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Florida’s freshwater spring and river ecosystems have been deteriorating due to direct
and indirect human impacts. However, while the conservation and restoration strategies
employed to mitigate these effects often rely on faunal surveys that go back several
decades, the local ecosystem shifts tend to have much deeper roots that predate those
faunal surveys by centuries or millennia. Conservation paleobiology, an approach which
enhances our understanding of the past states of ecosystems, allows for comparison
of modern faunal communities with those prior to significant human impacts. This study
examines the historical record of freshwater mollusk assemblages from two spring-fed
river systems, the Wakulla and Silver/Ocklawaha Rivers. Specifically, we compared fossil
assemblages (latest Pleistocene - early Holocene) and live mollusk assemblages in the
two targeted river systems. Bulk sampling of the fossil record (20 sites; 70 samples;
16,314 specimens) documented relatively diverse mollusk assemblages that consist
of a suite of native freshwater species that is similar across the studied systems.
In contrast, sampling of live communities (24 sites; 138 samples; 7,572 specimens)
revealed depauperate species assemblies characterized by the absence of multiple
native freshwater species commonly found in fossil samples, the widespread presence
of introduced species, and dominance of brackish-tolerant species at the lower Wakulla
River sites. Unlike fossil mollusk assemblages, live mollusk assemblages differ notably
between the two river systems due to differences in relative abundance of introduced
species (Melanoides tuberculata and Corbicula fluminea) and the presence of brackish-
tolerant mollusks in the coastally influenced Wakulla River. The diverse, exclusively
freshwater mollusk associations comparable across multiple river systems documented
in the fossil record provide a historical perspective on the past state of freshwater
river ecosystems complementing data provided by modern surveys. The conservation
paleobiology approach used in this study reinforces the importance of considering the
historical ecology of an ecosystem and the utility of the fossil record in providing a
historical perspective on long-term faunal changes.
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INTRODUCTION

Humans have lived around and exploited Florida’s springs and
rivers for at least 13,000 years (Martin, 1966; Milanich, 1994).
Modern development around freshwater springs began as early
as the 1820s, initiating a long interval of gradually intensifying
human impacts on water quality and ecosystem health (Revels,
1990; King, 2004). Today, these spring-fed river systems are
increasingly threatened by invasive/introduced species (Bogan,
2006; Wingard et al., 2008; Nico et al., 2009; Kusnerik et al., 2020),
excessive nutrient inputs (Turner and Rabalais, 1991; Turner
et al., 2006; Liu et al., 2009; Heffernan et al., 2010; Bricker et al.,
2014), vegetation loss/shifts (Brainwood et al., 2006; Lauretta
et al., 2019), decreasing waterflow (Weber and Perry, 2006),
sea level rise (Donoghue, 2011; Hong et al., 2014), and salinity
fluctuations (Donoghue, 2011; Hong et al., 2014).

Recognizing these threats has prompted a renewed effort
in recent years to study, conserve, and restore Florida’s
spring and river ecosystems through environmental surveys,
restoration plans, and management actions by various state and
private agencies (Howard T. Odum Florida Springs Institute,
2014; Wetland Solutions Inc, 2014; Florida Department of
Environmental Assessment and Restoration, 2015). However,
although anthropogenic impacts to spring ecosystems have been
ongoing for centuries, live faunal surveys encompass only the
last few decades (Odum, 1957; Knight, 1980, 1983; Munch
et al., 2006). These recent efforts have documented conditions
in already-altered ecosystems and, as such, provide critical
data on changes that have taken place over the last several
decades. However, we still lack critical information on the
historical state of these ecosystems as they existed prior to
substantial human impacts.

Conservation paleobiology is a rapidly emerging discipline
that uses fossil or subfossil assemblages to provide historical
ecological context for altered ecosystems. These approaches use
fidelity or discordance between live, dead, and fossil assemblages,
and other related methods, to recognize spatial and temporal
biotic changes and provide long-term baseline assessments that
can assist conservation and restoration efforts (e.g., Kowalewski
et al., 2000; Jackson et al., 2001; Kidwell, 2007, 2013; Yanes,
2013; Hyman et al., 2019). Whereas these approaches have
been used extensively in marine (e.g., Kidwell, 2007, 2013;
Hyman et al., 2019), terrestrial (e.g., Yanes, 2013; Barnosky
et al., 2017), estuarine/lagoonal (e.g., Barbieri et al., 2020), and
freshwater (e.g., Alin and Cohen, 2004; Brown et al., 2005;
Czaja et al., 2019) settings, spring-fed fluvial systems have been
comparatively understudied. The primary goal of this study was
to apply conservation paleobiological approaches to two spring-
fed, fluvial systems in Florida. By comparing the compositional
fidelity between live, dead, and fossil assemblages, the study
aimed to document the faunal composition of freshwater
molluscan communities prior to substantial human impacts,
assess long-term ecological changes to those communities, and
provide historical context for restoration/conservation efforts in
local freshwater ecosystems.

Mollusks were used because their biomineralized shells have
high potential for preservation in the freshwater fossil record, and

their larger populations make collection of meaningful sample
sizes feasible (Boardman et al., 1987; Kusnerik et al., 2020).
Radiocarbon dates on individual fossil specimens (Kusnerik
et al., 2020) revealed that freshwater mollusk shells from the
studied rivers came predominantly from individuals that were
late Pleistocene to early Holocene in age (18,217 to 7,087 cal
BP), coinciding with hydrologic activation of flow in freshwater
springs throughout Florida (Balsillie and Donoghue, 2011;
Donoghue, 2011; O’Donoughue, 2015; Kusnerik et al., 2020). The
radiocarbon dating efforts also indicate that mollusk assemblages
were time-averaged over hundreds to thousands of years,
constituting an averaged archive of long-term paleoecological
conditions in the study system (Kusnerik et al., 2020). In more
general terms, we focus here on mollusks because they are often
used as environmental indicators (Williams et al., 2014), are
sensitive to changes in water conditions (Montagna et al., 2008;
Williams et al., 2014), can archive geochemical changes in aquatic
habitats in their shell structure (Brown et al., 2005; Brainwood
et al., 2006; Williams et al., 2014), and often provide ecosystem
services including water filtration, substrate consolidation, and
habitat structuring (Williams et al., 2014; Vaughn, 2018).

