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The pollution characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in marine
organism species (6 species of fishes and 2 species of crustaceans) from the coastal
area of the East China Sea were determined. The concentrations of 16 PAHs in the
studied organisms ranged from 29.73 to 87.02 ng/g dw and 2- and 3-ring PAHs were
the most abundant compounds in the aquatic organisms. The habitat, diet and predator-
prey relationship have posed potential effects on the PAH accumulation in marine
organisms. The source identification of PAHs was performed by using the molecular
diagnostic ratios and principal component analysis (PCA). The results showed that the
main sources of PAHs in the marine organisms were coal combustion, followed by
mixture of gasoline combustion, oil combustion, crude oil spill and vehicle emissions.
The incremental lifetime cancer risk of human via ingestion process of marine organisms
in this sea area was also estimated and the assessment showed that it posed an
acceptable but non-negligible risk to human health.

Keywords: polycyclic aromatic hydrocarbons, marine organisms, source identification, health risk assessment,
temperate coastal area

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) have been widely concerned because of their
teratogenicity, carcinogenicity and mutagenicity. With the development of social economy, PAHs
from industrial production, agricultural production, transportation and domestic pollution sources
are increasing gradually (Hu et al., 2008; Jiao et al., 2012; Yoo et al., 2014; Tong et al., 2019). They
can enter marine environment through various ways, such as wastewater discharge, atmospheric
deposition, surface runoff and crude oil leakage (Heemken et al., 2000). It is worth noting that
PAHs tend to accumulate in aquatic organisms through the biological lipid membrane (Billiard
et al., 2002) since their lipophilic and hydrophobic properties, and their toxicity can be amplified
through the food chain/web, finally causing toxic effects on human health via ingestion (Charles
et al., 1992; Chen et al., 2002).
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Located in a temperate zone with humid climate and abundant
precipitation, the coastal area of the East China Sea owns massive
biological resources, especially Zhejiang coastal waters. Zhejiang
Province covers a sea area of ∼260,000 square kilometers and its
continental coastline and island shoreline extend for ∼6,500 km,
accounting for 20.3% of the total length of China’s coastline. The
convergence zone of coastal current and Taiwan warm current
makes the coastal waters of Zhejiang rich in fishery resources
because of its low salinity, great seasonal changes and abundant
nutrients. From 2017 to 2019, the average annual marine fishing
yield of Zhejiang Province accounted for more than 27% of the
that in China (CSF, 2019, 2020). However, the increasing human
maritime activities have caused more concerns about the quality
of marine environment. As reported in a previous study (Wang
X. Y. et al., 2015), the sum of 16 PAH concentrations in the
surface sediments samples collected from Zhoushan Archipelago
and Xiangshan Harbor ranged from 3.67 to 31.30 ng/g and 11.58
to 481.44 ng/g, respectively. To date, there are still few studies and
information which address the current situation of PAH pollution
in the marine organisms of this sea area and its potential risk
to human health.

The main tasks of this study can be described as follows: (1)
Marine organisms will be collected from the temperate coastal
area of the East China Sea and used to determine the residual
level of 16 priority PAHs; (2) Diagnostic ratios and Principal
Component Analysis (PCA) will be applied for identification of
the possible sources of PAHs; (3) The safety risk to human health
via ingestion of these aquatic products will be clearly evaluated.
The purpose of this study is to further understand the level of
pollutants in coastal aquatic products in the East China Sea, to
provide useful information for the prevention and control of PAH
pollution and an assessment for the potential risk of consuming
PAH-contaminated seafood in this area.

MATERIALS AND METHODS

Sample Collection
The study area was set in Zhejiang coastal waters in the East
China Sea (Figure 1) and the marine organisms were sampled
by bottom trawl at nine sites in April 2019. Eight kinds of high-
economic-value marine organisms were selected, including six
fishes and two crustaceans. The basic biological information is
shown in Supplementary Table 1. After collection, the samples
were washed with ultrapure water, stored in PE sealed bags and
then transported to the laboratory at –20◦C until analysis.

