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Soil nitrogen density (SND), which is influenced by environmental factors operating

at different spatial scales and intensities, is critical for agricultural production and

soil quality. Although the spatiotemporal distribution of top-layer SND has been well

explored, the scale effects of environmental factors on the temporal changes of SND

(SNDT) are poorly studied, which might promote the predictive accuracy of SNDT.

Thus, SNDT during a certain period was calculated to explore the multiscale effects

of environmental factors on it. In the study, three sampling transects under the basins

of warm-temperate, mid-temperate, and warm-temperate zones were established with

200 km long and 1 km intervals to explore the spatial variation of SNDT, examine the

multiscale effect of environmental factors on it, construct the predicting models based

on its scale-specific relations with environmental factors, and validate the models in

each basin or in other climate-zone basins. The results indicated that the increment

of SND during a certain period was the greatest in the mid-temperate basin, and the

variation of SNDT was ranked as cool-temperate > mid-temperate > warm-temperate

basins. Under different soil types, the spatial characteristics of SNDT were different in

different climate-zone basins, but the average SNDT under cropland was the greatest

in each basin. Considering the influencing factors (climatic, topographic, and vegetation

factors), they had controls on SNDT operating at different spatial scales. In regard to the

prediction of SNDT, the method of partial least square regression (PLSR) combined with a

multiscale analysis was found to be more preferable for dependent SNDT prediction than

the traditional method of stepwise multiple linear regression but could not be validated for

the independent validation data in other basins. Thus, the spatial multiscale relations of

SNDT with environmental factors could provide more information for each basin, and the

integration of the extra information decomposed by wavelet transform into the method

of PLSR could enhance the SNDT prediction for dependent datasets. These findings are

of great significance for future studies in the spatial modeling of SND temporal dynamics

under the influence of environmental changes.

Keywords: temporal changes of soil total nitrogen density (SNDT), scale-dependent prediction, partial wavelet

transform (PWT), partial least square regression (PLSR), basin
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INTRODUCTION

Soil N (SN) is closely linked to the soil carbon stock because
the input of additional N could support the accumulation
of soil carbon as a result of regulating terrestrial carbon
sequestration (Ngaba et al., 2020), and it is the largest
contributor to atmospheric N2O emissions, which is a relatively
stable greenhouse gas contributing to stratospheric ozone
destruction (Chapuis-Lardv et al., 2007). Thus, soil nitrogen
stock (SNS) is critical to soil quality and environmental changes.
However, the temporal and spatial heterogeneity of topsoil
N varied greatly, accompanied by spatiotemporal changes of
environmental characteristics, and SNS requires a timely updated
look at what is happening. Therefore, the spatial distribution
of temporal changes in soil nitrogen density (SNDT), which
is the prerequisite for the assessment of SNS spatiotemporal
variability, should be predicted for agricultural management and
climatic changes.

The spatial variation of SN under different environmental
conditions (Gao et al., 2019) and its temporal variability after
land-use conversion (Ngaba et al., 2020) have been extensively
explored. For example, temperature and precipitation were
the key factors affecting the variations of SN in a previous
study (Ngaba et al., 2020); the elevation and slope significantly
influenced SN distribution due to regional natural environment
and soil erosion, but SN did not demonstrate any significant
variations under different land-use types in the hilly region
of subtropical China (Zhang et al., 2020); the concentration
of SN was greater under farmland, followed by grassland and
shrubland on the Chinese Loess Plateau (Wang et al., 2009);
elevated N input could improve net primary production (NPP)
(Adamek, 2009). In other words, climatic and topographic factors
control the spatial variation of SN, while SN regulates above-
aground NPP.

Previous studies indicated that environmental variables
control soil properties at different spatial scales with different
intensities (Si, 2008; Hu et al., 2017), and the scale of
influence on soil properties may not always be at the original
sampling scales (Biswas and Si, 2011). Many studies have
been conducted to clarify the spatial scaling effects of soil
organic carbon (SOC) and to identify its controls based on
the multiscale analyzing methods, such as wavelet transform
(WT), empirical model decomposition (EMD), and Fourier
transform. For example, Zhou et al. (2021) examined the
spatial variations of SOC at different scales, and the effects
of environmental factors on SOC were explained in Chinese
Tibet using the two-dimensional empirical mode decomposition
(2DEMD). The scale- and location-specific correlations between
temperature and SOC was analyzed across the globe by a
spherical wavelet analysis (Huang et al., 2018). The scale-
specific dominant factors affecting SOC spatial distributions were
identified by the multivariate empirical model decomposition
(MEMD) (She et al., 2016).

The prediction model of SOC was established based on
their scale-dependent relationships with environmental factors
by discrete wavelet transform (Zhu et al., 2018), and the
SOC prediction was also performed based on the location-

and scale-effects of environmental factors by the combination
of 2DEMD, geographical weighted regression, and stepwise
multiple linear regression (SMLR) (Zhu et al., 2020b), but
the validation of the predicting models was not carried out
in previous studies. Although the multiscale characteristics of
SN were presented based on MEMD (Zhu et al., 2019), less
research has been done to not only address the spatial scaling
effects of environmental variables on SNDT but also establish
the predicting models based on their spatially scaling relations.
Thus, there is still uncertainty about the spatial scaling effects of
environmental factors on SNDT in the typical landscape of the
basin. We assume that the multiscale analysis of SNDT could
provide more information for understanding and predicting its
spatial distributions.