MATERIALS AND METHODS

Study Area and Field Methods
Samples were collected from two spring-fed river systems in
Florida (Figure 1). These two systems, the Wakulla River and
the Silver and Ocklawaha Rivers, were selected because they
(1) vary in magnitude of human impacts, from severe (Silver
River) to reduced (portions of the Wakulla River); (2) represent a
range of salinity regimes, from fully freshwater (Silver/Ocklawaha
Rivers) to coastally influenced (Wakulla River); and (3) afford
easy logistical access.

The Wakulla River, located in Wakulla County, was sampled
at 11 sites along the uppermost 11 km of the river (Figure 1B).
Sites were distributed longitudinally starting at Wakulla Spring
and continuing downstream to approximately 4 km upriver of the
confluence of the Wakulla and St. Marks Rivers. Seven sites were
located within Edward Ball Wakulla Springs State Park, which
includes the headspring and uppermost 5 km of the river. The
remaining four sites were in a publicly accessible portion of the
lower river. In the sampled area, the Wakulla River is primarily
meandering, with a short, braided section in the lower park.
The river flows over undifferentiated Holocene and Pleistocene
sediments, which overlie limestone deposits of the lower Miocene
St. Marks Formation. Bottom substrates include peat, mud, silt,
quartz sand, and limestone hardgrounds.

The Silver River, located in north-central Florida, Marion
County, was sampled at eight sites along its 7.5 km length, from
Mammoth Spring (main spring of the Silver Springs group)
to the confluence with the Ocklawaha River (Figure 1C). An
additional six sites were sampled on the Ocklawaha River, along
a 3.5 km stretch downstream of the confluence point. The
headspring and upper portion of the Silver River are located
within Silver Springs State Park. Both the Silver and Ocklawaha
are meandering rivers within the sampled regions. Both flow
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FIGURE 1 | (A) General location of the study area; (B) sampling sites along the Wakulla River; (C) sampling sites along the Silver and Ocklawaha Rivers. Sites along
the Wakulla River begin with a “W,” along the Silver River begin with an “S,” and along the Ocklawaha River begin with an “O”.

over undifferentiated Holocene and Pleistocene sediments,
which overlie the upper Eocene Ocala Limestone. Bottom
substrates include silts, clays, muds, limestone hardgrounds, and
limestone cobbles.

Two types of samples were collected using SCUBA: live and
fossil assemblages. Live assemblages represent timed (5, 10, or

15 min) hand-collection of living specimens by divers at all
habitat types present at each site. Habitats typically included leaf
litter, submerged logs, submerged vegetation, floating vegetation,
mid-river channel sands and muds, and emergent shoreline
vegetation. Live surveys were conducted between 2016 and
2019 (Table 1).
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TABLE 1 | Latitude, longitude (datum WGS 84), and types of samples collected at each site.

Site name River system Latitude Longitude Sample types collected

S1 Silver 29.216081◦ −82.052908◦ Live

S2 Silver 29.215497◦ −82.049989◦ Fossil, Live

S3 Silver 29.212781◦ −82.036519◦ Live

S4 Silver 29.205769◦ −82.029869◦ Fossil, Live

S5 Silver 29.201492◦ −82.020708◦ Fossil

S6 Silver 29.203211◦ −82.016700◦ Fossil, Live

S7 Silver 29.202050◦ −82.007550◦ Fossil, Live

S8 Silver 29.209531◦ −81.993578◦ Live

O1 Ocklawaha 29.213119◦ −81.987561◦ Fossil, Live

O2 Ocklawaha 29.217000◦ −81.986150◦ Fossil, Live

O3 Ocklawaha 29.221622◦ −81.986417◦ Live

O4 Ocklawaha 29.224772◦ −81.982617◦ Fossil, Live

O5 Ocklawaha 29.228000◦ −81.977919◦ Fossil, Live

O6 Ocklawaha 29.227250◦ −81.977581◦ Fossil, Live

W1 Wakulla 30.235101◦ −84.302516◦ Fossil, Live

W2 Wakulla 30.236621◦ −84.298099◦ Fossil, Live

W3 Wakulla 30.23402◦ −84.293837◦ Fossil, Live

W4 Wakulla 30.233321◦ −84.289278◦ Fossil, Live

W5 Wakulla 30.225686◦ −84.275377◦ Live

W6 Wakulla 30.21805◦ −84.264415◦ Fossil, Live

W7 Wakulla 30.215557◦ −84.263142◦ Fossil, Live

W8 Wakulla 30.209782◦ −84.260475◦ Fossil, Live

W9 Wakulla 30.201076◦ −84.26333◦ Fossil, Live

W10 Wakulla 30.180287◦ −84.248279◦ Fossil, Live

W11 Wakulla 30.176231◦ −84.24181◦ Fossil, Live

Fossil samples were acquired through in situ, bulk collections
of shell material from submerged vertical outcrops or small
marl exposures on the riverbed. Outcrops and marls were
composed of white to tan shell-rich clays with occasional layers
of carbonate silt. Some outcrops contained a poorly indurated,
dark-colored, organic-rich silt layer. When possible, outcrop
exposures were sampled along a vertical profile, with each sample
representing a rectangular cuboid spanning 5-10 cm vertically,
50-100 cm horizontally along the outcrop wall, and 10–20 cm
perpendicularly into the outcrop exposure. Because of their size,
smaller marl exposures on the riverbed were not sampled by
cuboids, but rather, were sampled until one gallon of sediment
was obtained. All samples were wet-sieved using 1 mm mesh
sieves. Samples containing larger numbers of specimens were
subsampled using strategies designed to minimize size-selection
biases (sample splitters or multiple random subsets).

