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Sustaining ecosystem services in alpine regions is a pressing global challenge given
future accelerating environmental changes. Understanding how future climate change
and land use/cover change (LUCC) drive ecosystem service will be important in this
challenge. However, few studies have considered the combined effects of future climate
change and LUCC on ecosystem services. We assessed water yield and soil retention
services and their drivers in the Changbai mountains region (CBMR) from the 2020 to
2050s using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)
model and factor control experiments. Water yield decreased by 2.80% and soil
retention increased by 6.14% over the 30 years. Climate change decreased water yield
and increased soil retention, while LUCC decreased both water yield and soil retention.
The interactive effects between climate change and LUCC had relatively small inhibitory
effects on water yield and large facilitation effects on soil retention. Changes in water
yield were mainly attributed to climate change, while soil retention was largely influenced
by interaction. Our study highlights the individual and interactive contributions of future
climate change and land use to ecosystem service in the mountains region, which can
provide important information for informed future land management and policy making
for sustaining diverse ecosystem services.

Keywords: water yield, soil retention, future climate change, land use and land cover change, interactive effects,
InVEST model, CLUE-S model

INTRODUCTION

Ecosystem services are benefits that people derive from natural ecosystems, and they act as an
important bridge between natural ecosystems and human well-being (Steffen et al., 2015; Gomes
et al., 2021). Since the twentieth century, the warming climate has triggered extreme weather, and
population expansion and food security have led to urban and cropland expansion. These changes
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have seriously affected ecosystem sustainability, and further led
to the degradation and loss of ecosystem services (Buitenwerf
et al., 2018). Therefore, a greater understanding of future
global change trajectories and their effects on ecosystem services
provided an important basis for future ecosystem management
and decision-making.

Climate change and land use are direct drivers of many
ecosystem services and can affect ecosystem distribution and thus
determine ecosystem services supply (Kuglerová et al., 2020).
Climate change also increases the frequency and severity of
extreme events, such as high-winds and extreme temperature
fluctuations than can alter ecosystem biophysical processes,
and therefore ecosystem services. These events are expected to
become even more serious threat in the next decade (Fezzi
et al., 2015; Daneshi et al., 2021). Land use/cover change (LUCC)
by human-induced directly affects ecosystem composition and
configuration and ultimately their ability to provide ecosystem
services (Fu et al., 2017; Augustynczik and Yousefpour, 2021).
For instance, in alpine regions LUCC significantly affects
ecosystem services through changing carbon balance and water
flow (Lawler et al., 2014). Spatial changes in land use also
have a significant impact on the future provision and location
of ecosystem services (Ricke et al., 2018). Many studies have
used LUCC as a proxy or visual representation of ecosystem
service change to convey potential future development and assess
environmental change (Ladouceur et al., 2021; Zambon et al.,
2021). Numerous modeling studies on changes in ecosystem
services and their contributing factors have been conducted, but
typically they have focused on the independent effects of climate
change or LUCC. Few studies have considered the combined
impacts of climate and land use change on ecosystem services
under future climate change conditions (Runting et al., 2017;
Guo et al., 2020).

Mountains cover 22% of the earth’s surface, are home to 915
million people, and provide a range of important ecosystem
services, such as timber, water supply, and wildlife habitat
(Romeo et al., 2015). Mountains experience higher rates of
temperature rise than lowlands, therefore they are more sensitive
to the effects of climate change, and they are also very susceptible
to land use changes impacts due to their high elevation and
slope, which in turn affect ecosystem function and services
(Kim et al., 2017). Thus, more assessment and monitoring of
ecosystem services in mountain areas are needed to maintain
ecosystem health under increasing environmental change (Egan
and Price, 2017; Bai et al., 2019). The Changbai mountains region
(CBMR) is a dormant active volcano and provides a variety
of ecological services to the region, such as water provision,
habitat, tourism, and carbon sink. It is also the source of the
Songhua River, the largest river in Northeast, and precipitation
runoff from the mountains also provides important recharge for
other local rivers (e.g., Yalu River and Heilongjiang River) (Song
et al., 2020). However, the CBMR environment has experienced
unprecedented climate change (warming and drying) and human
disturbances (e.g., urbanization, reclamation, deforestation),
which have profoundly altered ecosystem structure and function.
Historical climate data and projections indicate that warming and
drying of the CBMR region will become more pronounced in

the future and will be accompanied by more frequent extreme
weather events (Zhang et al., 2021). Additionally, tourism
development and food security-induced urban expansion have
changed the natural trajectory of the LUCC, creating a series of
land and environmental problems such as land degradation and
water pollution (Wang et al., 2021).