Under diverse environmental conditions in Shanxi Province,
the variation characteristic of SNDT and the soil–environmental
relationships vary greatly, resulting from the effect of different
dominant environmental variables on the soil formation. From
north to south of the Shanxi Province, the widely distributed
landform of the basin, where high-quality arable land is
distributed, should be considered. Whether the predicting model
of SNDT in each basin is effective based on its spatial scaling
relations with influencing factors should be explored extensively
for obtaining the spatial and temporal distributions of SND
accurately for its better management in the future. In two
basins located in different climate zones, whether the prediction
model of SNDT is validated should also be studied for the
model’s validation in different basins. Therefore, the aims of this
study were to (1) analyze the scale-specific variations of SNDT,
(2) examine the scale-specific relationships between SNDT and
environmental factors, (3) establish the predicting model of
SNDT based on its scale-dependent relations with environmental
factors, and (4) validate the predicting model in each basin or in
the other basins.

MATERIALS AND METHODS

Site Description
The study area is located in Shanxi Province (110◦14′-114◦33′

E, 34◦35′-40◦45′ N), Central China (Figure 1A). This region is
in the semi-arid continental monsoon climate zone, which is
divided into three climate zones, namely, cool-temperate, mid-
temperate, and warm-temperate zones based on the latitudinal
extent. The mean annual temperature varies from 8◦C in the
north to 12◦C in the south, and the accumulated temperature
(≥10◦C) ranges from 1,850 to 5,480◦C. The accumulated
precipitation varies from 410 to 690mm. The major soil types in
Shanxi Province are cinnamon soil, fluvo-aquic soil, castanozem
soil, and castano-cinnamon soil according to Chinese Soil
Taxonomy (Figure 1B), with the pH level as “alkaline.” The
elevation ranges from 245m to 3,058m, and more than 70%
of the total area is covered with mountains (Figure 1C). High-
quality farmland is mainly located in the six basins of Shanxi
Province, which are the Datong basin, Xinding basin, Taiyuan
basin, Changzhi basin, Linfen basin, and Yuncheng basin
(Figure 1C).
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FIGURE 1 | (A) Geographic location of study area, (B) soil types, (C) digital elevation model (DEM) and sampling transects across the basins of Datong

(cool-temperate transect), Taiyuan (mid-temperate transect), and Yuncheng (warm-temperate transect), (D) soil sampling locations in 2007, and (E) soil sampling

locations in 2017.

Data Acquisitions
A total of 302,045 points of soil samples were sampled during
2006–2008 (Figure 1D), and the temporal change during the
period of sampling was ignored in the study. At each location,
a composite sample of 0–20 cm soil layer from three sampling
points was collected within 1m, and an undisturbed surface soil
was collected using a metallic core cylinder of 100 cm3 volume.
Soil total nitrogen (SN) was measured using the Kjeldahl method,
standing for the SN content of around 2007. Soil bulk density
(SBD) was measured using the oven-dry method. Additionally, a
total of 6,128 points of topsoil samples (0–20 cm) sampled during
2017 were collected (Figure 1E). The SN and SBD were also

measured using the Kjeldahl method and the oven-dry method,
respectively. The SND (kgm−2) of 2007 and 2017 were calculated
as follows (Tian et al., 2006):

SND = L× SN× SBD× (1− F/100)

100
, (1)

where L is soil thickness (cm), SN is soil total nitrogen
concentration (g kg−1), SBD is soil bulk density (g cm−3), and
F is gravel (>2mm) percentage. In this study, F was taken as
0 because large gravel rarely appeared in homogeneous loess
(Liu et al., 2011). Subsequently, the temporal changes of SND
during 2007–2017 (SNDT, kg m−2 10a−1) could be calculated
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by the difference between SND of 2017 and SND of 2007.
Finally, the spatial distribution of SNDT with 30m resolution
in Shanxi Province was calculated using the ordinary kriging
without anisotropy in ArcGIS.

In the study, three soil sampling transects, which were mainly
under the Datong basin located in the cool-temperate zone, the
Taiyuan basin located in the mid-temperate zone, and the Linfen
basin located in the warm-temperate zone, were established to
200 km long and with 1 km intervals. The SNDT content along
the three transects was extracted from the spatial distribution
of SNDT.

A total of 179 meteorological stations in and around Shanxi
Province from 2007 to 2017 were collected from Climatic
Data Center, National Meteorological Information Center. The
average temperature (AAT), accumulated precipitation (AAP),
averaged sunshine during (SSD), and relative humidity (RH)
during each year were obtained, and averaged annual values of
the four factors during 2007–2017 were calculated. The spatial
distributions of AAT, AAP, SSD, and RH in Shanxi Province were
predicted by the ANUSPLINMeteorological InterpolationModel
with 30m resolution, and the four climatic factors at the three
sampling transects were extracted. Altitude was obtained from
the digital elevation model (DEM) with 30m resolution, and
slope was calculated from the altitude. The topographic factors,
including altitude and slope along the three transects, were also
extracted. Net primary productivity (NPP) during 2007–2017
from a moderate resolution imaging spectrometer (MODIS) was
downloaded from the website (https://modis.gsfc.nasa.gov/), and
the averaged NPP during 2007–2017 was calculated to represent
the vegetation conditions.

