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Microorganisms play a crucial role in regulating the turnover and transformation of soil
organic carbon (SOC), whereas microbial contribution to SOC formation and storage
is still unclear in coastal wetlands. In this study, we collected topsoil (0–20 cm) with
7 salinity concentrations and explored the shifts in microbial residues [represented by
amino sugar (AS)] and their contribution to the SOC pool of coastal wetlands in the
Yellow River delta. The gradually increasing soil salinity reduced soil water content
(SWC), SOC, and soil nitrogen (N), especially in high salinity soils of coastal wetlands.
Total ASs and their ratio to SOC, respectively, decreased by 90.56 and 66.35% from low
salinity to high salinity soils, indicating that coastal wetlands with high salinity restrained
microbial residue accumulation and microbial residue-C retention in the SOC pool.
Together with redundancy analysis and path analysis, we found that SWC, pH, SOC,
soil N, and glucosamine/muramic arid were positively associated with the ratio of ASs to
SOC. The higher available soil resource (i.e., water, C substrate, and nutrient) increased
microbial residue accumulation, promoting microbial derived-C contribution to SOC in
low salinity coastal wetlands. The greatly decreased microbial residue contribution to
SOC might be ascribed to microbial stress strategy and low available C substrate in
coastal wetlands with high salinity concentration. Additionally, the gradually increasing
salinity reduced fungal residue contribution to SOC but did not change bacterial residue
contribution to SOC. These findings indicated that changed fungal residues would
substantially influence SOC storage. Our study elucidates microbial contribution to SOC
pool through residue reservoir in coastal wetlands and pushes microbial metabolites to
a new application in global wetland SOC cycling.

Keywords: amino sugar, soil salinity, soil organic carbon, microbial necromass, coastal wetland

INTRODUCTION

Coastal wetlands act as the important carbon (C) sink, which plays a crucial role in contributing to
soil organic carbon (SOC) storage and regulating global C cycling (Chmura et al., 2003; Macreadie
et al., 2019). However, the disturbance would greatly influence the structure and function of
coastal wetlands. Naturally environmental disturbances (e.g., climate change and sea-level rise)
or anthropogenic activities (e.g., agricultural reclamation and dam construction) result in the
degradation of coastal wetlands, aggravating soil salinization (Xu et al., 2019; Haywood et al., 2020).

Frontiers in Ecology and Evolution | www.frontiersin.org 1 April 2022 | Volume 10 | Article 872816

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.872816
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2022.872816
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.872816&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/articles/10.3389/fevo.2022.872816/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-872816 April 20, 2022 Time: 14:27 # 2

Shao et al. Wetland Soil Microbial Residues

Increased salinity stress results in the decline in biodiversity,
loss of soil nutrients, and SOC and alters plant and microbial
mediation in SOC transformation and accumulation (Crooks
et al., 2018; Lewis et al., 2019; Chen et al., 2021).

Coastal wetlands are the transitional zone between terrestrial
and aquatic ecosystems. The drastically changing habitats alter
water and salt conditions, soil nutrition, and plant community,
influencing soil microbial community structure and functions
in coastal wetlands (Hu et al., 2014; Spivak et al., 2019). To
date, the studies on microorganisms in coastal wetlands mainly
focus on active soil microbial community structure and functions
using the technologies and methods of phospholipid fatty acid,
enzyme, high-throughput sequencing, and metagenome (Bossio
et al., 2006; Wang et al., 2020). Soil microorganisms are key
participants and drivers in SOC transformation, formation, and
storage through microbial metabolic processes (Trivedi et al.,
2013; Spivak et al., 2019). Microbial community composition
(e.g., fungi and bacteria) and extracellular enzymes govern litter
decomposition, soil nutrient release, and recycling, which further
influence SOC turnover in coastal wetlands (Hill et al., 2018;
Zhao et al., 2020). However, it is not clear how microbes directly
contribute to SOC accumulation through microbial metabolites
(e.g., microbial necromass) in coastal wetlands.

Microorganisms utilize plant and soil C substrates to
synthesize microbial cells, and the dead microbial cell that
persists in the soil as relative stable soil organic matter (SOM)
contributes to the SOC pool via microbial residues (Angst et al.,
2021). Microbial residues can account for 30–60% of SOC in the
forest, grassland, and agricultural ecosystems (Liang et al., 2019).
Coastal wetlands have special soil conditions, such as low oxygen,
high salinity, or dramatically fluctuant hydrology, which are
different from terrestrial ecosystems (Lyu et al., 2018; Steinmuller
et al., 2019). Therefore, it is necessary to explore the contribution
of microbial residues to the SOC pool in coastal wetlands.