To achieve a balance between regional development and
environmental protection in the CBMR, the Chinese government
implemented a series of measures to improve the fragmented
ecological environment [e.g., establishment of a National Nature
Reserve in (1986) (Guo et al., 2014)], and then enacted several
ecological restoration projects [e.g., Grain for Green Project in
(1999) (Cao et al., 2009) and Natural Forest Protection Project in
(2000) (Wei et al., 2014)]. Recent studies have shown that these
land use decisions significantly enhanced the CBMR carbon sink,
and reduced wind-sand erosion (Mao et al., 2019). Some studies
also found increased woodlands cover reduced surface runoff,
which in turn affected downstream water use patterns (Feng
et al., 2022). However, these studies generally focused on past-to-
present changes in ecosystem services, or the effects of ecological
projects on a particular ecosystem service, and do not provide a
comprehensive assessment on the combined impacts of climate
change and land use decisions on ecosystem services under an
uncertain future. Thus, a deeper understanding of how climate
change and policy-driven LUCC affect ecosystem services and
quantifying these drivers can inform future land use decisions
and natural resource management.

We focus on two types ecosystem services in CBMR: water
yield and soil retention services, the quality of them is an
important criterion for assessing the ecological health of alpine
regions. CBMR has high vegetation cover, requires considerable
water for growth, and is highly susceptible to soil erosion
from abundant summer precipitation and steep slope. To better
understanding the combine effects of future climate change and
LUCC on ecosystem services. We first simulated climate change
and LUCC for CBMR in 2050, and then used the InVEST model
to assess water yield and soil retention under future climate
and land use scenarios. We address the following questions in
the CBMR: (1) how do climate and land use change under
high emission scenarios SSP 8.5 and environmental protection
policies, (2) how do ecosystem services change spatially and
temporally, and (3) what are the individual and interactive effects
of future climate and land use changes on water yield and
soil retention?

MATERIALS AND METHODS

Study Area
Changbai mountain region (CBMR) is located in Northeast
China (126.49◦E to 129.64◦E, 41.18◦N to 43.70◦N). It includes
Helong, Linjiang, Fusong, Antu, and Changbai Counties and is
dominated by alpine terrain, with the highest peak in Northeast
China, Baiyun Peak (2, 666 m above sea level). The CBMR land
area is approximately 2.42× 104 km2, accounting for 13% of Jilin
Province, China (Figure 1). CBMR is characterized by a typical
temperate continental monsoonal climate with hot and rainy
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FIGURE 1 | Location, digital elevation model (DEM) and vegetation types (2010) of the Changbai mountains region (CBMR).

summers, and cold and dry winters. Over the past 30 years, the
average annual temperature was 4.38◦C, and the average annual
precipitation was 742 mm (Wang et al., 2020).

Changbai mountain region can be divided into three
watersheds based on terrain and catchment area (Figure 1). The
Songhua River Watershed (SRW) is the largest (about 53.52%),
and its main vegetation types are broadleaf, mixed conifer-
broadleaf, and coniferous forests. The Yalu River Watershed
(YRW) is the smallest (about 24.54%), and its main vegetation
types are broadleaf and coniferous forests. The main vegetation
types in the Tumen River basin (TRW) are broadleaf forests and
annual cropland (Figure 1).

Current Climate and Land Use Data
The meteorological data were obtained from the China
Meteorological Data Sharing Service,1 and included daily
temperature, precipitation, and solar radiation for 2016–2020 at
1 km resolution. Land use data at 30 m resolution for 2020 was
obtained from the National Earth System Science Data Center.2

Digital elevation model (DEM) data were obtained from the U.S.
Geological Survey3 at 90 m resolution.

1http://data.cma.cn/
2http://www.geodata.cn/
3http://www.usgs.gov/
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Future Climate and Land Use Change
Scenarios
We simulated future climate and land use scenarios for the 2050s
(2045–2050). Since the high emission scenario (SSP 8.5) assumes
a business-as-usual-high-end emissions scenario by the end of the
century (Jacob et al., 2014), we used it to assess future climate
change effects. The CLUE-S model was used to determine future
land use based on historical trends, in which ecological protection
policy was the main driving factor.