Continuous Wavelet Transform and Partial
Wavelet Coherence
Continuous Wavelet Transform

Wavelet transform was used to analyze the multiscale effects
of spatial or time series, which arise from the finite spatial or
temporal domain (Biswas et al., 2013). For the spatial series SNDT

(represented by Y) measured along a location series X, the WT
function is expressed as follows:

W
(

a, b
)

= 1√
a

∫ ∞

−∞
Yi(Xi)ψa,b(

Xi − b

a
)dXi, (2)

where ψ(Xi) is the basic wavelet function, and i is the spatial
location from 0 to 200 km. The parameter a is the dilation (a >
1) or contraction (0 < a < 1) factor, and b is the translation or
shift of the function (Kumar and Foufoula-Georgiou, 1993). The
inverse WT is defined as follows:

Yi(Xi) =
2

A+ B

∑

a,b
W

(

a, b
)

ψ
a,b
(
Xi − b

a
), (3)

where A and B are upper and lower bounds, respectively. There
are two types of WT, namely, CWT and DWT. If the wavelet
coefficients are calculated at continuous scales and locations, the
method is defined as CWT.

Partial Wavelet Coherence

Based on bivariate wavelet coherence (BWC), the PWC between
the response variable SNDT is represented by Y, the predictor
variable of each environmental factor is represented by X (e.g.,
AAT), and excluding variables of the other environmental factors
is represented by Z (Z = [Z1,Z2, . . . ,Zm], e.g., Z = [AAP, SSD,
RH, altitude, slope, and NPP]) at the scale-location domain (s, τ )
is expressed as follows:

PYX|Z(s, τ ) =
(1− R2YXZ(s, τ ))PYX(s, τ )

√

(1− R2YZ(s, τ ))(1− R2XZ(s, τ ))
, (4)

where PYX (s, τ) , R2YXZ(s, τ ), R
2
YZ(s, τ ), and R2XZ(s, τ ) can be

calculated as follows:

PYX(s, τ ) =
↔
W

YX

(s, τ )

(
↔
W

YY

(s, τ )
↔
W

XX

(s, τ ))1/2
(5)
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W
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(s, τ )
↔
W
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↔
W
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W
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(6)

R2YZ(s, τ ) =
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W
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(s, τ )
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W
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W

YZ
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W
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R2XZ(s, τ ) =
↔
W

XZ

(s, τ )
↔
W

ZZ

(S, τ )−1
↔
W

XZ

(s, τ )

↔
W
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(s, τ )

, (8)

where
↔
w
AA

(s, τ ) is the smoothed auto-wavelet power spectra, and
↔
w
AB
(s, τ ) is the cross-wavelet power spectra at scale s and location

τ . A more detailed description of the PWC can be found in other
publications (Hu and Si, 2021).

Data Analysis
The land cover types in both 2007 and 2017 were obtained
from a moderate resolution imaging spectrometer (MODIS),
and the changed and unchanged regions of land-cover types
could be acquired. The land cover types and soil types under
the three sampling transects were obtained to analyze the SNDT

content under different land types and soil types. The traditional
statistics of SNDT and its partial correlation coefficients with
environmental factors were calculated.

The PWC between SNDT and environmental variables was
performed, and the parameter of percentage area of significant
PWC (PASPWC) was calculated to evaluate the strength of their
relations. According to previous studies (Si and Zeleke, 2005; Si,
2008; Zhu et al., 2016), their relationships were recognized as
statistically significant, if PASPWC is>5%. The influencing factors
were decomposed into multiple-scale components by CWT, and
the correlation coefficients between SNDT and the environmental
factors or their decomposed-scale components were calculated.

Along each transect, the odd points from north to south were
selected as the calibration datasets, and all even points were
selected as the validation dataset. First, the calibration data of
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TABLE 1 | Comparison of temporal changes of soil nitrogen density (SNDT ) under different soil types along the three transects.

Transects Soil types Percentage

distribution (%)

Min

(kg m−2 10a−1)

Max

(kg m−2 10a−1)

Mean

(kg m−2 10a−1)

SD CV (%)

Cool-temperate

transect

(n = 200)

Fluvo-aquic soil 46.0 −0.14 0.11 0.01 0.06 2,078.49

Castano-cinnamon soil 41.0 −0.02 0.15 0.07 0.04 65.04

Castanozem 10.0 0.03 0.14 0.08 0.03 37.72

Solonchak 3.0 −0.01 0.11 0.05 0.04 95.29

– – −0.14 0.15 0.04 0.06 159.44

Mid-temperate

transect

(n = 200)

Cinnamon soil 56.5 −0.03 0.25 0.13 0.08 59.56

Fluvo-aquic soil 38.5 −0.07 0.18 0.03 0.04 136.49

Litho soil 4.0 −0.02 0.25 0.13 0.12 90.49

Castano-cinnamon soil 1.0 0.07 0.08 0.07 0.01 8.25

– – −0.07 0.25 0.09 0.08 91.89

Warm-temperate

transect

(n = 200)