Death assemblages, the loose collection of shell material that
accumulates in scours, divots, or similar erosional depressions
on the river bottom, are also commonly used in conservation
paleobiological research (e.g., Brown et al., 2005). While
molluscan death assemblages were collected for this study, their
complicated, multi-sourced provenance (Kusnerik et al., 2020)
led to their exclusion from further analyses.

Specimen Description and Analysis
A total of 208 samples (live = 138, fossil = 70) were collected.
Specimens were identified to the lowest taxonomic level, yielding

24,030 specimens that represent 20 taxa. Live samples from each
site were pooled together into a single assemblage, regardless
of their time of collection, to mitigate the effects of seasonal
or annual variations in community composition. Bivalve counts
were corrected to a minimum number of individuals by
halving specimen counts. Two terrestrial gastropods (Polygyra
septemvolva and Daedalochila auriculata) present in fossil
assemblages were removed as live, terrestrial species were
not sampled. The brackish-tolerant gastropod Vitta usnea, not
observed in fossil samples, was removed as an ecological outlier
in ordination analyses. Unionid mussels were also removed from
ordination and pairwise comparisons because of taphonomic
concerns, as their nacreous-aragonite shells do not preserve well
in the fossil record (Simpson, 1899; Hinch and Green, 1988;
Roper and Hickey, 1994; Wolverton et al., 2010; Williams et al.,
2014). Exclusion of terrestrial species, freshwater mussels, and
the brackish-tolerant V. usnea did not result in major changes to
diversity analyses.

Samples with fewer than 20 specimens were removed from
analyses to mitigate the effects of small sample sizes. Taxon
abundance counts were standardized using double relativization
(Wisconsin standardization). All analyses were performed in R (R
Core Team, 2018) using custom written scripts and the package
“vegan” (Oksanen et al., 2019). Sample-standardized richness was
calculated using the “rarefy” function in the package “vegan” with
the sample cutoff of 20 specimens. Ordination analyses were used
to visualize compositional differences among samples and sample
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groups. Data were ordinated using Non-metric Multidimensional
Scaling (nMDS) fit into k = 2 dimensions with 50 random restarts.
Performance was assessed using stress values, with values < 0.2
deemed acceptable. Bray-Curtis similarity was used to quantify
the compositional similarity between and within samples of both
assemblage types and river systems. Differences in mean pairwise
similarity between sample sets were statistically evaluated using
randomization with distances resampled from pooled data to
generate a sampling distribution under the null model of no
difference in means. All p values were computed using the
percentile approach with p = IE/IT, where IE is the number of
extreme iterations (i.e., number of replicate samples in which
the resampled absolute difference in means exceeded the true
absolute difference in means observed in the data) and IT is
a total number of iterations. When IE = 0, p was reported as
p < 1/IT. Each randomization estimate was based on 10,000
iterations (pilot analyses indicated that estimates of p values
stabilized at IT < 8,000 iterations). Permutational multivariate
analysis of variance (PERMANOVA), based on pairwise Bray-
Curtis dissimilarities between samples, was conducted to assess
whether sample groups were distinguishable statistically between
assemblage types and river systems.

RESULTS

Fossil samples contained 16,314 specimens representing at least
14 species of freshwater mollusks (12 gastropods, one pea clam,
and at least one species of unionid mussel) (Table 2). No
introduced or brackish-tolerant species were present. Sample-
standardized richness (n = 20 specimens) ranged from 2 to 6.38
(mean = 4.53). Whereas all fossil species were present in the
samples from the Silver and Ocklawaha Rivers, only 11 were
present in Wakulla River samples. The Wakulla samples were
missing unionid mussels, indeterminate ancylid gastropods, and
Physella sp., all of which were rare (n = 9, 3, and 2, respectively)
in Silver/Ocklawaha fossil samples. Common species (> 10%)
in both systems included Planorbella duryi, Notogillia wetherbyi,
and Elimia floridensis. Physella hendersoni was also common in
Silver/Ocklawaha samples. Pairwise similarities between fossil
sites, estimated as Bray-Curtis similarity, ranged from 0.06 to
0.9 (mean = 0.51) for Wakulla fossil sites (Figure 2A) and
from 0.04 to 0.88 (mean = 0.36) for Silver/Ocklawaha fossil sites
(Figure 2B). Pairwise similarities between fossil sites compared
across the two river systems ranged from 0 to 0.87 (mean = 0.3)
(Figure 2C). The difference in mean pairwise similarity was
statistically significant between within-Wakulla and within-
Silver/Ocklawaha comparisons (Supplementary Figure 1B1,B2
and Table 3). The difference was also statistically significant when
comparing pairwise similarities within rivers to those between
rivers (Supplementary Figures 1F1,F2 and Table 3).

Pooling live samples by site produced a total of 25 samples,
representing 7,572 specimens of 11 species (Table 2). These
included eight native, freshwater mollusks (seven gastropods and
one mussel), two non-native freshwater species (one gastropod
and one clam), and one brackish-tolerant gastropod species
(V. usnea). Sample-standardized species richness at sites (n = 20)

ranged from 1 to 5.63 (mean = 2.63). Seven species were
shared between the live communities of the Silver/Ocklawaha and
Wakulla Rivers. An additional three species were present only
in the Silver/Ocklawaha Rivers (Callinina georgiana, Planorbella
trivolvis, and Tarebia granifera), whereas one species, the
brackish-tolerant V. usnea was present only in the Wakulla
River. Only one species was well represented (> 10%) in
both systems, E. floridensis (Silver/Ocklawaha = 15.11% and
Wakulla = 42.45%). In Silver/Ocklawaha River samples, other
well represented species included unionid mussels (57.59%)
and Corbicula fluminea (18.53%). In the Wakulla River,
the common taxa were Melanoides tuberculata (29.56%) and
V. usnea (23.19%). Between site Bray-Curtis similarity for
live Wakulla samples ranged from 0 to 0.98 (mean = 0.36)
and for the Silver/Ocklawaha samples ranged from 0.04
to 0.88 (mean = 0.36) (Figures 2D,E). Within-river mean
similarity was not significantly different between the two systems
(Supplementary Figures 1A1,A2 and Table 3). Between-river
similarity estimates ranged from 0 to 0.8 (mean = 0.17)
(Figure 2F) and was significantly different from within-
river similarity estimates (Supplementary Figures 1E1,E2 and
Table 3).