Amino sugars (ASs), as the main components of microbial
cell walls, are usually used to represent microbial residues (Ding
et al., 2019). As the biomarker of microbial residues, AS, such as
glucosamine (GluN), galactosamine (GalN), and muramic acid
(MurA), are derived from different soil microbial communities.
GluN is mainly detected in fungi; MurA is solely extracted in
bacteria; whereas GalN can be synthesized by fungi and bacteria
(Glaser et al., 2004; Joergensen, 2018). Based on the origin of
AS monomer, the ratio of AS monomer not only represents the
ratio of fungal residues to bacterial residues but also reflects the
changes in fungi and bacteria (Joergensen, 2018).

Salinity is the main limiting factor, affecting soil microbial
community structure and functions in coastal wetlands (Ma
et al., 2017; Zhang et al., 2021). Phragmites australis is widely
distributed in coastal wetlands due to their salt-rejection and
salt-adaption, which is a suitable plant community to study the
responses of microbial residues to salinity. Using the biomarker
of AS, we explored the dynamic of microbial residues and their
contribution to SOC under coastal wetlands along a natural
salinity gradient in the Yellow River delta, China. The goals of
this study were (1) to detect the impacts of salinity on microbial
residues and their contributions to SOC; (2) to examine the
variation in fungal and bacterial residues and their contributions

to microbial residues; and (3) to clarify how abiotic and biotic
parameters drive microbial residue-C retention in wetland soils.

MATERIALS AND METHODS

Site Description and Sampling
Our study sites were located in the Yellow River Delta National
Nature Reserve (118◦33′–119◦20′E, 37◦35′–38◦12′N), near Bohai
and Laizhou Bay, China (Figure 1). Mean annual temperature
and precipitation are approximately 12.4◦C and 550 mm,
respectively. Soil types are classified as fluvial soil formed by
alluvial sediment of the Yellow River and saline soil formed
by long-term seawater intrusion. In the water-salt interaction
regions, we selected seven salinity concentrations (represented
by electrical conductivity), including S1 (1.61 dS m−1), S2 (2.47
dS m−1), S3 (3.67 dS m−1), S4 (5.21 dS m−1), S5 (9.24 dS
m−1), S6 (14.53 dS m−1), and S7 (29.90 dS m−1) (Table 1 and
Figure 1). The sites of S1 and S2 are the interaction regions
of the Yellow River and Bohai bay; S3 and S4 are affected by
the seasonal tide; and S5, S6, and S7 are the degraded wetlands
due to dam construction. Plant communities are dominated by
Phragmites australis, following Suaeda glauca, Tamarix chinensis,
Cynanchum, etc. We established study plots in August 2019 using
a randomized within-wetland nested design. In each of the seven
salinity concentrations, four plots (each approximately 10 m× 10
m) were randomly selected to collect soil samples (0–20 cm), with
at least a 100-m distance between each plot. To alleviate spatial
heterogeneity, we randomly took five soil cores using a soil auger
(diameter of 5 cm) within each plot and pooled them into one soil
sample (n = 4 samples per salinity concentration). After sieving
soils to 2 mm to remove fine root, plant, and animal debris, soils
were homogenized, and analyzed as below.

Soil Physicochemical Analysis
Air-dried soils (sieved to 2 mm) were used to prepare soil
slurries (1:5 w/v), oscillate for 30 min, and subsequently measure
electrical conductivity (EC) and pH on an electrode meter
(Jenco 6173, Jenco, United States). Fresh soil samples (sieved
to 2 mm) were oven-dried (105◦C for 48 h) to determine soil
water content (SWC). Air-dried soil samples (sieved to 0.15 mm)
were prepared to analyze SOC using the potassium dichromate
oxidation method (Nelson and Sommers, 1982). Total nitrogen
(TN) was measured on a Vario MACRO Cube (Elementar vario
EL III, Germany). Total phosphorus (TP) was detected using a
UV-VIS spectrophotometer (PERSEE, WA, United States) after
soil digestion using H2SO4 and HClO4 (Cheng et al., 2016).