Cinnamon soil 83.5 −0.04 0.16 0.04 0.04 85.00

Fluvo-aquic soil 9.0 −0.01 0.14 0.05 0.04 89.37

Litho soil 7.5 0.03 0.09 0.06 0.01 22.71

– – −0.04 0.16 0.04 0.04 80.78

SNDT and environmental factors at the sampling scale were used
to develop the model of SMLR to estimate SNDT for validation.
Second, the models of partial least square regression (PLSR) were
developed from the environmental factors at the sampling and
multiple scales, and leave-one-out cross-validation was used to
determine the optimal number of latent variables (ONLV) during
the calibration procedure. During the validation procedure, the
PLSR model was used to predict SNDT for the validation dataset
with the ONLV value determined in the calibration. In addition,
the predictingmodels established by each transect from one basin
were also validated by the transect from the other basins.

The performance of the SMLR and PLSR models for
the calibration and validation data were evaluated using the
parameters of R2, root mean square error (RMSE), and the ratio
of performance to deviation (RPD). R2 was calculated as follows:

R2 = 1−
∑n

i=1 (Ŷi − Yi)
2

∑n
i=1 (Yi − Yi)

, (9)

where n is the number of samples and p is the number of the
variables in the regression equation.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Ŷi − Yi)
2

(10)

RPD = SD

RMSE
, (11)

where Yi, Ŷi, and Yi are the measured, predicted, and averaged
values of SNDT, respectively. SD is the standard deviation of the
measured SNDT. Based on the previous studies (Rossel et al.,
2006; Kassim et al., 2021), the performance of the predicting
models could be classified into six classes: very poormodel, which
is not recommended (RPD < 1.0), poor model, in which only
high and low values can be distinguishable (RPD = 1.0–1.4), fair
model, which may be used for prediction (RPD = 1.4–1.8), good
model, which can be used for quantitative predictions (RPD =

1.8–2.0), very good model (RPD= 2.0–2.5), and excellent model
(RPD> 2.5).

RESULTS

Descriptive Statistics of SNDT and Its
Local Variation
Descriptive statistics of SNDT under different soil types along
three transects are given in Table 1. From north to south, the
mean SNDT values were positive and were 0.04, 0.09, and 0.04 kg
m−2 10a−1, respectively, for cool-temperate, mid-temperate, and
warm-temperate transects. Thus, the increment of SND during
the period of 10 years along the mid-temperate transect was the
greatest among the three transects. The variability of SNDT along
cool-temperate and mid-temperate transects were classified as
strong because the coefficients of variation (CVs) values were
>90%; the variability along the warm-temperate transect was
classified as moderate because CV values were between 10 and
90%. Meanwhile, CVs for the three transects were ranked as
cool-temperate > mid-temperate > warm-temperate transect.
Therefore, the spatial variation of SNDT decreased greatly from
cool-temperate to warm-temperate basins.

For fluvo-aquic soil, the mean SNDT values were 0.01,
0.03, and 0.05 kg m−2 10a−1 for cool-temperate, mid-temperate,
and warm-temperate transects, respectively, which gradually
increased from north to south. For castano-cinnamon soil, the
mean SNDT values in both cool-temperate and mid-temperate
transects were 0.07 kg m−2 10a−1. For cinnamon soil, the mean
SNDT values were 0.13 and 0.04 kgm

−2 10a−1 for mid-temperate
and warm-temperate transects, respectively. For cinnamon soil
and litho soil, the increment of SND during the period of 10 years
was the greatest along the mid-temperate transect.

Descriptive statistics of SNDT under different land types along
the transects are shown in Table 2. The land type was dominant
in grassland along the cool-temperate transect and in cropland
along the mid-temperate and warm-temperate transects. For
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TABLE 2 | Significant spatial variations of temporal changes of soil nitrogen density (SNDT ) under different land types along the three transects.

Transects Land types Percentage

distribution (%)

Min

(kg m−2 10a−1)

Max

(kg m−2 10a−1)

Mean

(kg m−2 10a−1)

SD CV (%)

Cool-temperate

transect

(n = 200)

Unchanged grassland 67.00 −0.12 0.15 0.04 0.06 160.40

Unchanged cropland 28.50 −0.09 0.13 0.05 0.04 83.00

Changed land types 4.50 −0.14 −0.03 −0.06 0.03 −56.39

– – −0.14 0.15 0.04 0.06 159.44

Mid-temperate

transect

(n = 200)

Unchanged grassland 4.50 −0.03 0.23 0.04 0.07 169.13

Unchanged cropland 84.50 −0.07 0.25 0.09 0.08 87.73

Changed land types 11.00 −0.03 0.25 0.07 0.07 99.91

– – −0.07 0.25 0.09 0.08 91.89

Warm-temperate

transect

(n = 200)

Unchanged cropland 77.50 −0.04 0.16 0.05 0.04 78.59

Changed land types 22.50 −0.02 0.09 0.04 0.03 85.25

– – −0.04 0.16 0.04 0.04 80.78

FIGURE 2 | The spatial distribution of temporal change of soil nitrogen density (SNDT ) and the local wavelet spectra of SNDT along the (A) cool-temperate, (B)

mid-temperate, and (C) warm-temperate transects. The solid black lines in the local wavelet spectra show SNDT variation with >1 standard deviation, and the

numbers in the bracket represent the area of significant variations.

cropland, themean SNDT values were 0.05, 0.09, and 0.05 kgm
−2

10a−1 for cool-temperate, mid-temperate, and warm-temperate
transects, respectively, and their CV values were around 80%. The
results indicated that the spatial variation of SNDT was identical
under cropland, even in different climate zones. For grassland
and the changed land types, the CVs of SNDT varied greatly
under different climate zones.