Future Climate Data
Future climates for the period 2045–2050 were obtained
from the Coupled Model Intercomparison Project (Phase
6).4 We assembled daily precipitation, minimum/maximum
temperature, and radiation data according to predictions
of the CESM1-BGC, CCSM4, CNRM-CM5, FGOALS-g2,
MIROC5, and MRI-CGCM3 global models under the SSP
8.5 scenario, and chosen these six models because they have
been validated to have good applicability in the Changbai
Mountains (Wang et al., 2019). Then, we regionalized it to
1 km resolution for CBMR using the WFR-ARW regional
dynamical model.

Land Use/Cover Change Projections
The CLUE-S (The Conversion of Land Use and its Effects
at Small Region Extent) model was used to simulate land
use/cover in 2050. CLUE-S is a spatially explicit land use
model that simulates dynamic competition between different
land use types. It is based on high-resolution (usually better
than 1 km) spatial image data and is suitable for simulating
land use change at small and medium spatial scales. The
model includes spatial and non-spatial modules. The non-spatial
module calculates land use demand based on the analysis of
natural, social and economic factors. The spatial module uses a
raster system to translate these demands into land use changes
based on probabilities and rules for different land use types
(Verburg et al., 2002).

The model requires three main types of input data: location
suitability, spatial policies and restrictions, and conversion
settings. First, location suitability was determined by quantifying
the relationship between land use/cover patterns and constraints
(Land Management Policies) through logistic regression
(Verburg et al., 2002). Secondly, spatial constraints were used to
limit land use/cover variables by setting woodlands and wetlands
as environmental constraints. Finally, conversion settings were
determined by a land use conversion matrix of past time series.
A detailed description of CLUE-S can be found in Verburg and
Overmars (2009).

We validated model accuracy by comparing simulation results
for 2000, 2010, and 2020 with satellite remote sensing data.
The Kappa index was used to assess the consistency between
the simulation results and remote sensing data (Vliet et al.,
2011). The Kappa index was 0.8554, 0.8827, and 0.8814 in
2000, 2010, and 2020, respectively, which demonstrated that the
CLUE-S simulation results were reliable, selected indexes and

4https://esgf-node.llnl.gov/projects/cmip6/

parameters conformed to requirements, and future simulation
results were in accordance with development trends and had
practical significance.

Integrated Valuation of Ecosystem
Services and Trade-Offs Model
Parameterization
We used the Water Yield module and the Sediment Delivery
Ratio module of the InVEST model to estimate ecosystem
services under current and future scenarios. The Water Yield
module is based on the Budyko curve and the Sediment
Delivery Ratio module is based on the Revised Universal Soil
Loss Equation (RUSLE), which are described in Appendix 1
(Supplementary Material). The InVEST model is mainly based
on spatial data (land use data and climate data) and assesses
the value of ecosystem services through empirical models. Due
to its ease of accessibility and rich functionality, the model
has been widely used in ecological and hydrological studies
(Luetzenburg et al., 2020; Morán-Ordóez et al., 2021). All models
were parameterized and tested at the CBMR (Xiao et al., 2002;
Yu et al., 2018; Li et al., 2019). Table 1 briefly describes the
data sets used to assess the two ecosystem services. Details
of the model parameterization can be found in Appendix 2
(Supplementary Material). The precipitation, temperature, and
reference evapotranspiration datasets were spatially interpolated
for all sites using the ArcGIS 10.3 platform with a spatial
resolution of 1,000 m. A detailed description of the InVEST
model can be found in Sharp et al. (2018).

Experimental Design
We designed a factor control analysis through controlling two
influential factors of climate and land use to assess climate
change, LUCC and their interactive effects on ecosystem services.
We generated four simulation scenarios by integrating climate
and land use scenarios at 2020s (2016–2020) and 2050s (2045–
2050) (Table 2). Then we used the InVEST model to assess water
yield and soil retention under the four simulated scenarios.