Soil Amino Sugar Analysis
Soil ASs, including GluN, GalN, and MurA, were determined
according to a modified procedure referring to Zhang and
Amelung (1996). In brief, air-dried soil samples (sieved to
0.15 mm) containing 0.3 mg N at least were hydrolyzed using
15 ml 6 M HCl at 105◦C for 8 h. Each hydrolysate was filtered and
dried at 52◦C on a rotary vacuum evaporator after adding 100 µl
of myoinositol (internal standard 1 with response factors, Rf of
1). The dried residue was dissolved using deionized water and
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FIGURE 1 | Sampling site of coastal wetlands in the Yellow River delta and photos of Phragmites australis along a soil salinity gradient.

TABLE 1 | Soil physicochemical properties with 7 salinity concentrations under coastal wetlands in the Yellow River delta.

Salinity gradient Statistical value

S1 S2 S3 S4 S5 S6 S7 F P

EC (dS m−1) 1.61 ± 0.13d 2.47 ± 0.19d 3.67 ± 0.11d 5.21 ± 0.47d 9.24 ± 0.31c 14.53 ± 1.63b 29.90 ± 2.71a 68.06 <0.001

pH 7.83 ± 0.06a 7.57 ± 0.06ab 7.64 ± 0.10ab 7.69 ± 0.09ab 7.36 ± 0.13b 7.38 ± 0.156b 7.40 ± 0.12b 2.84 0.04

SWC (%) 29.41 ± 0.40ab 32.03 ± 3.19a 30.94 ± 3.63a 30.22 ± 1.28a 28.93 ± 4.21ab 25.03 ± 1.34ab 21.73 ± 1.58b 2.2 0.08

SOC (g kg−1) 10.13 ± 1.64a 8.12 ± 0.50a 5.13 ± 0.28b 4.98 ± 0.60b 3.83 ± 0.32b 3.05 ± 0.22b 2.93 ± 0.40b 13.89 <0.001

TN (g kg−1) 1.07 ± 0.12a 0.92 ± 0.06ab 0.65 ± 0.06bc 0.70 ± 0.10bc 0.54 ± 0.05cd 0.41 ± 0.02d 0.47 ± 0.04d 11.24 <0.001

SOC/TN 9.62 ± 1.60a 8.83 ± 0.31a 7.99 ± 0.21a 7.47 ± 1.22a 8.11 ± 1.50a 7.41 ± 0.38a 6.34 ± 1.00a 1.08 0.41

TP (g kg−1) 0.59 ± 0.07a 0.55 ± 0.07a 0.47 ± 0.03a 0.50 ± 0.06a 0.53 ± 0.08a 0.56 ± 0.09a 0.51 ± 0.06a 0.29 0.94

EC, electrical conductivity; SWC, soil water content; SOC, soil organic carbon; TN, total nitrogen; SOC/TN ratio of SOC to TN; TP, total phosphorus. The superscript
letters represent statistical significance.

purified with KOH neutralization. The solution was fully dried
and dissolved with absolute methanol. The dissolved residue
was dried by N2 gas at 45◦C, subsequently redissolved with
1 ml deionized water and 100 µl N-methylglucamine (internal
standard 2), and then lyophilized.

Each lyophilized residue was derivatized with a 300-µl
derivatization reagent. The reactive solution was completely
mixed and heated at 75–80◦C for 35 min. The derivative was
heated (75–80◦C, 25 min) for acetylation after cooling and adding

1 ml acetic anhydride. After cooling to room temperature, we
orderly added 1.5 ml dichloromethane and 1 ml 1 M HCl and
fully mixed to isolate the organic phase. The organic phase was
washed with deionized water three times to absolutely remove
residual anhydride. The remaining organic phase was dried with
N2 gas at 45◦C and then dissolved with 100 µl ethyl acetate-
hexane (1:1 v/v). Finally, the extracted ASs were detected and
analyzed on an Agilent 7890B GC (Agilent Technologies, Santa
Clara, CA, United States). In terms of the response factors of
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standards (i.e., GluN, GalN, MurA, and mannosamine) relative
to the internal standard 1 (Rf = 1), we can calculate the
concentration of soil ASs; the internal standard 2 is used to check
the derivatization process and calculate the recovery of soil ASs
(Zhang and Amelung, 1996; Liang et al., 2012).