The spatial distribution of SNDT and their local variance
are presented in Figure 2. The spatial distribution of SNDT

under different climate zones varied greatly, and the significant
variation in the scale-location domain was locally distributed.
The areas of significant variation were 36, 31, and 21% for the
three basins, respectively. Therefore, the significant variations of
SNDT were climate-zone dependent.

Relationships Between Environmental
Factors and SNDT at the Sampling and
Decomposed Scales
The correlation coefficients between SNDT and the influencing
factors at the sampling or decomposed scales are given in

Figure 3. If the correlation coefficients were >0.18, their
relationships were significant at the 99% confidence level. The
correlation types between SNDT and environmental factors were
different at different scales, and the influencing intensities of
environmental variables on SNDT were also different. For cool-
temperate transect, the significant correlation was mainly located
at scales of 13–40 km. For mid-temperate transect, the significant
relationships was mainly located at scales of 18–68 km. However,
for warm-temperate transect, the significant correlations were
shown at different scales.

Partial Correlations Between
Environmental Factors and SNDT at the
Sampling or Decomposed Scales
The PWCs between SNDT and environmental factors (slope
for cool-temperate transect and SSD for mid-temperate and
warm-temperate transects were selected; others are not shown)
are shown in Figure 4, which indicates the partial correlations
between scale components of SNDT and environmental factors
at the corresponding scale. Along cool-temperate transect,
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FIGURE 3 | Correlation coefficients between the temporal change of soil nitrogen density (SNDT ) and its controlling factors or their decomposed scale components by

continuous wavelet transform (CWT) along the (A) cool-temperate, (B) mid-temperate, and (C) warm-temperate transects. The x-axis indicates the original scale or

the decomposed scales of the environmental factors.

FIGURE 4 | Partial wavelet coherency (PWC) between the temporal change of soil nitrogen density (SNDT ) and single predictor variable after excluding the effect of

the other variables along the (A) cool-temperate (slope), (B) mid-temperate (SSD), and (C) warm-temperate (SSD) transects. The direction of the arrow shows the

type of correlation (the right direction is positive and the left direction is negative), and the solid black lines show significant bivariate wavelet coherence (BWC) at a

95% confidence level.

the scale- and location-specific relationships of SNDT with
environmental factors were greater at scales around 60 km, and
their significant relations were local at scales <32 km. Along
the mid-temperate transect, the scale- and location-specific
relationships of SNDT with environmental factors demonstrated
that their relations were generally greater than those along
the other two transects. Along warm-temperate transect, the
correlation of SSD with SNDT was dominant among these
influencing factors.

At the original scale, the partial correlation coefficients
between SNDT and influencing factors indicated that AAT, AAP,
SSD, and NNP were significantly correlated with SNDT along the
cool-temperate transect; AAP, SSD, and RH were significantly
correlated with SNDT along the mid-temperate transect; and
AAP, SSD, RH, and altitude were significantly correlated with
SNDT along the warm-temperate transect (Table 3). Therefore,
AAP and SSD significantly controlled the spatial distribution of
SNDT at the sampling scale of 1 km at different climatic basins.
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TABLE 3 | The percentage area of significant partial wavelet coherence (PASPWC) between temporal changes of soil nitrogen density (SNDT ) and influencing factors and

the partial correlation coefficients (R) between SNDT and influencing factors.

Transects Variables Area

(pixels)

Area

(%)

Scale

(km)

Location

(km)

R with SNDT

Cool-temperate

transect

(n = 200)

AAT (◦C) 696 5.61* 54–57 All locations −0.42**

AAP (mm) 1,074 8.66* 54–57 All locations −0.31**

SSD (h) 1,156 9.32* 54–60 All locations −0.31**

RH (%) 1,139 9.19* 50–57 All locations −0.04

Altitude (m) 1,375 11.09* 50–60 All locations −0.13

Slope (◦) 1,471 11.86* 48–60 All locations −0.14

NPP (gC m−2 a−1) 987 7.96* 50–57 60–200 −0.20**

Mid-temperate

transect

(n = 200)

AAT (◦C) 2,360 19.03* 40–60 All locations 0.02

AAP (mm) 2,538 20.47* 40–68 All locations 0.58**

SSD (h) 3,110 25.08* 30–68 All locations 0.24**

RH (%) 1,964 15.84* 50–68 All locations −0.23**

Altitude (m) 2,420 19.52* 43–68 All locations −0.13

Slope (◦) 1,806 14.56* 40–54 All locations −0.03

NPP (gC m−2 a−1) 2,077 16.75* 54–68 All locations 0.12

Warm-temperate

transect

(n = 200)

AAT (◦C) 878 7.08* 64–68 All locations −0.04

AAP (mm) 1,008 8.13* 60–68 All locations −0.36**

SSD (h) 2,079 16.77* 43–68 All locations −0.47**

RH (%) 1,087 8.77* 43–48 1–124 0.23**

Altitude (m) 1,036 8.35* 43–48 1–163 0.17*

Slope (◦) 848 6.84* 60–68 All locations 0.02

NPP (gC m−2 a−1) 462 3.73 14–25 Local −0.12

*Stands for statistically significant at P < 0.05.