Live and fossil samples shared seven species (E. floridensis,
P. duryi, C. georgiana, N. wetherbyi, P. trivolvis, P. paludosa,
and unionid mussels) (Table 2). An additional seven freshwater
species were present only in fossil samples (P. hendersoni,
Physella sp., Fluminicola dalli, Tryonia aequicostata, Lioplax
pilsbryi, Pisidium sp., and indeterminate ancylid gastropods).
Four species were absent from the fossil record but present
in live samples: the introduced C. fluminea, T. granifera, and
M. tuberculata and the native, brackish-tolerant V. usnea.
Compared to fossil samples, live samples were generally
characterized by higher dominance, lower richness, and lower
rarefied diversity (Figure 3). Similarity between fossil and
live Wakulla samples ranged from 0 to 0.64 (mean = 0.11),
and between fossil and live Silver/Ocklawaha samples from 0
to 0.62 (mean = 0.09) (Figures 2G,H). Mean similarity was
statistically distinct between Wakulla live and Wakulla fossil
samples, with fossil samples more similar and live samples
less similar than expected (Supplementary Figures 1C1,C2).
However, Silver/Ocklawaha live samples and Silver/Ocklawaha
fossil samples were not statistically distinguishable in terms of
pairwise similarities (Supplementary Figures 1D1,D2). Mean
similarity between fossil samples from the two river systems was
significantly more similar than expected, whereas live samples
were significantly less similar (Figures 4A,B and Table 3).

To account for the impact of introduced species only in the
modern (as they are absent from fossil assemblages), similar
analyses were conducted with their exclusion. Although
removing introduced species does not change pairwise
comparisons of Bray-Curtis similarity for fossil samples,
similarity among live samples within the same river system
increases (Supplementary Figures 5A,B). Bray-Curtis similarity
increases in the Silver/Ocklawaha Rivers (min = 0.27, max = 0.85,
mean = 0.51). In the Wakulla, although the lower and upper
river remains dissimilar from one another, overall mean
similarity increases in live samples because of the high agreement
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TABLE 2 | Abundances of aquatic species present in fossil and live samples compared to local and regional surveys.

This study This study Literature

Fossil Live Fossil Live

Taxa Taxa
categories

Wakulla Silver/
Ocklawaha

Wakulla Silver/
Ocklawaha

Florida Wakulla Wakulla-
regional

Silver/
Ocklawaha

Silver/
Ocklawaha-

regional

Fluminicola dalli Native,
freshwater

+ ++ − − present NA present present present

Ancylidae Native,
freshwater

− + − − NA NA NA NA NA

Elimia
floridensis

Native,
freshwater

+ ++ +++ + ++ +++ present present present present present

Lioplax pilsbryi Native,
freshwater

+ + + − − NA absent present- select
rivers

absent absent

Notogillia
wetherbyi

Native,
freshwater

+ ++ +++ + + + NA NA NA NA present

Physella
hendersoni

Native,
freshwater

+ + ++ − − present present** present NA present

Physella sp. Native,
freshwater

− + − − present NA NA NA NA

Pisidium sp. Native,
freshwater

+ + − − present NA NA NA NA

Planorbella
duryi

Native,
freshwater

+ ++ +++ + − present NA present NA present

Planorbella
trivolvis

Native,
freshwater

+ ++ − + present NA present NA present

Pomacea
paludosa

Native,
freshwater

+ + ++ + + + present present*** present present present

Tryonia
aequicostata

Native,
freshwater

+ ++ − − present absent absent absent present

Unionidae Native,
freshwater

− + + + + + present present present present present

Callinina
georgiana

Native,
freshwater

+ + ++ − + + present NA present NA present

Corbicula
fluminea

Introduced,
freshwater

− − + + +++ absent present present present present

Tarebia
granifera

Introduced,
brackish-
tolerant

− − − + absent NA absent NA present

Melanoides
tuberculata

Introduced,
brackish-
tolerant

− − + ++ + absent NA present NA present

Vitta usnea Native,
brackish-
tolerant

− − + ++ − present* NA present NA NA

Abundances of species in this study are represented as (1) - absent, (2) + < 1%, (3) + + 1-10%, or (4) + + + > 10%. Local and regional literature reviews document
the taxa as present, absent, or NA (data not available) with additional information presented where appropriate. *Present as Neretina usnea, **Documented as present in
a 1956 survey, ***Extirpated from the Wakulla River in the 1990s and anthropogenically reintroduced in the 2000s and 2010s.

in the upper river (min = 0.03, max = 1, mean = 0.71).
Removing introduced species does not dramatically change
similarity between rivers (min = 0.03, max = 0.8, mean = 0.27)
(Supplementary Figure 5C).

In ordination space, fossil samples plot as a cloud with
some separation along nMDS1 and tight clustering along
nMDS2 (Figure 5). Whereas there is some clustering by river
system within the cloud, fossil samples from the different
rivers broadly overlap. Live Wakulla River samples plot at

high nMDS1 and high nMDS2 scores, distinct from nearly all
fossil and live Silver/Ocklawaha River samples (Figure 5). Live
Silver/Ocklawaha River samples mostly plot at high nMDS1 and
low nMDS2 scores, distinct from all fossil and live Wakulla River
samples. Whereas the majority of species plot within the cluster of
fossil samples, three species do not. Two species, the introduced
M. tuberculata and native E. floridensis, plot at higher nMDS1 and
nMDS2 scores, similar to the Wakulla live samples, in which both
taxa are abundant. The introduced C. fluminea scores are similar
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FIGURE 2 | Pairwise comparisons of Bray-Curtis similarities between fossil (gray) samples (A) within the Wakulla River, (B) within the Silver and Ocklawaha Rivers,
(C) between the Wakulla, Silver, and Ocklawaha Rivers, between live (green) samples (D) within the Wakulla River, (E) within the Silver and Ocklawaha Rivers, (F)
between the Wakulla, Silver, and Ocklawaha Rivers, and between fossil and live (blue) samples (G) within the Wakulla River and (H) within the Silver River. (I) Mean
similarities of the eight pairwise comparisons with 95% confidence intervals. (A–H) represent their respective panels in Figure 2.