Experimental Section
Materials
Silica gel (60∼100 mesh for chromatography column), anhydrous
sodium sulfate, 98% concentrated sulfuric acid, acetone,
dichloromethane, n-hexane and other chromatographic pure
solvents were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). The silica gel needs to be activated for
use according to previous protocol (Wang et al., 1994). The 16
USEPA priority PAH standard mixture including Naphthalene
(Nap), Acenaphthylene (Acy), Acenaphthene (Ace), Fluorene

(Fl), Phenanthrene (Phe), Anthracene (Ant), Fluoranthene
(Flu), Pyrene (Pyr), Benzo[a]Anthracene (BaA), Chrysene
(Chr), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene
(BkF), Benzo[a]pyrene (BaP), Indeno[1,2,3-cd]pyrene (InP),
Dibenz[a,h]anthracene (DahA), Benzo[g,h,i]perylene (BghiP)
and internal standard (p-Terphenyl-d14) were purchased from
Supelco, Inc. (Bellefonte, PA, United States).

Sample Pretreatment
The sample pretreatment method was based on the
determination of specified sixteen polycyclic aromatic
hydrocarbons in aquatic products by gas chromatography-
mass spectrum in Chinese aquatic industry standards (SC/T
3042–2008) and previously established protocols (Yu et al.,
2016, 2019). In brief, muscle tissue (0.2–5 g, depending on
amount available) was freeze-dried for 24 h, grinded, mixed
with 18 mL n-hexane/dichloromethane (2:1, v/v), transferred
into 50 mL centrifuge tubes, and vortex mixed for 1 min.
Samples were then extracted in an ultrasonic extractor for
30 min, and centrifuged at a rate of 4,800 rad/min for 3 min.
The extraction solution was concentrated to 5 mL, followed by
washing with sulfuric acid solution (60%, v/v) for derosination
and centrifuged at a 4,800 rad/min rate for 3 min, then
transferred into a chromatographic column filled with 3 g
silica gel and 1 g anhydrous sodium sulfate. The columns were
eluted with 12 mL n-hexane/dichloromethane (1:1, v/v). The
PAH-containing eluents were collected and placed in a nitrogen
stream; the final solution was adjusted to 1 mL by hexane and
spiked with p-terphenyl-d14 as an internal standard before
instrument analysis.

Gas Chromatography-Mass Spectrometry Conditions
Gas chromatography–mass spectrometry (GC-MS) (Agilent
7890A-5975C) was used for the determination of 16 PAHs. A DB-
5 capillary column (15 m × 0.25 mm × 0.25 µm) was used
for PAH mixture separation. The inlet temperature was set at
250◦C. The initial temperature of GC oven was set at 50◦C, held
for 3 min, increased to 180◦C at a rate of 15◦C/min, heated to
300◦C at a 6◦C/min rate, and held for 2 min. The electron impact
(EI) ion source and quadrupole temperatures were set at 230 and
150◦C, respectively. The 16 PAHs were detected by selected ion
monitoring (SIM) mode and the target ions of PAH compounds
were selected based on our previous study (Yin et al., 2015, 2021).
Helium (purity > 99.9%) was used as a carrier gas with a flow
rate of 1 mL/min. Pulsed splitless injection of 1 µL of the sample
solutions was performed.

Quality Assurance/Quality Control
The linear regression coefficients for calibration curves based
on five standard concentrations (10, 50, 100, 200, and 500
ng/mL) were greater than 0.99. The limit of detection (LOD)
was defined as the concentrations of target compounds that
gave rise to a peak with a signal-to-noise ratio (S/N) of 3
(Chen et al., 2007), which varied from 0.1 and 1.9 ng/g.
The results showed that no target compounds were detected
(below LOD) in the procedure blanks. The measured recoveries
of matrix-spiked samples were 61.4 ± 8.8%, 70.9 ± 3.4%,
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FIGURE 1 | Descriptive map of the sampling sites.

74.8 ± 6.9%, 122.7 ± 8.2% and 118.6 ± 6.5% for Naphthalene-
d8, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12 and
Pyrene-d12, respectively.

RESULTS AND DISCUSSION

Concentrations and Composition
Patterns of Polycyclic Aromatic
Hydrocarbons
The PAH concentrations in marine organisms from the coastal
area of Zhejiang in the East China Sea ranged from 29.73 ng/g
dw in Konosirus punctatus to 87.02 ng/g dw in Cynoglossus
robutus, with an average concentration of 53.35 ng/g dw. Detailed
data were summarized in Supplementary Table 2. And the
ranges of the concentration levels of 616PAHs were illustrated
in Figure 2. Varied concentrations of PAHs in the studied marine
organisms could be observed among different species and even
among the individuals of the same species. According to previous
studies, the species-specific differences and individual differences
may be attributed to the different feeding behavior, metabolic
capability, trophic level and biomagnification ability of each
species and individuals (Rahmanpour et al., 2014; de Albergaria-
Barbosa et al., 2018; Santana et al., 2018; Yu et al., 2019).