We determined the magnitude of effects of climate change
and land use by the difference between the baseline scenario
(Scenario 1) and the climate change only (Scenario 3) or
LUCC only (Scenario 2) scenarios. We determine the combined
climate and land use effects by the difference between the
2050s simulation scenario (Scenario 4) and the baseline scenario
(Scenario 1), and then determined the interactive effects by
subtracting the individual effects of climate change and LUCC
from the combined effects.

RESULTS

Future Climate and Land Use Change
The CBMR climate became warmer and drier from the 2020 to
2050s, with 92% of the area warming, and about 56% showing a
drying trend. Under the high emissions scenario, annual mean
temperature increased from 5.25◦C in the 2020s to 5.57◦C in
the 2050s, an increase of 6.10%, with the most pronounced
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TABLE 1 | Data requirement for the integrated valuation of ecosystem services and trade-offs (InVEST) model (WY, Water Yield module; SDR, Sediment
Delivery Ratio module).

Date Type Resolution Data sources Related module

Land use images Raster 30 m National Earth System Science Data Center (see text footnote 2) WY, SDR

Vegetation images Raster 30 m National Earth System Science Data Center (see text footnote 2) WY, SDR

Precipitation Raster 1 km National Meteorological Information Center (http://data.cma.cn/user/toLogin.html) WY

Reference evapotranspiration Raster 1 km ET0 = 0.0013 × 0.408 × RA ×
(
Taverage + 17

)
× (Tdifferences − 0.0123P)0.76 WY

Soil depth Raster 1 km Harmonized World Soil Database (http://westdc.westgis.ac.cn/data) WY

Plant available water content Raster 30 m PAWC = 0.301 × clay% + 0.369 × silt%+ 0.045 × organic% WY

DEM Raster 90 m U.S. Geological Survey (see text footnote 3) SDR

Rainfall erosivity index Raster 1 km R = 0.067P1.627
d SDR

Soil erodibility Raster 30 m
K = {0.2+ 0.3exp[−0.25sand (1− silt/100)]}

(
silt

clay+silt

)0.3(
1− 0.25 ×organic

organic+exp(3.72−0.95 × organic)

) (
1− 0.7 × sand

sand+exp (−5.51+22.9 × sand)

) SDR

TABLE 2 | Land use and climate scenario settings.

Land use 2020s Land use 2050s

Climate 2020s Scenario 1 Scenario 2

Climate 2050s Scenario 3 Scenario 4

warming in the SRW. A decreasing annual precipitation trend
was significant, lowering from 773 mm in the 2020s to 691 mm
in the 2050s, a decrease of 10.65%. The decrease occurred mainly
in TRW and SRW (Figures 2A,B).

Although the limits of environmental protection constraints
such as the Natural Forest Protection Project in (2000) (Wei
et al., 2014) and the Grain for Green Project in (1999) (Cao
et al., 2009) were considered in the future land use simulation,
significant changes occurred in the CBMR due to human
disturbances. Woodlands, the dominant land cover type would
decrease by 7.79% (1.87 × 103 km2) and be converted mainly
to cropland and grassland, with a significant decrease in SRW.
Croplands, converted from woodland and barren land, would
increase the most at 4.10% (0.98 × 103 km2), mainly in
SRW and YRW. Grasslands, built-lands and wetlands (natural
and artificial) experienced varying degrees of increase, with
2.64% (0.64 × 103 km2), 0.69% (0.16 × 103 km2) and 0.63%
(0.15× 103 km2), respectively (Figures 2C,D).

Ecosystem Service Changes
The CBMR showed a slight decreasing trend in water yield,
from 617 mm/km2 in the 2020s to 600 mm/km2 in the 2050s,
a decrease of 2.80%. The most pronounced decrease was in the
eastern mountains, while the southern mountains showed a slight
increase (Figures 3, 4). Sub-regionally, TRW and SRW showed
decreases in water yield (due to decreased precipitation), of
29 mm/km2 (5.50%) and 37 mm/km2 (5.91%) respectively, while
YRW showed an increase, of 38 mm/km2 (5.53%) (Figures 3, 4).

Soil retention in the CBMR significantly increased (due to the
decreased precipitation and interactive effects), from 390 t/km2

in the 2020s to 414 t/km2 in the 2050s, an increase of 6.14%. The
increases were mainly in the eastern mountains, while decreases
occurred in the northern hills (Figures 3, 4). The largest increase
occurred in the YRW, of 42.98 t/km2 (7.66%), followed by SRW,

of 26.08 t/km2 (8.66%). In the TRW there was a significant
decrease, of 8.23 t/km2 (1.85%) (Figures 3, 4).