Statistical Analysis
One-way ANOVA was conducted to assess the effects of salinity
on soil physicochemical properties and AS parameters using R
software (R version 3.6.0). We performed redundancy analysis to
detect the relationships of GluN/MurA, GluN/SOC, GalN/SOC,
and MurA/SOC (log-transformed) with soil physicochemical
properties on Canoco (version 4.5 for Windows; Ithaca, NY,
United States). Path analysis was used to evaluate the causality
among soil physicochemical properties and ASs along a salinity
gradient, using AMOS software (AMOS 17.0.2 student version;
Amos Development, Crawfordville, FL, United States). The
maximum likelihood method was used to fit measured data to
the model. The adequate model goodness of fit was tested using
root-mean-square error of approximation (RMSEA).

RESULTS

Variation of Soil Physicochemical
Properties Along a Salinity Gradient
Salinity resulted in the significant changes in soil pH (F = 2.84,
P = 0.04), SOC (F = 13.89, P < 0.001), and TN (F = 11.24,
P < 0.001), whereas there was no change in SWC, SOC/TN, and
TP (Table 1). High salinity soils (S5, S6, and S7) had lower pH
than low salinity soils (S1), decreasing by 5.82%. SOC and TN
gradually decreased along with increased salinity, from 10.13 to
2.93 g kg−1 and from 1.07 to 0.41 g kg−1, respectively. Although
salinity did not change SWC, high salinity coastal wetlands had
low SWC (Table 1).

Effects of Salinity on Soil Amino Sugar
Content and Their Contributions to Soil
Organic Carbon
Salinity greatly influenced the contents of soil AS (F = 29.37,
P < 0.001), GluN (F = 25.84, P < 0.001), GalN (F = 35.65,
P < 0.001), and MurA (F = 10.77, P < 0.001) (Figure 2). The
contents of AS, GluN, and GalN gradually declined across a
salinity gradient, which decreased by 90.56% (Figure 2A), 91.11%
(Figure 2B), and 90.62% (Figure 2C), respectively. The contents
of MurA were higher in low salinity soils (S1 and S2) than that of
other soil salinity concentrations. Additionally, MurA showed no
change from S3 to S7 (Figure 2D).

The ratios of AS, GluN, and GalN to SOC showed significant
responses to salinity (P < 0.001), whereas there was no change in
the ratio of MurA to SOC (Figure 3). The ratios of AS, GluN,
and GalN to SOC showed the similar trend with AS content
across a salinity gradient. The AS/SOC decreased from 36.62 to
12.32 g kg−1 (Figure 3A; F = 39.20, P < 0.001); GluN/SOC
showed a decline from 24.22 to 7.76 g kg−1 (Figure 3B; F = 43.27,

P < 0.001); and GalN/SOC reduced from 11.50 to 3.75 g kg−1

(Figure 3C; F = 24.00, P < 0.001) from S1 to S7.

Shifts in GluN/GalN and GluN/MurA
Under Different Salinity Concentrations
Salinity resulted in a significant change in GluN/MurA
(Figure 4B; F = 31.32, P < 0.001), but there was no
change in GluN/MurA (Figure 4A). Low salinity soils had
high GluN/MurA, and high salinity lowered GluN/MurA in
soils (Figure 4B).

Relationships Between Soil
Physicochemical Properties and Amino
Sugar
Redundancy analysis demonstrated that soil physicochemical
properties explained 82.19% (axis 1 of 80.1% and axis 2 of
2.1%) variation of the GluN/MurA, GluN/SOC, GalN/SOC, and
MurA/SOC (Figure 5). The ratios of GluN/SOC, GalN/SOC, and
GluN/MurA were negatively related to soil salinity (represented
by EC) and positively associated with SWC, pH, SOC, and TN,
whereas not related to SOC/TN and TP. Soil physicochemical
properties showed no impact on the MurA/SOC (Figure 5).

Path analysis further evaluated the causal relationships among
soil physicochemical properties, GluN/MurA, and AS/SOC
across a salinity gradient in coastal wetlands and elucidated the
relative contributions of these soil variables to explain changed
AS/SOC (Figure 6). Salinity, pH, SOC, TN, and GluN/MurA
were the main abiotic and biotic factors influencing AS/SOC,
accounting for 84% variation of the AS/SOC. Soil salinity showed
a negative effect on soil chemical properties and AS/SOC; soil
pH and TN indirectly and positively influenced AS/SOC via
changing the GluN/MurA; and SOC showed a positive direct
impact on AS/SOC (Figure 6).