TABLE 3 | Probability of observed mean pairwise similarity between sample sets evaluated using randomly generated null model of no difference in means.

Comparison p-value

Wakulla and Silver/Ocklawaha within river live to live similarity 0.736

Wakulla and Silver/Ocklawaha within river fossil to fossil similarity < 0.0001*

Wakulla River live to fossil similarity < 0.0001*

Silver/Ocklawaha River live to fossil similarity 0.6554

Wakulla and Silver/Ocklawaha within river live to Wakulla and Silver/Ocklawaha between river live < 0.0001*

Wakulla and Silver/Ocklawaha within river fossil to Wakulla and Silver/Ocklawaha between river fossil < 0.0001*

Wakulla and Silver/Ocklawaha between river fossil to Wakulla and Silver/Ocklawaha between river live < 0.0001*

*p < 0.05.

to most live Silver/Ocklawaha samples, at high nMDS1 and low
nMDS2 scores. PERMANOVA indicates that the two assemblage
types and two river systems are significantly different (F = 7.3,
p < 0.001).

When ordination is restricted to only fossil assemblages,
samples plot as a broadly overlapping cloud (Figure 6). Wakulla
and Silver River samples show substantial overlap with one
another, with a weak separation along nMDS2. Most Ocklawaha
River samples plot within a distinct cluster, separating from
the broader Silver and Wakulla River cluster along nMDS1.

A number of Ocklawaha River samples, however, still overlap
with those of the other rivers. Species scores for L. pilsbryi,
Pomacea paludosa, and C. georgiana are generally similar and
overlap with the largest cluster of fossil Wakulla River samples.
Two species, E. floridensis and N. wetherbyi, plot in a region
of ordination space where Wakulla and Silver River samples
overlap. Planorbella duryi, P. trivolvis, and P. hendersoni plot at
similar scores as the cluster of Ocklawaha River samples.

If introduced species are removed from analyses and
ordinations, live samples still exhibit higher dominance, lower
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FIGURE 3 | (A) Rarefaction curves and (B) richness-dominance plot and of fossil (gray) and live (green) samples. Letters in (B) correspond to a sample’s river
system: “W” for Wakulla, “S” for Silver, and “O” for Ocklawaha.
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FIGURE 4 | Comparison of expected mean similarity distributions (based on randomization under the null model that all pairwise comparisons came from the same
underlying statistical population) with observed mean similarity values for within river (A) live samples and (B) fossil samples. Open white circle is the observed mean
similarity for the given set of comparisons.

richness, and lower rarefied diversity than fossil samples
(Supplementary Figures 2, 3). In ordination space, there is
still separation between the live samples of both river systems
primarily along nMDS2 (Supplementary Figure 4). Whereas like
Wakulla samples still separate from fossil samples along nMDS1,
many live Silver/Ocklawaha samples instead now separate along
a combination of nMDS1 and nMDS2. Among species scores,
E. floridensis plots distinctly separate, roughly coinciding with
the clustering of live Wakulla samples, likely due to their heavy
abundance in these samples. Three species, C. georgianus, P.
paludosa, and L. pilsbryi separate from other species scores,
plotting similarly to one another in the same ordination space as
a heavy cluster of fossil Wakulla samples and relatively near live
Silver and Ocklawaha samples.

Comparative Local and Regional Faunal
Context
Regional, county-level, or watershed-level occurrences are often
recorded for live mollusks. However, except for species of special
ecological interest (i.e., endangered species, harmful invasives,
critical food source for endangered birds, etc.), live mollusks
are rarely documented via quantitative sampling and are often

relegated to passing mentions in larger faunal surveys. Because
their shells have high preservation potential, however, mollusks
are more readily recorded in the freshwater fossil record of
Florida, and often documented in detail when found in fossil
deposits (Portell et al., 1995; Karrow et al., 1996; Auffenberg et al.,
2006; Kittle and Portell, 2010; Portell and Kittle, 2010). Below, we
compare general abundances of species in our study with their
previously published records in present-day local and regional
river systems as well as in fluvial (or fluvial-adjacent) Pleistocene
fossil deposits of Florida.

The comparative data from other fossil sites in the region
includes three sites that are summarized here briefly. The first
fossil locality, the Page-Ladson site, lies on the Aucilla River
in Jefferson County, approximately 30 km SE of the sampled
Wakulla River sites (Auffenberg et al., 2006). Fossiliferous
deposits containing freshwater mollusks were radiocarbon dated
to between∼12,500 and 9,950 BP (Auffenberg et al., 2006; Webb
and Dunbar, 2006). The paleoenvironment was interpreted as
having been shallow (< 3 m) and freshwater (Auffenberg et al.,
2006). The second locality, the Oldsmar site in Pinellas County,
contains a non-marine, fossiliferous clay and sand layer of the late
Pleistocene Fort Thompson Formation (Karrow et al., 1996) and
lies approximately 150 km SW of sites sampled along the Silver
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FIGURE 5 | Non-metric Multidimensional Scaling (nMDS) species and sample scores. Fossil samples in gray and live samples in green. Letters correspond to a
sample’s river system: “W” for Wakulla, “S” for Silver, and “O” for Ocklawaha. Points scaled by number of specimens in each sample.

FIGURE 6 | Non-metric Multidimensional Scaling (nMDS) species and sample scores for fossil assemblages exclusively. Wakulla River samples in blue, Silver River
samples in gray, and Ocklawaha River samples in black.
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and Ocklawaha Rivers. This non-marine layer was interpreted
as having formed in near-coastal, poorly drained marsh, pond,
and stream paleoenvironments (Karrow et al., 1996). The third
locality, the basal layer in the Leisey Shell Pits in Hillsborough
County, contains dark, organic-rich sediment with freshwater
and estuarine mollusk fossils of the middle Pleistocene Bermont
Formation (Bogan and Portell, 1995; Portell et al., 1995). The site
lies about 175 km SW of the sampled Silver and Ocklawaha River
sites. Paleoenvironment is interpreted as having been a protected
bay or lagoon fed by an adjoining large river, likely the source of
the freshwater fossil material (Portell et al., 1995).