As shown in Table 1, the average concentration of 616PAHs
(53.35 ng/g) in the marine organisms of this study was close to
those from Nansha and Xisha Islands (67.79 and 71.69 ng/g, Li
et al., 2019), lower than those from South China Sea (289.86
ng/g, Ke et al., 2017), Ghana coast of West Africa (192 ng/g,
Bandowe et al., 2014c), Tanmen of China (161.46 ng/g, Li et al.,
2021) and Dongfang and Yachen gas fields and the Pearl River
Delta of China (386 ng/g, Yu et al., 2019), but higher than
those from Zhuhai of China (31.21 ng/g, Li et al., 2021) and
the northern Bering Sea Shelf and Chukchi Sea Shelf (34.97
ng/g, Ma et al., 2020). The comparison of PAH concentrations
with this respect indicated that the marine organisms from the
coastal area of Zhejiang in the East China Sea were moderately
contaminated by PAHs.

The composition pattern of PAHs in the marine species was
presented in Figure 3. The relative compositions of PAHs were
similar to each other, 2- and 3-ring PAHs were predominant in
the marine organism tissues, accounting for 42.69 and 49.46%,
respectively; followed by 4- and 5-ring PAHs, accounting for 5.90
and 1.93%, respectively. It is reported that low molecular weight
polycyclic aromatic hydrocarbons (LMW PAHs) have higher gill-
water transfer efficiency due to higher water solubility, while
high molecular weight polycyclic aromatic hydrocarbons (HMW
PAHs) tend to combine with particles (Baumard et al., 1999;
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FIGURE 2 | Concentrations of 616PAHs in the marine organisms.

Sun et al., 2016). Also, previous studies have shown that the
removal or biotransformation rate of HMW PAHs is higher
than that of LMW PAHs (Baumard et al., 1998). This may
explain the reason why marine organisms are prone to the
occurrence of LMW PAHs. Furthermore, it is stated that the
habitats can be an important factor to affect the distribution
characteristics of PAHs in marine organisms (Snyder et al., 2015).
The coastal areas of Zhejiang Province including Zhoushan
Archipelago and Xiangshan Harbor, and some nearby cities
with high industrialization, such as Shanghai and Nantong, have
built many oil refineries, coal power plants and petrochemical
plants (Wang X. Y. et al., 2015). And the pollution emissions
from these plants will affect the composition of PAHs in the
water bodies and surface sediments of the surrounding sea.

Jiang et al. (2014) sampled seawater and surface sediments from
Zhoushan coastal area, and their results showed that 2- and 3-
ring PAHs in seawater and sediment samples were predominant.
This probably leads to higher accumulation of LMW PAHs
in the studied aquatic products in this region (Badreddine
et al., 2016; Margherit et al., 2018; Webster et al., 2018). Our
results showed the composition of PAHs in the marine organism
samples posed a potential correlation between the compositions
of PAHs in the organisms and their habitat. Differences in
physiology and diet also likely account for the differences in
PAH exposure for aquatic organisms (Snyder et al., 2015). As
shown in Supplementary Table 1, C. robutus, which has the
highest PAH concentrations, is a typical benthic fish that is
in contact with bottom sediments for long periods of time.
Some studies have shown that soil and sediment are the greatest
sinks for PAHs (Huang et al., 2018), hence C. robutus may
accumulate more PAHs from sediments. This is consistent with
some existing findings that benthic organisms in contact with
the sediments tend to have a stronger accumulation capacity
for PAHs than aquatic organisms in contact with the water
(Nakata et al., 2003). Furthermore, the least abundant PAHs was
detected in K. punctatus, which mainly feed on phytoplankton,
and higher PAH contents were detected in carnivorous fishes that
feed on other small fishes. It may suggest that the carnivorous
fish species exhibited higher PAH concentrations than the
herbivorous ones. This result is consistent with a previous study
on the accumulation potential of persistent organic pollutants
(POPs) such as polychlorinated biphenyls (PCBs) in freshwater
fish species (Eqani et al., 2013). The food web also affects the
concentration levels of PAH compounds. For example, Nap
accounted for the highest proportion in the two crustaceans,
which may cause a relatively high proportion of Nap in Pennahia
argentata that feed on crustaceans.

Source Appointment
Molecular Diagnostic Ratios
The molecular diagnostic ratio method has been commonly
used to discriminate the source of PAH pollution. Since PAH

TABLE 1 | Comparison of PAH concentrations (ng/g dw) in the marine organisms from sea areas.