DISCUSSION

Responses of Soil Microbial Residues to
Salinity in Coastal Wetlands
In this study, we found that the AS content was 34.82–368.6 mg
kg−1 along a salinity gradient under coastal wetlands in the
Yellow River delta, which was several or even tens of times
lower than AS content in terrestrial ecosystems (i.e., forest,
grassland, and agriculture) (Lauer et al., 2011; Xia et al., 2019;
Chen et al., 2020). Coastal wetlands are predominately controlled
by water and salinity due to tides and underground seawater
(Ma et al., 2017; Steinmuller et al., 2019). The restrained plant
productivity leads to low SOM (Zhao et al., 2020), decreasing
the accumulation of microbial AS. Also, plant phenology shows
a quick response to changed soil salinity (Sun et al., 2021).
High salinity negatively influences plant phenology and alters
the seasonality of plant photosynthesis or productivity. Especially
in dry seasons, the exacerbated soil salinity stress restrains
aboveground plant growth, root germination, and reproduction
(related to plant reproduction the next year) (Baldwin et al., 2014;
Sun et al., 2021), reducing C input to soils, consequently resulting
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FIGURE 2 | Changes in the content of soil total amino sugar (AS, A), glucosamine (GluN, B), galactosamine (GalN, C), and muramic acid (MurA, D) along a soil
salinity gradient.

FIGURE 3 | The ratio of total AS (A), GluN (B), GalN (C), and MurA (D) to SOC across a soil salinity gradient.
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FIGURE 4 | Variation of GluN/GalN (A) and GluN/MurA (B) under different salinity concentrations.

in the decrease in microbial AS. In addition, the SOM was not
easily utilized by soil microorganisms with a low decomposition
rate (Steinmuller and Chambers, 2019; Ward, 2020), which is
likely to result in low AS synthesis.

FIGURE 5 | Redundancy analysis detecting the relationships of AS
parameters with soil physicochemical properties along a salinity gradient
(white circle, S1; light gray circle, S2; gray circle, S3; black circle, S4; red
circle, S5; blue circle, S6; green circle, S7). Black vectors indicate trajectories
of soil chemical parameters as independent variables; red vectors indicate AS
parameters, including the ratio of GluN, GalN, and MurA to SOC and
GluN/MurA. The acute and obtuse angles among variables represent positive
and negative relationships, respectively. The numbers in brackets indicate the
percentage of the total variance explained by the first and second axes. Soil
physicochemical properties with significant effects on AS parameters are
evaluated at the 0.05 level (Monte Carlo tests with 499 permutations).

As the main component of the microbial cell wall, soil AS
has certain specificity and stability, which cannot only represent
microbial residues but also reflect the dynamic changes of
ecosystems (Lauer et al., 2011; Shao et al., 2019). Increased soil

FIGURE 6 | Path analysis evaluating the underlying causality between soil
physicochemical properties and AS/SOC along a salinity gradient under
coastal wetlands in the Yellow River delta. Solid and dashed lines indicate
significant (P < 0.05) and non-significant (P > 0.05) effects (P-values inside
brackets), respectively. Standardized path coefficients are listed beside each
path (black and red lines represent positive and negative paths, respectively;
line width indicates the proportion of factorial contribution). R2 values indicate
the strength of explanation by independent variables. The symbols of ***, **,
*represent statistical signifiance with p < 0.001, p < 0.01, and p < 0.05,
respectively.
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salinity decreased AS content, indicating that salinity stress would
suppress microbial residue accumulation in coastal wetland soils.
Microbial residues are mainly originated from the fast iteration
of microbial cell production and death, thus high microbial
biomass could promote microbial residue retention in soils
(Liang et al., 2017). A recent study has reported that increased
salinity results in a decline in microbial biomass, associated with
the decreased microbial residues in the saline-alkali soils (Chen
et al., 2021). In addition, microorganisms utilize more SOM to
synthesize several stress-resistant substances (e.g., extracellular
polysaccharides) to maintain microbial survival and integrity and
less SOM investment in microbial cell growth and metabolism
(Malik et al., 2020), thus resulting in low microbial residues in
high salinity soils.