Compared to their fossil presence, most native, freshwater
species saw a reduction in their modern geographic ranges with
many undergoing local extirpation from the Silver, Ocklawaha,
and Wakulla Rivers, though persisting within the broader region.
Two prominent introduced, freshwater species (C. fluminea and
M. tuberculata) were documented first appearing in the Florida
Gulf and St. Johns River watershed between 1960 and 1973
(Heard, 1964; Schneider, 1967; Clench, 1969; Daniel et al., 2021).
The euryhaline V. usnea has also been documented in the fossil
record of Florida and nearby regions (Kittle and Portell, 2010;
Czaja et al., 2019). A full listing and discussion of all species is
available in Table 2 and Supplemental Discussion (“Expanded
Comparative Local and Regional Faunal Context”).

DISCUSSION

Diverging Live Communities
Changes in the live communities of these rivers appear to
reflect environmental and anthropogenically-related impacts to
these fluvial ecosystems. In both river systems, the faunal
composition of live mollusk associations has diverged from that
observed in fossil assemblages, as demonstrated by statistically
significant (Table 3) separation of live and fossil samples in
the ordination space (Figure 5). These rivers have also become
faunally dissimilar from one another through the differential
loss of native freshwater species, the regionally variable spread
of the introduced species M. tuberculata and C. fluminea, and
encroachment of V. usnea into the coastally influenced lower
Wakulla River. Whereas the decline in freshwater mollusk
diversity was previously suggested based on fossils in Florida
(Auffenberg et al., 2006), this study demonstrates that different
river systems experienced diverging compositional shifts that
resulted in increased faunal heterogeneity on a regional scale.

The compositional divergence in live communities of the two
rivers is not solely a consequence of the modern presence of
introduced species, but also represents changes in the remaining
native, freshwater community. When introduced species are
excluded, most live samples still separate by river system along
nMDS2 (Supplementary Figure 4). Live samples also separate
from fossil samples in the ordination space. As most of the
species lost from modern assemblages were shared between the
two river systems, divergence documented in live samples is likely
caused by changes in the presence and relative abundance of the
remaining native species. When introduced species are excluded,
the freshwater communities of the two rivers are increasingly

dominated by either E. floridensis, N. wetherbyi, or a combination
of the two. In the Silver and Ocklawaha Rivers, C. georgiana also
remains a notable component of the community at a relatively
limited number of sites compared to the more widely dispersed
E. floridensis.

In addition to invasive species, the native freshwater
community may be responding to climate and anthropogenic
factors including habitat loss, decreasing waterflow, excessive
nutrient input, salinity fluctuations, and other impacts (Turner
and Rabalais, 1991; Loper et al., 2005; Brainwood et al., 2006;
Turner et al., 2006; Lysne et al., 2008; Liu et al., 2009;
Heffernan et al., 2010; Donoghue, 2011; Bricker et al., 2014;
Camp et al., 2014; Hong et al., 2014; Liebowitz et al., 2014;
Freshwater Mollusk Conservation Society, 2016; Lauretta et al.,
2019; Reaver et al., 2019). Invasive species (molluscan and non-
molluscan) may directly or indirectly affect the native freshwater
community through competition for resources, habitat alteration,
or increased predation pressures (Isom, 1986; Leff et al., 1990;
Wingard et al., 2008; Nico et al., 2009; United States Fish and
Wildlife Service, 2014; Valentine-Darby et al., 2015; Ferreira-
Rodriguez et al., 2016).

Fossil Community Composition
The composition of fossil communities provides a historical
perspective to spring and river ecosystems critical for making
informed restoration and conservation decisions. Fossil
assemblages show similarity in faunal composition, despite the
considerable distance (> 250 km) between the two studied river
systems. Almost all fossil species present are shared between the
two systems, with those absent from the Wakulla relatively rare
in Silver/Ocklawaha samples. Given that radiocarbon dates on
mollusk fossils coincide with the activation of spring flow across
much of Florida (Balsillie and Donoghue, 2011; Donoghue, 2011;
O’Donoughue, 2015; Kusnerik et al., 2020), the observed faunal
resemblance of the two relatively distant river systems suggests
that Florida springs and rivers were initially colonized by a
similar suite of mollusks, reflected in the similarity of their fossil
assemblages. Many fossil species identified in this survey have
also been documented in freshwater fossil assemblages elsewhere
in Florida (Karrow et al., 1996; Auffenberg et al., 2006), further
suggesting that similar mollusk assemblages populated multiple
Florida springs and rivers during the late Pleistocene-early
Holocene.

Fossil samples from the Silver and upper Wakulla Rivers
show a high degree of compositional fidelity, with many samples
overlapping in ordination space (Figures 5, 6) suggesting the
headsprings and upper reaches of the two rivers hosted similar
mollusk communities in the past. Species shared in relatively
high abundances between the two regions include E. floridensis,
N. wetherbyi, and C. georgiana, all endemic to the southeastern
United States (Figures 5, 6; Clench, 1962; Chambers, 1990;
Thompson, 1999). Ocklawaha River samples form a more
distinct cluster in the ordination space, perhaps because its
fossil assemblages record more downstream communities rather
than those of the headspring and upper river reaches. The
interpretation of the Ocklawaha River samples as representing
downstream mollusk associations, distinct from those of the
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headspring is further supported by their proximity in the
ordination space (Figures 5, 6) not only to fossil samples from
the lower Silver River (as expected given their close geographic
proximity), but also those of the lower Wakulla River. These
Silver and Ocklawaha Rivers samples are similar in terms of
comparably moderate proportional presence of T. aequicostata
and P. duryi. Compositionally similar Ocklawaha and Wakulla
Rivers samples share high relative abundances of P. paludosa and
C. georgiana, perhaps reflecting a preference of both species for
soft substrates and slower water flows than typically found in
upstream or headspring environments (Duch, 1976; Katoh and
Foltz, 1994).

