 15.2222 14.5030 14.3134

TIC 0.1697 0.2183 0.1406 0.1320 0.1370 0.1358

IA 0.5170 0.5111 0.6722 0.7120 0.7283 0.7308

R2
−0.4228 −1.2524 0.1275 0.2778 0.2219 0.2422

TABLE 6 | The comparative forecasting error of different models for COVID-19 new death cases.

Countries Criteria ARIMA BPNN GRNN LSSVM SCA-LSSVM TN -SCA-LSSVM

United States MAE 3.9138 1.7581 1.8688 1.7476 1.7006 1.6252

RMSE 4.8346 2.1134 2.2823 2.2780 2.1507 2.0040

MAPE (%) 55.9991 25.2980 27.9532 26.1569 25.3390 24.3988

TIC 0.2922 0.1289 0.1434 0.1387 0.1321 0.1262

IA 0.5075 0.8354 0.7983 0.8166 0.8376 0.8470

R2
−1.4148 0.5386 0.4618 0.4639 0.5221 0.5821

Brazil MAE 2.0207 1.5995 1.5551 1.4997 1.2921 1.1995

RMSE 2.4866 2.3221 2.3352 2.2038 1.7577 1.4880

MAPE (%) 47.3042 48.2826 46.8319 44.1043 33.4255 26.4318

TIC 0.2277 0.2232 0.2301 0.2185 0.1694 0.1381

IA 0.3561 0.5578 0.5851 0.6269 0.7256 0.7876

R2
−0.5565 −0.3574 −0.3727 −0.2225 0.2223 0.4427

India MAE 0.1176 0.0591 0.0330 0.0261 0.0227 0.0251

RMSE 0.1235 0.1428 0.0471 0.0396 0.0341 0.0400

MAPE (%) 144.3315 43.5405 23.6569 18.5391 17.6502 17.7402

TIC 0.3678 0.4568 0.1844 0.1582 0.1395 0.1583

IA 0.3677 0.4284 0.8035 0.8538 0.8727 0.8557

R2
−4.3463 −6.5096 0.1844 0.4236 0.5931 0.4409

TN -SCA-LSSVM led to 30.5007 and 0.7256% reductions in
MAE, 29.8488 and 1.5190% reductions in RMSE, and 45.3074 and
3.1267% reductions in MAPE, respectively. In India, compared
with LSSVM and SCA-LSSVM, TN-SCA-LSSVM led to 21.1537
and 6.0300% reductions in MAE, 5.5636 and −3.2965%
reductions in RMSE, and 17.5524 and 4.7246% reductions in
MAPE, respectively. According to the six evaluation criteria,
it can be concluded that the proposed hybrid multivariable
model was significantly better than other benchmark models for
forecasting new cases.

From Table 6, we can draw the following conclusions:

It can be seen from Table 6 and Figure 3 that the proposed
TN-SCA-LSSVM showed stronger predictive performance than
ARIMA, BPNN, GRNN, LSSVM, and SCA-LSSVM. LSSVM had
more accurate prediction accuracy than other single models
and had the best performance among various error indicators
of MAE, RMSE, MAPE, IA, DA, and R2. The proposed
TN-SCA-LSSVM showed stronger predictive performance than
other single or hybrid univariate models. According to the
six evaluation criteria, it can be concluded that the proposed
hybrid multivariable model was significantly better than other
benchmark models for forecasting new death cases.
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FIGURE 2 | The observed sequences and probability density functions of four distributions in the United States, Brazil, and India.

Remark
The proposed hybrid multivariable model with environmental
features had strong prediction ability and effectively
addressed the complexity and non-linearity of new cases
and new deaths. The optimization method played an
essential role in improving the prediction accuracy of the
hybrid model. Results indicated that the SCA significantly
improved the prediction performance of the LSSVM.
In addition, the forecasting model with environmental
variables further improved the prediction ability of
the hybrid model.

Experiment III: Interval Forecasting of
COVID-19 Cases
In Experiment III, based on the interval forecasting theory
discussed in Section “Interval Forecasting Module,” the interval
prediction of new cases and new deaths in three countries was
calculated by incorporating the optimal distribution function
determined in Section “Experiment I: Distribution Functions
of COVID-19 Cases” and the point prediction results with the
highest accuracy in Section “Experiment II: Intelligent Point
Prediction for COVID-19 Cases.” In addition, two metrics, PIAW
and PICP listed in Table 1, were used to measure the validity
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FIGURE 3 | Forecasting results of the proposed model and benchmark models.

TABLE 7 | The interval prediction results under five different significance levels of COVID-19 cases.

Countries Types of cases Criteria α

0.2 0.25 0.3 0.35 0.4 0.45

United States New cases IFCP 100.00% 100.00% 100.00% 100.00% 98.65% 87.84%

IFAW 627.5977 489.2653 372.9357 270.2132 176.0058 86.8294

New death cases IFCP 100.00% 100.00% 98.65% 93.24% 90.54% 66.22%

IFAW 9.9036 7.7723 5.9529 4.3280 2.8256 1.3958

Brazil New cases IFCP 100.00% 98.59% 98.59% 92.96% 81.69% 59.15%

IFAW 300.3756 236.0082 180.9128 131.6092 85.9563 42.4711

New death cases IFCP 100.00% 100.00% 98.59% 97.18% 87.32% 59.15%

IFAW 5.5115 4.3527 3.3489 2.4426 1.5981 0.7904

India New cases IFCP 100.00% 100.00% 100.00% 100.00% 100.00% 85.71%

IFAW 19.1788 14.8640 11.2819 8.1496 5.2975 2.6103

New death cases IFCP 100.00% 100.00% 100.00% 100.00% 100.00% 84.29%

IFAW 0.2010 0.1548 0.1170 0.0842 0.0546 0.0269

of the interval prediction. It should be noted that the optimal
interval prediction should satisfy the following conditions:
The larger the IFCP value (0 ≤ IFCP ≤ 100%) and the smaller
the IFAW value at a given significance level α are, the better the
predictive performance of the interval prediction. Table 7 shows
the United States, India, and Brazil interval prediction results
under five different significance levels (0.20, 0.25, 0.30, 0.35, and
0.40). From Table 7, it can be observed that the values of IFCP