Effects of Climate and Land Use
Climate change was the dominant factor affecting water yield
changes in the CBMR, followed by interactive effects and LUCC.
Interactive effects were the most significant driving factor for soil
retention changes, followed by climate change and LUCC.

Individual Effects of Climate and Land Use
Climate change decreased water yield by 9.60 mm/km2 for
the whole region (1.55%) from the 2020s to 2050s, with
most pronounced effects in the southern mountainous area
(Figures 5A, 6). Climate change decreased water yield by 3.50
and 3.63% in the TRW and the SRW, respectively, and increased
water yield by 4.10% in the YRW. Climate change increased soil
retention in the CBMR by 11.17 t/km2 (2.86%) from the 2020
to 2050s, mainly in the northern hills (Figures 5B, 6). Climate
change increased soil retention in TRW and SRW by 1.85 and
6.71%, respectively, while in the YRW decreased by 1.08%.

Land use decreased water yield in the CBMR by 2.90 mm/km2

(0.50%) from the 2020 to 2050s, mainly in the northern hills
(Figures 5A, 6). Land use had negative effects on water yield
for all three watersheds, decreasing by 1.16, 1.60, and 0.63% in
the TRW, SRW, and YRW, respectively. Land use also decreased
soil retention in the CBMR by 8.14 t/km2 (2.08%), mainly in the
southern mountainous region (Figures 5B, 6). Land use effects
decreased soil retention by 2.35 and 6.18% in the TRW and SRW,
respectively, while increasing it by 3.36% in the YRW.

Interactive Effects
Interactive effects between climate change and LUCC had
significant impacts on CBMR future ecosystem services, with
inhibitory effects on water yield and facilitation effects on
soil retention. Interactive effects decreased water yield by
4.36 mm/km2 (0.71%) from the 2020 to 2050s in the CBMR, with
the most pronounced inhibitory effects occurring in the southern
and eastern mountainous region (Figures 5C, 6). Interactive
effects increased soil retention by 20.22 t/km2 (5.17%) from the
2020 to 2050s in the CBMR, mainly in the eastern and southern
mountainous areas (Figures 5D, 6).
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FIGURE 2 | Spatial changes in annual average temperature (A) and annual precipitation (B) and during 2020–2050s, spatial distributions of land use for year 2020
(C) and year 2050 (D).

DISCUSSION

Water yield changes were mainly attributed to climate change,
while soil retention was largely influenced by interactions. Recent
studies noted that precipitation patterns directly determine
water yield, especially in mountainous areas, where precipitation
is the main recharge (Braun et al., 2019). For example, Yin
et al. (2022) found that water yield changes in North China
were more sensitive to precipitation than temperature, and the
changes demonstrated a trend consistent with the precipitation
change from 1995 to 2015. Tirupathi and Shashidhar (2020)

found that a 9.5% precipitation increase led to a doubling
in water yield during 2010–2040 under the Representative
Concentration Pathways scenario 8.5 in the Krishna River
basin of India. Meanwhile, increasing temperature can also
alter evapotranspiration to exacerbate decreasing water yield
(Bai et al., 2020). However, soil retention in mountainous
areas was more susceptible to precipitation intensity due
to the high altitude and slope effects (Soto et al., 2021).
Decreased precipitation can diminish slope erosion and reduce
soil scouring by affecting runoff (Qiu and Turner, 2013;
O’Connor et al., 2019). Although the CBMR has a temperate
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FIGURE 3 | Spatial distributions of water yield and soil retention in 2020 and 2050s and changes during 2020–2050s.

FIGURE 4 | Water yield and soil retention in 2020 and 2050s for the Changbai mountains region (CBMR) and three watersheds (the sign “*” indicated significant
differences at the 0.05 level).

monsoonal continental climate, it is significantly influenced
by topography and humid oceanic air flow. Precipitation
is abundant throughout the year, especially from July to
September (Li et al., 2019). Therefore, future warming and

drying climates will continue to lead to increased soil
retention in the CBMR. This is consistent with southern
Europe, where Mediterranean (Ebro), Alpine (Adige), and
continental (Sava) basins are expected to experience a 20%
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FIGURE 5 | Spatial distributions of the individual effects (A: Water yield; B: Soil retention) and interactive effects (C: Water yield; D: Soil retention) of LUCC and
climate change.

increase in soil retention by 2050 due to a 40% decrease
in water availability caused by climate change and irrigation
(Jorda-Capdevila et al., 2019).

