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Because of implementation of ecological projects, the restoration of vegetation not only
changes the typological composition and spatial structure of the landscape, but also
improves the regional ecosystem function. The present study considered the effects
of natural-anthropogenic factors and landscape connectivity on vegetation restoration.
It also explored the impact and underlying mechanisms by which structural changes
in landscape connectivity affect vegetation coverage in the karst region of Guizhou
Province and provided a novel perspective for the maintenance of regional ecological
security. We used morphological spatial pattern analysis (MSPA) and integrated
valuation of ecosystem services and tradeoffs (InVEST) and circuit theory to identify
ecological networks and explore the changes in landscape structure. We performed
a Theil-Sen Median trend analysis and a Mann-Kendall (MK) trend test to determine
spatiotemporal variations in vegetation coverage. We conducted a coupling analysis to
discover correlations between the average cumulative current density (CCD) and the
normalized difference vegetation index (NDVI) in various karst landform counties. We
also implemented a geographical detector to detect the factors affecting the NDVI trend
and disclose interactions among factors. The results showed that (1) Though the total
area of forests and core areas was reduced, the ecological networks and landscape
connectivity steadily improved. (2) Areas with improved vegetation coverage accounted
for 77.77% of the total. By contrast, the degraded areas covered 14.28% while the
remaining 7.95% was stable. (3) The relationships between the average CCD and
the NDVI were inconsistent among various geomorphological counties. The counties
with the highest proportions of karst landforms presented with negative correlations
between the average CCD and the NDVI in 2005 and positive correlations between
these parameters in 2018. (4) The NDVI trend was influenced by several factors.
Of these, anthropogenic activity played a dominant role. Nevertheless, changes in
landscape connectivity was also implicated. Attention should be paid to the impact of
landscape connectivity on ecological restoration. The foregoing results indicated that the
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rocky desertification projects effectively improved landscape connectivity and vegetation
coverage and provided a reference for developing policies establishing and maintaining
ecological security of the karst ecosystem and coordinating sustainable development in
this region.

Keywords: circuit theory, ecological network, geographical detector, Guizhou Province, landscape connectivity,
karst vegetation restoration

INTRODUCTION

Vegetation comprises the hub of material circulation and energy
exchange in ecosystems and prevents ecological degradation.
Elucidating the spatiotemporal patterns in vegetation cover and
the impact of climate change and human activity on it helps
clarify the effects of ecosystem restoration and facilitates the
sustainable development of terrestrial ecosystems (Peng et al.,
2021). The normalized difference vegetation index (NDVI) is
commonly used in remote sensing estimation of vegetation
coverage (Lagomasino et al., 2015). It comprehensively reflects
vegetation type (Zhang et al., 2013), growth status, and coverage
density in an observation area. Thus, it is widely used in the
dynamic monitoring of vegetation coverage (Zhu et al., 2019).
The NDVI time series data are used to study variations in
vegetation and their response to external disturbances, which is of
great value in identifying the ecological benefits of the ecosystem
and is very important in global change research.

Patch corridor matrix model can be used to describe
landscape structure heterogeneity and reflect the landscape
pattern (Forman and Wilson, 1995), which helps clarify
landscape structure, function, and dynamic change (Feyissa
and Gebremariam, 2018). Landscape connectivity describes the
connections among landscape elements within a spatial pattern
or ecological process (Uroy et al., 2019), and this connection
may be species or gene flow between biological communities
or the exchange of materials and energy between landscape
elements (Forman and Godron, 1986; Taylor et al., 1993). It also
lays theoretical and empirical foundations for elucidating the
relationships among spatial patterns and for ecological network
planning (An et al., 2021). It usually comprises both structural
and functional connectivity (Tischendorf and Fahrig, 2000).
Structural connectivity measures the structural characteristics
of the landscape such as its size, shape, and habitat patch
locations. It reflects the spatial pattern of the physical connections
among landscape patches, but does not consider ecological
processes (Carlier and Moran, 2019). Functional connectivity
is based on the biological and ecological processes among
patches determined by observation, experimentation, and model
predictions (Salgueiro et al., 2021). The regional landscape
structure may be reconstructed by restoring existing (Williams
and Baker, 2012) or introducing new landscape elements
(Haider et al., 2016), adjusting their spatial configuration, and
enhancing landscape connectivity (Dondina et al., 2018). In
this manner, the security of the regional landscape pattern
is established and maintained. Several tools are available
to depict landscape connectivity. Carlier and Moran (2019)
used morphological spatial pattern analysis (MSPA) for the