**Stands for statistically significant at P < 0.01.

The evaluation parameters of PWC between SNDT and
influencing factors are also given in Table 3. Along the cool-
temperate transect, their significant relationships were mainly
located at scales of 50–60 km, and the significant areas were
more stable at different locations except for NPP. Along the mid-
temperate transect, their significant relationships were mainly
located at scales of 30–68 km, while the significant areas were
local at some locations and scales, which were the greatest
among the three transects. Along the warm-temperate transect,
the relationships of SNDT with environmental factors were not
prominent except for SSD. In brief, the partial correlations
between SNDT and influencing factors at the sampling and
decomposed scales were different, which indicated that the
information contained in SNDT at the sampling and decomposed
scales should be complementary.

Prediction of SNDT at the Sampling Scale
The SNDT values at the sampling scale were predicted by
PLSR, and the evaluating parameters at different numbers of
latent variables (NLV) are presented in Figure 5. During the
calibration procedure, the RMSE gradually decreased and the
R2 gradually increased when the NLV ranged from 0 to 50.
This indicated that the ONLV in the calibration procedure
should be 50. However, the RMSE gradually decreased and
then increased, and R2 gradually increased and then decreased
with the NLV increasing in the validation procedure. This
demonstrated that the predicting performance for the validation

data was not always improved with the NLV increasing, and the
ONLV in the validation procedure was not 50. In the study,
the ONLV for the PLSR model was determined by the leave-
one-out cross-validation in the validation procedure, which is
presented in Figure 5. Although the NLVwith the best predicting
performance in the validation model was not always in line with
the ONLV determined in the calibration procedure, both NLVs
were close to each other. Thus, the ONLV determined in the
calibration procedure was suitable for predicting the purpose of
the environmental factors at the decomposed scales.

The scatterplots observed by predicted SNDT are shown in
Figure 6, and evaluating parameters of the predicting models
established by both methods of SMLR and PLSR are presented
in Table 4. By SMLR from environmental factors, although the
included factors were different along different transects, both the
factors of AAP and SSDwere included for SNDT prediction in the
basins. The calibration model could be classified as a fair model
because RPD values ranged from 1.4 to 1.8. However, during
the validation procedure, only the model for the mid-temperate
transect could be considered a fair model, and the other two
models were only poor (RPD ranged from 1.0 to 1.4).

The method of PLSR from the environmental factors at the
sampling and decomposed scales could significantly improve the
predicting accuracy of SNDT, especially for the cool-temperate
transect, which had the worst predicting performance by SMLR,
and the best performance by PLSR among the three transects.
Along the cool-temperate and mid-temperate transects, the
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FIGURE 5 | Root mean square error (RMSE) and coefficient of determination (R2) at a different number of latent variables (NLV) in the calibration and validation

procedures for (A) cool-temperate, (B) mid-temperate, and (C) warm-temperate transects. The black frames stand for the optimum number of a latent variable

(ONLV) determined by the leave-one-out cross-validation in the calibration procedure.

FIGURE 6 | Scatterplots between the measured and predicted temporal change of soil nitrogen density (SNDT ) by (A) the stepwise multiple linear regression (SMLR)

from the influencing factors and (B) the partial least squares regression (PLSR).

predicting performance for the calibration and validation data
was excellent, because RPD was >2.5. However, the predicting
accuracy along the warm-temperate transect was good, because
the RPD values in the calibration and validation procedures
ranged from 2.0 to 2.5. The good performance in the cool-
temperate and mid-temperate transects could also be proved by
their significant PWC between environmental factors and SNDT

at different scales (Figure 4). The study also indicated that the
predicting models built in each basin were not reliable in the

other basins because of the different effects of environmental
factors on SNDT in different climate zones (data not shown).

DISCUSSION

Spatial Characteristics of SNDT
In the spatiotemporal domain, the surface SND varied greatly
due to the environmental conditions and human activities. In the
study, the indicator of SNDT was established to assess the spatial

Frontiers in Ecology and Evolution | www.frontiersin.org 9 May 2022 | Volume 10 | Article 848865

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ding et al. Scaling Effects of Soil Nitrogen and Its Predictions

TABLE 4 | Parameters used to assess the temporal changes of soil nitrogen density (SNDT ) prediction accuracy, the stepwise multiple linear regression (SMLR) models at

the original scale, and the optimal number of latent variables (ONLV) for the partial least square regression (PLSR).