The GluN and MurA can be used to represent fungal and
bacterial residues, respectively (Joergensen, 2018). The GluN
accounted for 65.67% of total AS; MurA accounted for 3.19%
of total AS; and the content of GluN was approximately 20
times of MurA in coastal wetland soils. These findings are
similar to the previous studies that the content of soil GluN was
approximately 15–20 times of MurA in terrestrial ecosystems
(Shao et al., 2019; Wang et al., 2021). Although increased salinity
stress greatly decreased the contents of GluN and MurA, the
proportion of GluN and MurA in total AS showed an increment
and decline, respectively. The inconsistent changes in fungal and
bacterial residues are probably ascribed to the different responses
of fungal and bacterial communities to salinity. The 80% of
fungi in soil systems are symbiotic with plants; and changed
plant productivity and traits would influence fungal activity and
biomass (Zheng et al., 2021). In our studied regions, increased
soil salinity inhibits the growth and photosynthate synthesis
of Phragmites australis; and few Phragmites australis survive in
high or extreme salinity soils (Guan et al., 2017). The decreased
plant litterfall and root exudates lead to less available C input to
soil fungi, particularly plant symbiotic fungi, to assimilate less
C into fungal biomass, thus reducing fungal residue retention
in soils. MurA is uniquely derived from bacteria, which can
reflect the change in the bacterial community (Glaser et al.,
2004). Low salinity soils had higher bacterial residues, and there
was no change in bacterial residues from medium salinity to
high salinity. The dynamic of bacterial residues along with soil
salinity gradient may be attributed to the salinity tolerance
of the bacterial community. Some specific bacterial taxa (e.g.,
Halomonas and Chloroflexi) can survive in high salinity soil (Xu
et al., 2021), which maintains the balance between production
and degradation of bacterial residues, resulting in no change in
bacterial residues.

Microbial Residue Contributions to Soil
Organic Carbon Pool Along a Salinity
Gradient in Coastal Wetlands
With the developments of microbial biomarkers (i.e., AS) and
microbial C pump theory (Zhang and Amelung, 1996; Liang
et al., 2017), more studies concentrate on microbial residue
contribution to SOC pool (Kallenbach et al., 2016; Ma et al.,
2018; Deng and Liang, 2022). The AS extracted from soils

accounts for a major percentage of dead microbial biomass
(Joergensen, 2018). Therefore, AS levels are used to evaluate the
extent to which microbial residue contributes to the SOC pool,
providing significant information on the “chronic” responses of
microbial residues to changing ecosystems (Shao et al., 2019).
The AS/SOC can represent microbial residue contributions
to SOC. The AS/SOC was gradually declined with increasing
salinity, approximately decreasing by 70% from low salinity to
high salinity, indicating that high salinity stress greatly inhibits
microbial residue contributions to the SOC pool. We found that
salinity negatively affected fungal residue contributions to SOC,
and there was no change in bacterial residue contributions to
SOC. These findings imply that fungal residues predominately
drive SOC storage, which is consistent with previous views
(Wang et al., 2021). The different effects of salinity on fungal
and bacterial residue contributions to SOC are likely ascribed
to change soil physicochemical properties. Our study shows
the positive relationship of GluN/SOC with SWC, pH, SOC,
and TN, suggesting that changed soil water and nutrient
conditions regulate fungal residue accumulation in the SOC
pool. Additionally, the chemical stability of bacterial residues
is lower than fungal residues, which are easily decomposed
and assimilated by soil microorganisms (Joergensen, 2018; Ma
et al., 2022). The fast turnover of bacterial residues is not
conducive to the retention of microbial residue-C belowground
in coastal wetlands.

Current studies pay more attention to the plant community
effect on SOC cycling, and plant-derived C mainly drives
wetland soil C storage (Duarte et al., 2013; Xia et al., 2021).
Microbial C pump theory has proposed that microorganisms
utilize the decomposed plant detritus and micromolecular SOM
to synthesize microbial cells, contributing to the SOC pool via
microbial necromass (Kästner and Miltner, 2018). Low salinity
held high AS/SOC, which indicates more soil microbial residue-
C accumulation in low salinity coastal wetlands. Abundant soil
water, SOC, and N promote the synthesis of microbial products,
enhancing the contribution of microbial residues to existing
SOC stocks. High soil water and nutrient stimulate plant growth
and photosynthetic C input into soils (Chu et al., 2019); and
microbes assimilate more plant-derived C to synthesize microbial
biomass, ultimately increasing microbial residue-C storage in
coastal wetland soils. In addition, we also found that AS/SOC was
positively related to pH. Some studies have clarified that pH is
tightly associated with soil cation, such as calcium and aluminum
ions (Gruba and Mulder, 2015). Microbial residues can persist
in soils for decades or even centuries in the form of stable
SOM through mineral association (Sokol et al., 2019; Buckeridge
et al., 2020), substantially enhancing soil C storage. Overall, the
abundant soil resource (i.e., water, C substrate, and N nutrient)
can promote SOC storage by increasing microbial residue
accumulation and stability in low salinity coastal wetlands.