Sea area Sampling year Organism tissue Concentration range (Avg.) References

Coastal area of
Zhejiang Province

2019 Muscle tissues 29.73∼87.02 (53.35) This study

South China Sea 2015 Muscle tissues 94.88∼557.87 (289.86) Ke et al., 2017

Ghana Coast, West
Africa

2010 Muscle and gut + gill tissues 71∼481 (192) Bandowe et al., 2014c

Zhuhai, China 2018 Muscle tissues 13.74–42.59 (31.21) Li et al., 2021

Tanmen, China 2018 Muscle tissues 24.39–684.83 (161.46) Li et al., 2021

Nansha Islands, China 2016 Muscle tissues 32.71–139.09 (67.79) Li et al., 2019

Xisha Islands, China 2016 Muscle tissues 12.79–409.28 (71.69) Li et al., 2019

The northern Bering
Sea Shelf and Chukchi
Sea Shelf

2014 Muscle tissues 32.2–128.1 (34.97) Ma et al., 2020

Dongfang and Yachen
gas fields and the Pearl
River Delta, China

2013 Muscle tissues 190–606 (386) Yu et al., 2019
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FIGURE 3 | Composition patterns of PAHs in the marine organisms.

compounds that are isomers often have similar thermodynamic
partition coefficients and kinetic mass transfer coefficients, the
content ratio of single-component compounds of PAHs has
been widely used to identify the sources of PAH contamination
in environmental samples (Hellou et al., 2005; Nasr et al.,
2010; Tobiszewski and Namiesnik, 2012; Zhang et al., 2021),
even these ratios may not be stable in organisms due to
the complexity of metabolic processes and the particularity of
different hydrocarbons.

The commonly used molecular diagnostic ratios
include Ant/(Phe + Ant) and Flu/(Flu + Pyr). When
Ant/(Phe+ Ant) < 0.1 or Flu/(Flu+ Pyr) < 0.4, the main source
of PAHs is petroleum source; when Ant/(Phe + Ant) > 0.1,
the main source of PAHs is combustion source; when
0.4 < Flu/(Flu + Pyr) < 0.5, the main source of PAHs is natural
gas, diesel, oil and other combustion; when Flu/(Flu+ Pyr) > 0.5,
the main sources of PAHs are biomass and coal combustion
(Yunker et al., 2002). The cross plot of Ant/(Phe + Ant) and
Flu/(Flu + Pyr) was selected to draw the PAH source of the
studied samples. As indicated in Figure 4, all of the collected fish
samples had PAHs mainly from combustion. Since the samples
were collected in the nearshore of Zhejiang coastal area of the
East China Sea, they are susceptible to land-based sources of
production and domestic pollutant emissions.

Principal Component Analysis
PCA is a multivariate analytical tool for receptor modeling
in environmental source identification studies, which can
represent the total variability of the original PAH data with
a minimum number of factors (Liu et al., 2009). It provides
a dimensionality reduction method to reduce the number of
variables, reflecting most of the information of the original
variables (Javed et al., 2008). The main advantage of this
method is that it requires little information of the pollutant
source or predetermined characteristics of the source (Sofowote
et al., 2008). The concentrations of PAH variables can be
considered as a linear combination of many potential factors,

and the samples are identified by classifying them through
several comprehensive characteristic indicators and comparing
the loadings to infer the source of contamination (Liu et al.,
2009). In this study, source analysis of the 11 detected
PAHs was performed by using IBM SPSS Statistics 25.0 to
identify three principal components (PC1, PC2, and PC3),
calculate the cumulative variance contribution of the principal
components, and obtain the correlated factor loading matrix (see
Supplementary Table 3).

The results of PCA in Figure 5 and Supplementary Table 3
showed that the cumulative contribution of the three factors
reached 81.487%. The contribution of PC1 was 54.698%, where
Ace, Phe, Ant, Flu, Pyr, and BbF had large loading values, and
Phe, Ant, Flu and Pyr are mainly emitted by coal combustion
(Harrison et al., 1996; Simoneit, 2002; Yunker et al., 2002; Li
et al., 2006; Tian et al., 2009), indicating that PC1 was coal
combustion. The contribution of PC2 was mainly composed
of Fl and BaP, explaining 16.064% of the total variance. Fl is
an important tracer of coking (Sofowote et al., 2008; Wang C.
H. et al., 2015), and BaP is mainly from gasoline combustion
(Simoneit, 2002; Yunker et al., 2002; Sofowote et al., 2008) and
vehicles (Randolph and Joel, 2003; Li et al., 2006), hence PC2
is a mixed source of coking, gasoline combustion, and vehicle
emissions. PC3 only has a high percentage of Nap, and studies
show that Nap is a characteristic indicator of crude oil spill
(Patrolecco et al., 2010; Deng et al., 2013) and oil combustion
(Dong and Lee, 2009; Khairy and Lohmann, 2013). Therefore,
PC3 was identified as a mixed source of oil combustion and
crude oil spill.