In our future land use simulation (2020–2050s), CBMR land
use conversion area reached 18.20% despite the implementation
of ecological restoration projects. Some studies have found that
land use directly determined vegetation type, which further
influenced surface runoff and evapotranspiration (Khorchania

et al., 2020). The greatest land use changes predicted in our
study were in the TRW and SRW, with a significant shift
from woodlands to grasslands and croplands. These changes
reduced watershed water yield because woodlands have a greater
water storage capacity than other vegetation type (Grimm et al.,
2013). Furthermore, some studies have found that the expanded
croplands, especially an increase in paddy fields led a greater
demand for irrigation, which would directly affect evaporation
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FIGURE 6 | The effect sizes of climate change, land use/cover change (LUCC) and their interaction on changes in water yield and soil retention during 2020–2050s
for the Changbai mountains region (CBMR) and three watersheds.

and runoff, in turn decreasing water yield (Cord et al., 2017).
In the TRW and SRW watersheds, future LUCC will similarly
decrease soil retention. This is because in most regions, forest
canopies have a stronger precipitation interception capacity than
grasslands and annual crops, especially in mountainous areas,
while the complex root system of woodlands also increases
soil stability (Felipe-Lucia et al., 2020). For example, compared
to our study, Xia et al. (2021) found that the GFGP project
in the Liaohe River basin of China resulted in soil loss
of 4.33 × 105–2.94 × 105 t/year from 2007 to 2015. In
mountainous areas of Spain, the revegetation of Aragón between
the mid-20th and early 21st centuries led to a significant
increase in water supply (>1,000%) and soil retention (>400%)
(Brunoa et al., 2021).

In the CBMR, climate change interacts with LUCC to
significantly impact ecosystem services, especially soil retention
on the landscape. Predicted future land use change-induced soil
retention primarily occurred in the relatively low elevation of
western and northern flanks, which were most vulnerable to
climate change. Although woodland loss reduced soil retention,
decreases in precipitation-based erodibility interact with the
reduction of surface runoff to enhance soil retention (Morán-
Ordóez et al., 2020). For water yield, future warmer and drier
climates and decreased water holding capacity by ecosystems due
to declining woodlands will exacerbate decreasing water yield
(Krueger et al., 2019). For example, Clerici et al. (2019) used
IPCC-LUCC scenarios to analyze the effects of LUCC and climate
change on water provision and carbon storage in Colombian
Andes from 2016 to 2046. The results showed that climate change
scenarios had a greater impact on water availability than LUCC
scenarios, and the interactive between climate change and LUCC
significantly reduced the water provision.

It should be noted that there were several limitations in
our study. First, our simulations of future climate did not
consider the effects of mountain microclimates, which can
increase climate uncertainty (Bagstad et al., 2013). Secondly,

land use data resolution was 30 m, while the downloaded
and simulated climate data was 1 km resolution, which may
increase uncertainty of the simulation results (Zhang et al.,
2019). However, our simulations predicted the climate and
land use conditions in the CBMR over the next 30 years,
and quantitatively assessed through factor control experiments
the effects of climate and land use individually, interactively
and in combination with ecosystem service changes. Our study
can provide important information for government land use
decisions and natural resource management in response to future
environmental changes.

CONCLUSION

In the CBMR, we assessed water yield, soil retention and the
factors controlling them from the 2020 to 2050s using the InVEST
model and factor control analyses. Water yield decreased and soil
retention increased significantly over the three decades. Climate
change decreased water yield and increased soil retention, while
LUCC decreased both water yield and soil retention. The
interactive effects of climate change and LUCC had relatively
small inhibitory effects on water yield and largely facilitated on
soil retention. Changes in water yield were mainly attributed to
climate change, while soil retention was largely influenced by
interactions. Our results highlight the driver impacts of climate
and land use on ecosystem services and provide important
information for governments to develop land-use and ecological
management policies to tackle future environmental changes.
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