Methods Transects ONLV Calibration Validation

RMSE RPD R2 RMSE RPD R2

SMLR Cool-temperate transect – 0.04 1.40 0.48 0.05 1.27 0.40

SND*
T = −0.87AAT-0.71AAP-0.67SSD-0.11Slope-0.16NPP

Mid-temperate transect – 0.05 1.63 0.62 0.05 1.65 0.63

SNDT = 1.00AAP+0.38SSD-0.38RH

Warm-temperate transect – 0.02 1.44 0.51 0.03 1.35 0.44

SNDT = −0.43AAP-0.49SSD+0.47RH+0.22Altitude

PLSR Cool-temperate transect 22 0.02 3.80 0.93 0.02 2.86 0.88

Mid-temperate transect 16 0.02 4.13 0.94 0.03 2.50 0.85

Warm-temperate transect 16 0.02 2.37 0.82 0.02 2.03 0.76

RMSE, root mean square error; RPD, ratio of performance to deviation.

* Represents the standardized regression coefficients in the functions.

dependence of temporal changes in SND. Three typical basins
located in different climate zones were selected as the study area
because of the high-quality arable land dominantly distributed.
The mean value of SNDT was positive in all three basins and had
the greatest increase in the mid-temperate basin. The result was
in line with a previous study (Yang et al., 2015), which proved that
the temporal changes of SN presented an increasing trend with
time. Previous studies indicated that the rate of denitrification
(conversion to N gas) generally increased with the increasing
temperature from cool temperature to warm temperature due to
the biological activity (Veraart et al., 2011). Meanwhile, the SN
input was great in themid-temperate and warm-temperate basins
from fertilizer application or crop straw return because cropland
dominated in the two basins. Thus, the high N input and low rate
of denitrification in the mid-temperate basin led to a high level
of SNDT.

The SNDT demonstrated different statistical characteristics
under different soil types, because the predominant N forms
were different, resulting in different N cycle processes,
including fixation, mineralization, ammonification, nitrification,
denitrification, plant assimilation, and so on (Powlson, 1993).
The mean SNDT gradually increased from north to south under
fluvo-aquic soil, which is developed from river alluvium and
widely distributed in these basins. The result might be due to
the reason that organic matter decomposes releasing N more
quickly in warm humid climates and slower in cool dry climates
(Parton et al., 2007). However, the mean SNDT was similar
under castano cinnamon soils that resided in different climatic
basins. Additionally, a previous study indicated that SNS was
influenced by the vegetation type (Marty et al., 2017). In the
study, the variability of SNDT was similar under cropland of
different climatic basins (around 80%), and also similar under
grassland of different climatic basins (around 165%). However,
its variability under the changed land types varied greatly
resulted from the different land transformations by human. In
each basin, the mean SNDT was greater under cropland than
that under grassland, and the extract of more SNDT might
come from N input from tillage management. For example,

the extract of 0.01 kg m−2 10a−1 in the cool-temperate basin
(0.05 kg m−2 10a−1 in cropland compared with 0.04 kg m−2

10a−1 in grassland) and the extract of 0.05 in cool-temperate
basin (0.09 kg m−2 10a−1 in cropland compared with 0.04 kg
m−2 10a−1 in grassland) might come from tillage practices, such
as fertilizer or crop straw return.

In the scale-location domain, the significant variations of
SNDT were local and different among different transects. This
indicated that the dominant pedogenic processes were different
under different climatic basins. The area of significant variation
was ranked as cool-temperate > mid-temperate > warm-
temperate transects, which is identical to the order of CV
values (Table 1). The greatest variation of SNDT in the cool-
temperate basin (160%) might be attributed to the various rates
of denitrification resulting from temperature differences across
the basin and the low human impact resulting from dominant
grassland. Therefore, the spatial variation of SND temporal
changes decreased greatly with decreasing latitude. However,
many errors ignored in the study should be considered in the
future, such as the discrepancy in the number of samples between
2007 and 2017, the longer period of sampling time around 2007,
and the like.

Effects of Environmental Factors on SNDT
Some studies hypothesized that each scale of soil properties was
controlled by one or more environmental variables at the original
sampling scale. For example, the controls of SOC variation at
different scales were unraveled by the environmental variables
at the original scale by Zhou et al. (2021). However, SNDT may
be controlled by the environmental factors at the other scales
that differ from the sampling scale. Some studies identified the
controlling factors by separating variations in soil properties as
well as in environmental factors at similar scales (Hu and Si, 2013;
Zhu et al., 2020a). However, the bivariate relationships might be
misleading when both variables are dependent on other variables
(Hu and Si, 2021).

In the study, partial correlation at the sampling scale and PWC
at the decomposedmultiscale were used to unravel the controls of
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environmental factors on SNDT because of the interdependence
between predictor and other variables. The partial correlations
between environmental factors and SNDT at the sampling scale
differed from their partial relations at the decomposed scales.
For example, altitude and slope had an insignificant effect on
SNDT at the sampling scale along the cool-temperate transect
but had a significant effect at the scales > 1 km. The results
indicated that the controls of environmental variables on SNDT

cannot be captured only at the sampling scales, which was in
line with the characteristics of other soil indicators (Si, 2008;
Hu and Si, 2013; She et al., 2016; Liu et al., 2018). In the study,
the selected environmental factors had all significant influences
on SNDT in the three basins except the factor of NPP in the
warm-temperate transect (PASPWC = 3.73). The insignificant
relationships between NPP and SNDT in the warm-temperate
basin might be attributed to the double-cropping that resulted
in intensive human activities.