and IFAW were different at five significance levels. For example,
when α was 0.3, the IFCP and IFAW of COVID-19 new cases in
the United States were 100.00% and 372.9357; when α was 0.35,
the IFCP and IFAW of COVID-19 new cases in the United States
were 100.00% and 270.2132, respectively.

To present the interval prediction results more visually, the
interval prediction results of COVID-19 cases at four significance
levels of 0.25, 0.3, 0.35, and 0.4 were selected to make a visual
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FIGURE 4 | Interval prediction results of the proposed model with different significance levels.

effect, as shown in Figure 4. Figure 4 contains six subplots
showing the interval prediction results of new cases and new
deaths for each of the three countries. The dots represent the
actual value, and the color depth of the shaded area indicates
the range of interval forecasting at different significance levels.
When a smaller significance level is selected, there are individual
actual values that exceed the corresponding shaded areas. When
a smaller significance level is chosen, there are individual actual
values that exceed the corresponding shaded areas. When the
significance level is large, although the shaded area can cover all
the actual values well, it will lead to a large range of prediction
intervals and lose practical significance.

Discussion
The proposed point and interval forecasting approach with
environmental variables obtained better prediction results than
other comparable models. The specific reasons were determined
to be as follows: First, the optimal DFs and their parameters
that best fit the epidemic data of different countries were
obtained by SCA. Second, the proposed hybrid multivariable
model SCA-LSSCM had a strong prediction ability and effectively
addressed the complexity and non-linearity of new cases and new
deaths. Third, the addition of environmental variables further
improved the prediction ability of the hybrid model. Finally,
interval forecasting was calculated based on the optimal DFs and
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point prediction results to capture uncertainty information for
decision-making.

Notably, because the interval prediction results were
calculated based on the point prediction results, the interval
prediction performance depends mainly on the point prediction
results. In addition, a suitable significance level needs to be
selected according to the actual situation in the practical
application. In conclusion, the interval forecasting model
proposed in this study could provide uncertain information
about future epidemic development and could be combined
with the accurate deterministic information provided by the
point prediction hybrid model in Experiment 2. It could provide
public health decision-makers with rich information for epidemic
prevention and control decisions.

In practice, the proposed model could be driven by real-
time data to dynamically and continuously optimize the model
parameters by updating the data daily, making the model
adaptable to complex epidemic scenarios that are non-linear,
dynamic, and ambiguous. At the same time, this data-driven
prediction would also help to establish a predictable safeguard
mechanism, leaving a window of time for relevant decision-
making departments to take measures and adjust strategies in
advance to avoid the continuous spread of the epidemic.

CONCLUSION

This study presented a novel point and interval forecasting
approach with environmental variables, which was composed
of a distribution function analysis module, an intelligent point
prediction module, and an interval forecasting module. In the
distribution function analysis module, according to the results
of the MAE, RMSE, and R2, SCA-Lognormal achieved optimal
simulation capability for the new cases in the United States,
while SCA-Gamma achieved optimal simulation performance in
both the new deaths in the United States and the new cases
in India. SCA-Weibull obtained optimal simulation ability for
new cases and new deaths in Brazil and new deaths in India. In
the intelligent point prediction module, according to the MAE,
RMSE, MAPE, IA, DA, and R2, the hybrid multivariate model
TN-SCA-LSSVM achieved more robust predictive performance
than other univariate approaches, such as ARIMA, BPNN,
GRNN, LSSVM, and SCA-LSSVM, which indicated that SCA
significantly improved the prediction performance of LSSVM
and that the addition of environmental features (temperature

and NO2) further improved the prediction ability of the
hybrid model. For instance, the average MAPE values of
the proposed TN-SCA-LSSVM model were 62.1521, 33.9225,
27.5146, 18.3956, and 5.8034% lower than those of ARIMA,
BPNN, GRNN, LSSVM, and SCA-LSSVM, respectively. In the
interval forecasting module, for interval prediction of Covid-19
data in three countries, interval prediction results for new cases
and new deaths were obtained based on the point prediction
values and optimal DFs of the proposed hybrid TN-SCA-LSSVM
model. The results showed that the performance of interval
prediction was excellent because most of the observed values
were located in the shaded area, with higher values of IFCP
and smaller values of IFAW at different significance levels.
Overall, the proposed system achieved better prediction results
than other comparable models and enabled the informative and
practical quantification of future COVID-19 pandemic trends,
which offers more constructive suggestions for governmental
administrators and the general public.

In this study, epidemiological data and two environmental
variables were considered inputs for point and interval
prediction models. However, predicting COVID-19 is a complex
problem related to multiple factors, such as meteorological,
environmental, socioeconomic or policy factors. Thus, the
forecasting model can be improved by incorporating more
influencing factors from different data sources, which may be an
interesting research pursuit.
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