Combining the analysis results of two PAH source
identification methods above, it is found that the results
of these two methods are basically consistent. The results
determined that the most important source of PAHs in the near-
shore marine organisms in the study area was coal combustion,
followed by a mixture of gasoline combustion, oil combustion,
crude oil spill, and vehicle emissions. A possible explanation
for this result was that marine organisms in the coastal waters
of Zhejiang province were affected by the pollution from coal-
powered plants, petroleum refineries and petrochemical plants
in surrounding cities. This finding was consistent with previous
field investigations in the highly industrialized harbor and sea
areas (Bandowe et al., 2014a; Benali et al., 2017). It should be
noted that most of the marine organisms captured by trawling
was not migratory but stationary. The observed results of PAHs
in the marine organisms may reflect the pollution situation
around the study site.

Health Risk Assessment
Diet is one of the main ways that people are exposed to PAHs
in their daily life. Numerous international studies have evaluated
the combined carcinogenic effect of PAHs to human health, and
the Incremental Lifetime Cancer Risk (ILCR) has been widely
used to evaluate the risk of PAHs. To gain the carcinogenic risk
level, the toxic equivalent factor (TEF) of 16 PAHs to BaP have
been commonly used to assess the risk of PAHs in organisms
by calculating their toxic equivalent concentration (TEQ) of BaP.
The commonly applied TEFs have been proposed by Nisbet and
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FIGURE 5 | The PCA results of PAHs in the marine organisms.
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FIGURE 6 | Ranges of the estimated ILCRs by consuming the marine
organisms collected from this study area.

LaGoy (Nisbet, 1992; see Supplementary Table 4). The equations
for TEQ and ILCR are shown as follows:

TEQ =
n∑

i=1

TEFi × Ci (1)

where TEFi is the toxicity equivalence factor of this compound
i relative to that of BaP; Ci is the concentration of an individual
PAH compound i in marine organisms tissue.

ILCR =
TEQ× CSFingestion × IR× EF × ED

BW × AT
(2)

where CSF is the oral cancer slope factor of BaP of 7.3 mg/kg/day;
IR is daily intake rate of different organisms. The average
daily consumption is assumed to be 59, 35, and 49 g/day for
fish, mollusk, and crustacean species, respectively (Zhang et al.,
2013). EF is exposure frequency (365 days/year); ED is exposure
duration, taken as the average human life span of 70 years
(Bandowe et al., 2014b). BW is average bodyweight, assumed to
be 60 kg (Adomako et al., 2011). AT is average exposure time,
assumed as 25,550 days in this study.

After calculation, the ILCR values for marine organisms from
the coastal area of the East China Sea are shown in Figure 6,
ranging from 4.32 × 10−7 (P. trituberculatus) to 2.54 × 10−5

(P. major). According to the fish advisory committees and safe
eating guidelines from the USEPA, an ILCR of 1 × 10−5 is
regarded as the maximum acceptable risk level (ARL), while the
priority risk level of 1 × 10−4 is considered as serious (USEPA,
2000). Except S. taty and P. major, the values of other samples
in the present study were well below the ARL, indicating low
carcinogenic risk to local residents near the East China Sea.

CONCLUSION

This study investigated the concentrations and compositional
patterns of 16 PAHs in the marine organisms from the coastal
area of the East China Sea. The PAHs with 2- and 3-ring were
the dominance, then followed by 4-ring. The marine organisms
in the study area were moderately contaminated by PAHs
when compared with the marine organisms from different sea
areas. The PAH accumulation in marine organisms has shown
discernable connections with their habitats, diets and predator-
prey relationships. The results of the source identification showed
that PAH pollution in marine organisms from the Zhejiang
coastal area of the East China Sea mainly originated from coal
combustion. The incremental lifetime cancer risk from PAH-
contaminated seafood consumption was significantly lower than
the priority risk level (10−4), but potential risks still should be
carefully considered in the study sea area. The results are expected
to provide useful baseline information of the PAH pollution in
the coastal aquatic products from the temperate coastal area of
China, and to further support the control of PAH pollution and
environmental management in this area.
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