Whereas the changes in assemblage diversity documented
in this study (reduced live species richness, increased fossil
beta diversity, etc.) may be attributed to temporal- and spatial-
averaging of fossil samples, the magnitude of those changes
make this explanation unlikely. Fossil assemblages reflect long-
term accumulations of shell material formed through time-
averaging and post-mortem transport (Eagar, 1978; Kusnerik
et al., 2020). These patterns would inflate alpha diversity, with
a more pronounced effect in downstream areas that receive
post-mortem accumulations from upstream regions. This would
also reduce beta diversity between sites, as greater spatial and
temporal mixing would make sites appear more similar to
one another. Whereas this explanation (temporal- and spatial-
averaging of fossil samples) for the perceived patterns is possible,
the effects of these biases is expected to be much less dramatic
(Tomašových and Kidwell, 2009, 2010) than those observed
in this study, suggesting the effects documented in this study
should not be attributed primarily to time-averaging and post-
mortem transport.

Conservation and Restoration
Management Suggestions
Conservation managers should evaluate the benefits and
feasibility of targeted conservation or reintroduction of
critical, freshwater species. In particular, unionid mussels
are a bellwether of environmental or ecological conditions
in freshwater systems, being sensitive to changes in salinity,
water chemistry, and other environmental factors (Williams
et al., 2014). A robust, diverse mussel population in a system
is often evidence of a healthy environment, while their loss
indicates the opposite. Even if an ecosystem is restored,
any loss of unionid mussels also sees the loss of related
ecosystem services including enhanced water filtration,
nutrient recycling and storage, and habitat and substrate
modification (Vaughn, 2018). The fossil and death assemblages
may provide critical information on past occurrences of unionid
species, documenting their historical ranges and providing a
context to where reintroduction may prove most successful
(Haag and Williams, 2013).

Many freshwater species documented in this study were
once present in these river systems, either historically or
prehistorically, but are missing from the living record due to
a local extirpation. As many of these mollusk species persist
regionally, their return would bolster biodiversity in these river

systems. Anthropogenic reintroductions of macroinvertebrate
populations may improve restoration outcomes, particularly in
systems suffering from depauperate local populations where self-
recolonization is difficult (Jourdan et al., 2018). These efforts have
already been documented at the Wakulla River, anthropogenic
reintroduction of P. paludosa populations in the early-to-mid
2000 (Darby et al., 1997; Loper et al., 2005; Wakulla Springs
Alliance, 2021). Fossil and death assemblage records may provide
the most complete assessment of which species might be suitable
targets for reintroduction, based on their previous occurrences in
these freshwater systems.

Restoration, conservation, and reintroduction efforts will also
benefit from ongoing efforts to reduce harmful environmental
stressors. Impacts to Florida’s freshwater systems are many
and varied but notably include increasing withdrawal of
groundwater, nutrient runoff and related harmful algal blooms,
and human-induced changes in shore erosion and sedimentation
rates (Florida Department of Environmental Protection, 2007,
2014). The negative impacts from these stressors degrade the
environmental health of these systems, making them more
susceptible to larger perturbations and decreasing the success
of any reintroduction efforts (Jourdan et al., 2018). Continued
monitoring of conditions in the springs, rivers, and adjacent
terrestrial settings, as well maintaining many ongoing efforts
to mitigate these effects, will enhance the long-term success
of conservation and restoration efforts among freshwater
faunal communities.

Finally, this study provides a historical perspective on the
emerging ecological role of introduced species in spring-fed
Florida rivers, thus emphasizing the importance of continued
monitoring of those species and mitigating their impacts
on freshwater systems. Florida has more non-native wildlife
species than any other state (Hardin, 2007), and their
effects on native populations and ecosystems should be
monitored to prevent negative effects. Among introduced
mollusks, C. fluminea populations must be maintained at low
enough abundances to avoid negatively impacting populations
of unionid mussels through competition for resources and
overcrowding (Isom, 1986; Leff et al., 1990; Vaughn and
Spooner, 2006; Ferreira-Rodriguez et al., 2016, 2018). Other
introduced faunas may not directly compete for resources but
cause negative impacts on native populations through habitat
alteration, as in the burrows of the suckermouth armored
catfish (Loricarridae) causing destructive shoreline erosion and
sedimentation (Nico et al., 2009).

The impacts of invasive species mitigation must also be
considered by conservation managers. Combating the spread of
invasive aquatic plants such as Hydrilla has been an ongoing
effort in many Florida freshwater environments, including
Wakulla Springs. Unfortunately, more traditional removal
methods such as mechanical harvesting has been documented
to negatively impact native mollusk and other macroinvertebrate
populations (Van Dyke, 2019). Alternative control methods,
such as herbicide drip systems, reduced this impact but also
highlighted the effects that some invasive species mitigation
efforts have on other components of freshwater ecosystems
(Van Dyke, 2019).
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Effects of Sea-Level Changes
Rising sea levels in the Gulf of Mexico (Donoghue, 2011) leave the
tidally influenced lower Wakulla River increasingly susceptible to
increased salinization (Hong et al., 2014) and more vulnerable to
storm surges from hurricane and storm events (Bromirski and
Kossin, 2008; Knutson et al., 2019, 2020; Kossin et al., 2020).
Storm surges and salinity disruptions like those documented in
the modern Wakulla River are hypothesized to have previously
caused the local loss of many freshwater taxa at the Page-
Ladson site sometime after 9,950 cal BP, the youngest recorded
deposits at the site, leading to the depauperate mollusk faunas
of the modern Aucilla River (Auffenberg et al., 2006). In the
lower Wakulla River, the mollusk community has been altered
by the encroachment of saline waters, which displaced saline-
intolerant native species that were replaced by taxa more tolerant
of oligohaline conditions (Lewis et al., 2009; Hong et al., 2014).