The significant relationship between SNDT and temperature
might result from the fact that temperature was related to N
mineralization rate, nitrification, and denitrification (Guntiñas
et al., 2012). The study indicated that the correlation type between
SNDT and precipitation was unstable at different scales and
locations, which might be due to the reason that precipitation
could add N inputs from the atmospheric N and may also
remove N by leaching and surface runoff of soluble forms (Jarvis
et al., 1996). The duration of sunshine was related to crop
photosynthesis, which resulted in vegetation N absorption from
the soil, and the rate of straw decomposition, which resulted in
soil N input (Tian et al., 2019). Relative humidity, whichmight be
linked with gaseous transfer such as N gas and N oxides during
nitrification and denitrification processes (Weitz et al., 2001;
Abdelaziz and Kim, 2020), could also influence soil N content.
The topographic factors of altitude and slope could lead to N loss
and deposition, resulting from the surface runoff of soluble N (He
et al., 2016; Madrigal Reyes et al., 2019). Vegetation conditions
could promote N storage or N absorption or dry deposition
from vegetation. In the study, the results indicated that the types
of relationships between environmental variables and N greatly
differed at different locations or scales.

Prediction of SNDT
To predict SNDT at the sampling scale, the environmental factors
were decomposed into multiscale components for covariates.
The study revealed that some multiscale components of factors
were significantly correlated with SNDT at the sampling scale.
Thus, more covariates, which might be beneficial for SNDT

prediction, could be generated by the CWT. Because the
number of covariates is great and the variables might be cross-
correlated, PLSR might be suitable for SNDT prediction (Abdi
andWilliams, 2013). The performance of PLSR is associated with
the ONLV, which is usually determined by the leave-one-out
cross-validation with calibration data (Hu et al., 2015). Whether
ONLV obtained from the calibration procedure is suitable for
prediction in each basin or in other basins should be explored. In
the study, the results demonstrated that the ONLV determined in
the calibration proceduremay not be the best but it is very close to

the best one, and the predictionmodel of PLSR could be validated
for the dependent data in each basin rather than in other basins
of different climatic basins.

The study revealed that the combined method of a multiscale
analysis and PLSR could enhance the prediction accuracy of
the SMLR method from environmental factors. In the cool-
temperate basin, the predicting performance for the calibration
and validation samples was excellent, which might be attributed
to the reason that the significant PWC between SNDT and
environmental variables was stable at scales of around 50–
60 km. In the mid-temperate basin, although the prediction of
SNDT was excellent, there was a large discrepancy in prediction
accuracy between the calibration and validation procedures.
This might be due to the local significant PWC between SNDT

and environmental variables. In the warm-temperate basin, the
prediction accuracy in the calibration and validation procedures
was only good, which could be proved by their poor relationships
with PWC. This resulted from intensive human activities during
double cropping.

Based on the temporal changes of SND, the highlight
of the study was to establish the predictive models of its
spatial distribution. If the relationships between SNDT and
environmental factors were stable as time goes by, the temporal
changes of SND across the spatial areas or temporal changes
of SNS could be predicted based on the results of the study,
and also the content of SND and SNS could be obtained
based on their background. However, the correlations between
SNDT and climatic factors or vegetation would change with
climatic changes. Therefore, the climatic changes should be
considered for predicting temporal changes of SND with time in
the future.

CONCLUSION

In this study, SNDT was established to assess the temporal
changes of SND across a spatial area in three basins located in
different climate zones. The objective was to evaluate the spatial
variation of SNDT, reveal its relationships with environmental
variables at different scales, develop its predictive models based
on the spatial-scaling effects, and validate the model for the
dependent data in the same basin or for the independent data
in the other basins. As for the SNDT under different climatic
basins, the increment of SND was the greatest in the mid-
temperate basin, and its variation during the period of 10 years
decreased greatly with the latitude decreasing. Considering the
soil types, the increment of SND gradually increased with the
latitude decreasing. As for land types, the spatial variability of
SND temporal changes was similar under cropland or grassland
among different climatic basins. In each basin, the increment
of SND under cropland was the greatest result of agricultural
management, but its variationwas ranked as grassland> changed
land types> cropland.

To explore the multiscale effects of influencing factors on
SNDT, the combination of CWT and PWC was performed
in this study. The partial relationships between SNDT and
environmental factors at the sampling or decomposed larger
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scales indicated that variables had more or less effects on SNDT,
and PWC indicated that the correlation types of influencing
factors on SNDT were generally unstable at different scales or
locations. Meanwhile, environmental factors at multiple scales
could provide extract information for SNDT prediction. As
for the prediction, the ONLV determined in the calibration
procedure could be preferable for dependent SNDT prediction
in each basin but was not preferable for independent datasets in
other basins. Thus, the combined method of wavelet and PLSR
could promote the prediction accuracy of SNDT in each basin.
The conclusions obtained in this study can be used for the spatial
prediction of SNDT with environmental factors in the basins and
other similar areas.
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