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Editorial on the Research Topic

Predicting and Managing Climate-Driven Range Shifts in Plants

Plants’ geographic ranges will shift in response to climate change; already some shifts have been
documented (Lenoir et al., 2008; Parmesan and Hanley, 2015; Zu et al., 2021). Plants face a number
of challenges to tracking climate, including dispersal (e.g., seed number, dispersal distance, etc.)
and establishment limitations (i.e., unsuitable soil or competition from existing vegetation) (Van
Grunsven et al., 2010; Svenning et al., 2014; Lustenhouwer et al., 2017; Thuiller et al., 2019;
Sharma et al., 2022). It is also challenging to predict where suitable future habitats will be, given
uncertainties in biodiversity models (Thuiller et al., 2019) and climate projections (IPCC, 2013).
Inter- and intra-specific variation in climate sensitivity (Angert et al., 2011; Benito Garzón et al.,
2019; DeMarche et al., 2019) and the possibility of evolutionary responses (Bush et al., 2016; Cotto
et al., 2017; Moran, 2020) particularly complicate the latter. The goal of this Research Topic was
to highlight the importance of understanding plant range shifts, to review what is known, and to
identify key knowledge gaps.

Several studies used species distribution modeling (SDM) to examine potential range shifts.
Zhang et al. found that while suitable area worldwide for the vine Akebia quinatamight increase up
to 50% by 2080, this was mostly driven by increased suitability where the species is introduced;
suitable native habitat in Asia was projected to decline. Brodie et al. modeled the range of the
succulent tree Aloidendron dichotomum. The species likely expanded poleward after the last glacial
maximum, consistent with observed genetic variation. Suitable habitat could shift eastward toward
the summer-rainfall areas of South Africa by 2070, but range shift rates needed to track habitat were
substantial and many species are dispersal-limited. Moeller et al. found that there is a 100–150 km
gap in suitable habitat between the Appalachian and Allegheny mountains both for four species
endemic to the Southern Appalachians and for four more widely-distributed species. However, the
endemic species never crossed this gap and thus have unfilled suitable habitat to the north. Since
these endemics are projected to have declining habitat suitability in their native range, assisted
migration across the gap might be necessary to conserve them. Similarly, Semenchuck et al. found
that the representation of Austrian endemic plant species in protected areas was projected to
decline to 1/3 by 2080 in both RCP 4.5 and RCP 8.5 scenarios, with 20–30% of the species studied
having zero range representation in protected areas by that date.

While SDMs are relatively simple to implement, concerns have been raised regarding the
inherent assumption that species are well-adapted to current conditions (Ibanez et al., 2006;
Browne et al., 2019), omission of species interactions (Davis et al., 1998), and ability to project
habitat suitability outside the current range of conditions (Williams and Jackson, 2007; Merow
et al., 2014). Charney et al. tested 11 algorithms using subsets of forest inventory data for 108 North
American tree species. When extrapolating from one region to another, a substantial proportion
of algorithms performed worse than random. Data integration approaches that draw from the full
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species range often improve performance of SDMs (Chevalier
et al., 2021) but novel future climate space or climate-edaphic
combinations cannot be included in the initial model fitting. As
Charney et al. noted, the use of more process-based or hybrid
models might help to address this issue.

Petit et al. used a process-based model simulating
physiological climate responses in five European tree species to
estimate mortality risk. They found that, despite positive effects
of higher CO2 on carbon assimilation and water use efficiency,
risks of extinction for “genetic conservation units” are similar
to or higher than those calculated from SDMs. Qiu et al. used
a combination of forest inventory data and demographic data
from the MASTIF network to examine demographic sensitivity
to climatic factors and forest structure. They found that many
life stages, especially fecundity, were sensitive to temperature,
but that responses to other factors varied substantially. The
niche estimated from adult distributions likely reflects past
recruitment conditions rather than current ones. A shift in
the distribution of life stages was also observed by White
et al. who found that reduced stream-flow in an Australian
watershed was linked to fewer juveniles relative to adult riparian
trees in low-rainfall areas but more juveniles in high-rainfall
areas, where more exposed sediment may have allowed more
seedling recruitment.

Experiments that measure growth responses to different
climate conditions can also provide important information
regarding the sensitivity of locally adapted populations to climate
change (Angert et al., 2011; Leites et al., 2012; Moran et al.,
2017b; Arnold et al., 2019). Hallingbäck et al. used Scots pine
provenance experiments to examine sensitivity of growth to
climate at its northern and southern range limits. They found that
factors strongly affecting growth differ and that, while moderate
transfer distances have little effect on growth, local seed-sources
can exhibit lower growth than non-local sources. Growth was
predicted to increase at Nordic sites and in northern Spain,
but decrease in southern Spain. However, a shorter tree is not
necessarily less fit, as conservative growth strategies can be
adaptive (Moran et al., 2017a).

The two final papers in the collection synthesized broad-
scale patterns. Zettlemoyer and Peterson examined how plasticity

in phenology is likely to affect species’ adjustment to climate
change. They found that plasticity is usually adaptive, and that

while plasticity did not generally differ with range position,
when it did edge populations tended to be more plastic.
This suggests that plasticity is more likely to promote than
hinder range shifts, though direct tests are needed. Shay et
al. reviewed rules governing plant species ranges and what
this might tell us about climate responses. Five potential
rules were supported by multiple studies, including “range
limits often coincide with [abiotic] niche limits,” “biotic
interactions often set range limits,” and “smaller ranges tend
to be more vulnerable.” These rules suggested corresponding
conservation actions.

While much attention has been paid to direct climate
impacts on species ranges, these papers and others indicate
other important factors. Biotic interactions will likely affect
both local persistence and colonization, as will physical
barriers to dispersal. Life-stages may also be affected
differently by climate shifts. A particularly important issue
in research evident both in this collection and overall
is the northern temperate zone bias; highly biodiverse
equatorial regions including tropical rainforests have
received much less attention regarding how climate change
impacts on species’ ranges (Feeley et al., 2017; Sheldon,
2019). Non-seed plants are also seldom studied. All these
topics are deserving of further research effort, and studies
integrating approaches to test impacts of multiple factors are
particularly needed.
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