The Value of State Parks
The upper Wakulla River may serve as a partial refugium for
less saline-resilient freshwater species, as it is buffered from the
effects of sea level rise and increasing salinity, and more protected
from direct human impacts by the surrounding Edward Ball
Wakulla Springs State Park. Numerous strategies for preserving
the headspring and Wakulla River are being considered or
implemented (Loper et al., 2005; Florida Department of
Environmental Protection, 2007, 2020; Howard T. Odum Florida
Springs Institute, 2014).

The Silver River has experienced substantial, protracted,
anthropogenic impacts over at least two centuries. Although
development of the springs as a tourist destination began as early
as the 1820s, large changes between 1924 and 2013, including
the addition of gas-powered glass bottom boat tours, exotic
animal exhibits, a waterpark, and other attractions likely left
lasting impacts on the aquatic communities of the headspring
and river (Berson, 2011). In 2013, the Florida Park Service took
control of property around the headspring, merging it with an
existing, adjacent park to form Silver Springs State Park. With
the addition of the headsprings, the Silver River and much
of the Ocklawaha River now lie within a continuous stretch
of State Park or state-managed lands, enabling more effective
conservation efforts to address environmental challenges related
to decreasing water flow, excessive nutrient runoff, and the
impact of the Rodman/Kirkpatrick Dam on the Ocklawaha River
and its tributaries (Shuman, 1995; Munch et al., 2006; Noll and
Tegeder, 2011; Florida Department of Environmental Protection,
2014; Bi et al., 2019). Although no studies have documented
how the recent incorporation of the headspring into the larger
state park has impacted the aquatic communities, the removal of
many of the attractions will likely reduce the direct anthropogenic
impact on the river, possibly enabling recovery and restoration of
the freshwater mollusk species that remain.

This study supports the importance of evaluating,
maintaining, and expanding of the ongoing conservation
and restoration strategies for Florida’s freshwater spring and river
ecosystems, including connection of protected lands/waterways,
management of invasive species, and preservation of existing
fluvial and riparian buffers (Castillo et al., 2016). The State

Parks, and similarly managed lands, likely enhance the resilience
and long-term diversity of freshwater habitats. Protection of
these regions should be maintained and, if possible, enhanced
through increased safeguards and expansion. The creation or
expansion of managed areas around critical headspring regions
can provide increased buffer zones, mitigating the impacts of
harmful human or natural perturbations (De Freese, 1995).
Expansion of these areas may also enhance connections between
managed lands. These connections provide critical aquatic
wildlife corridors, reducing habitat fragmentation and ensuring
populations can move freely along and between waterways.
Aquatic wildlife corridors and interconnected waterways are
critical for population flow among fluvial species and may allow
for natural recolonization following local extirpation events
(Jourdan et al., 2018). Fluvial connections may also be restored
through the removal of human-related impediments such as
dams, artificially channeled rivers, and similar features which
prevent freshwater species from accessing potential habitats.
Reducing these barriers will become increasingly important,
allowing populations to move within and between waterways,
as available habitable space shrinks due to sea level rise, salinity
fluctuations, pollutant perturbations, and other direct and
indirect anthropogenic influences already affecting the springs
and rivers in the region (Loper et al., 2005; Hong et al., 2014)
and across other parts Florida (Walsh, 2001; Endries et al., 2009;
White and Crisman, 2014).

Spatial, Temporal and Fossil Record
Considerations
The results reported here should be considered in the context
of the spatiotemporal resolution of the fossil record. While
radiocarbon dating (Kusnerik et al., 2020) suggests that a
continuous record of mollusk associations from the Pleistocene
to today is absent from sample intervals, the presence of mid-
to-late Holocene shells in death assemblages suggests these
younger fossil deposits are present but less abundant than the
more heavily sampled late Pleistocene-early Holocene deposits
(Kusnerik et al., 2020).

Because of time-averaging, fluvial fossil samples are
temporally mixed over hundreds to thousands of years, thereby
combining specimens of dramatically different ages (Kusnerik
et al., 2020). Pooling of live data from multiple seasons and
years into a single sample, as was done in this study, mimics to
some extent the time-averaging that characterizes fossil samples
(Peterson, 1977; Martin et al., 2002). Additionally, the results
reported here represent a regional case study and their broader
applicability needs to be validated and refined in future studies
in other river systems before this approach can be applied on
larger geographic scales and in a more diverse array of habitats.
For a more detailed discussion on resolution consideration, refer
to Supplemental Discussion “Extended Spatial, Temporal, and
Fossil Record Considerations.”

SUMMARY

Analyses of live and fossil freshwater assemblages demonstrated
that past mollusk associations were more diverse and more
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homogeneous in faunal composition, compared to depauperate
and spatially heterogeneous mollusk associations that exist in
Wakulla, Silver, and Ocklawaha Rivers today. This shift in
composition reflects increasing presence of non-native species
(especially M. tuberculata and C. fluminea), extirpation of many
native freshwater species, fundamental changes in the relative
abundance of surviving native taxa, and increasing salinity
disruptions in coastally influenced regions of Florida rivers.
The findings support strategies for mitigating these impacts
through preservation and restoration of critical springs and rivers
including: (1) expansion of protected zones such as State Parks
and state-managed lands, (2) reintroduction and/or conservation
of critical native species including P. paludosa and unionid
mussels, (3) reduction of stressors including input of nutrient-
laden runoff and groundwater withdrawals, and (4) evaluation
of the impact of invasive species on native communities
(Loper et al., 2005; Munch et al., 2006; Florida Department
of Environmental Protection, 2007, 2014, 2020; Howard T.
Odum Florida Springs Institute, 2014; Wetland Solutions Inc,
2014; Florida Department of Environmental Assessment and
Restoration, 2015). The conservation paleobiology approach used
in this study reinforces the importance of considering the long-
term history of local ecosystems and highlights the utility of the
fossil record in providing a historical perspective that extends
farther than provided by most modern surveys or written records.
Comparison of fossil and modern communities can provide
a perspective that enables the recognition of long-term faunal
changes in altered, imperiled, or at-risk ecosystems to provide
guidance for restoration, conservation, and/or mitigation.
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