In high salinity coastal wetlands, salinity stress greatly
restrained the contribution of microbial residues to SOC.
This might be explained by the two mechanisms, namely,
microbial stress tolerance strategy and low available C.
In extreme environmental stress (e.g., high salinity or
drought), microorganisms select a stress tolerance strategy
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responding to environmental changes (Krause et al., 2014; Malik
et al., 2020). Microorganisms invest more C to synthesize
osmolytes (e.g., mycose) or extracellular polymeric substances
(e.g., polysaccharides) to protect microbial cell integrity and
to enhance microbial stress-resistance in high salinity soils.
Meanwhile, less C was used for microbial cell growth and
proliferation, thus reducing the source of microbial residues. The
low microbial cell death and microbial residue production both
lower the retention of microbial residues in the SOC pool of
coastal wetlands. In addition, high salinity soils held few SOC
and low SOC/TN, which decrease microbial C availability. Low
soil available C inhibits the production of microbial biomass and
residues, resulting in the low contribution of microbial residues
to SOC storage in high salinity coastal wetlands.

Path analysis was used to evaluate the causal relationships
among microbial residue-C contribution, soil physicochemical
properties, and fungal/bacterial residues, clarifying the main
factors driving microbial residue contribution to SOC. Changed
soil salinity, pH, SOC, TN, and GluN/MurA explained 84%
variation of microbial residue-C contribution to SOC. Soil
nutrient regulates microbial residue contribution to SOC through
varied fungal and bacterial residues associated with their stability
along a salinity gradient in coastal wetlands.

Although soil physicochemical properties (e.g., salinity, water,
SOC, and N) were substantially different among coastal wetlands
with different salinity concentrations, the changes in microbial
residues and their contributions to SOC were influenced.
However, we cannot neglect the impacts of system experience
conditions (e.g., hydrology, microclimate, and topography) on
microbial residues in different geographical locations. Together,
our study presents supporting evidence on how salinity affects
the fate and magnitude of microbial residues in coastal wetlands
through changed soil properties. Further research is needed
to accurately assess microbial residues in changing wetlands
considering system experience conditions and other fluctuant
environmental variants.

Responses of Fungal/Bacterial Residues
to Salinity in Coastal Wetlands
The ratio of GluN to MurA cannot only indicate the responses of
fungal and bacterial communities to environmental changes but
also represent the relative contributions of fungal and bacterial
residues to the SOC pool (Liang et al., 2015; Joergensen, 2018).
We found a gradual reduction in GluN/MurA across increasing
salinity, implying that fungi are more competitive in low salinity
soils, and bacteria are more tolerant in high salinity soils of

coastal wetlands. The positive relationships of GluN/MurA to
SWC, SOC, and TN indicate that suitable soil water, salinity, and
nutrients favor fungi and stimulate fungal residue accumulation,
reserving more microbial residue-C in the SOC pool.

CONCLUSION

Microbial residues (represented by AS) play a crucial role
in coastal wetland SOC accumulation. In our study, we
found that low-salinity soils held high microbial residues
and microbial residue contribution to SOC, while high-
salinity stress greatly inhibited microbial residue accumulation
and microbial residue retention in the SOC pool in coastal
wetlands. Changed soil resource (i.e., water, C substrate, and
nitrogen) availability and microbial strategy to salinity stress
explained the accumulation of microbial residues along a
salinity gradient in coastal wetlands. Additionally, the different
responses of fungal and bacterial residues to salinity and
the positive relationship between fungal/bacterial residues and
microbial residue C contribution indicate that fungal residues
predominately contributed to the SOC pool. We suggest that
clarifying microbial necromass contribution to SOC pool will
strengthen the C persistence in soils and a more accurate
understanding of global wetland soil C cycling.
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