comprehensive description of the structural connectivity among
linear and spatial habitats. Dai et al. (2021) combined Minimum
Cumulative Resistance (MCR) and Duranton and Overman
Index (DOI) models to identify ecological networks and maintain
landscape connectivity. Circuit theory identifies ecological
networks by assigning different degrees of significance to various
physical variables. It integrates the strengths of the random
walking and graph theories (McRae, 2006). Gao J. et al. (2021)
integrated ecosystem services and the circuit theory to portray
landscape connectivity and identify karst ecological networks.
An et al. (2021) took both structural connectivity and functional
connectivity into consideration, using the integrative method of
MSPA and circuit theory to construct and optimize the ecological
networks, which has greater ecological significance.

LeGrand (1973) first paid attention to the ecological problems
in karst regions. Guizhou Province is typical and representative
of the karst area in Southwestern China (Tian et al., 2017).
Karstification and high intensity development and construction
make the phenomenon of landscape isolation in karst region
increasingly serious (Peng et al., 2018). Rocky desertification
impoverishes ecosystems, destroys natural habitats, and impedes
regional sustainable development (Huang et al., 2010). With the
decrease of the connectivity of multiple landscape patches, the
free migration of species and the normal ecological circulation
process of landscape were hindered. Since the onset of the
21st century, several large-scale ecological protection and
construction projects have been initiated in China and have
achieved positive results. In Guizhou Province, the long-term
rocky desertification project has involved extensive tree planting
and afforestation and has significantly increased forest and grass
coverage (Liao et al., 2018). Nevertheless, it is also necessary
to determine the changes in landscape structure caused by
these projects and assess the impact that these modifications
have on ecosystem function. Prior studies on karst regions
mainly evaluated the impact of vegetation restoration from the
perspective of climate change and human activity and confirmed
that anthropogenic factors play major roles (Cai et al., 2014;
Peng et al., 2021). However, the landscape pattern strongly
influences landscape function and ecological processes (Pausas,
2003). Hence, it is necessary to consider its impact on variations
in vegetation from the perspective of landscape connectivity.

The ecological restoration project has been implemented
in Guizhou Province since approximately 2,000. However,
vegetation may have to pass through several succession stages
until its ecological function is optimized. For this reason, the
present study was initiated in 2005. The ecological networks
were mapped according to the patch corridor matrix model
using MSPA and the integrated valuation of ecosystem services
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and tradeoffs (InVEST) and circuit theory models. Based on
MODIS NDVI data, the spatiotemporal pattern of vegetation
coverage and the stability of ecosystem functions was analyzed
by Theil-Sen trend analysis and the Mann-Kendall (MK) trend
test. Correlations between the average cumulative current density
(CCD) and the normalized difference vegetation index (NDVI)
in various karst counties were evaluated. The factors and their
interactions influencing the NDVI trends were revealed with
geographical detectors. This study aims to clarify the mechanisms
by which the karst areas in Guizhou Province respond to changes
in landscape connectivity. Additionally, it will present evidence of
the efficacy of the ecological restoration projects in these regions.

MATERIALS AND METHODS

Study Area
Guizhou Province is in the eastern part of the Yunnan-
Kweichow Plateau in the karst region of Southwestern China
(24◦37′–29◦13′N, 103◦36′–109◦35′E) (Figure 1). Its total area is
17.62 × 104 km2 of which ∼70% is karst. The regional climate
is subtropical humid monsoon. The average annual temperature
is 10–18◦C and the annual precipitation is 1,000–1,500 mm.
Carbonate rocks are widely distributed in Guizhou Province.
The ecosystem structure is complex, the spatial heterogeneity
and ecological sensitivity are high, the environmental capacity
is low, and the habitat is fragile. Guizhou is the only province
in China lacking plains. Its average elevation is ∼1,100 m.
Plateaus and mountains account for ∼87% of the total area.
Long-term human activity has intensified rocky desertification
there. Guizhou Province has been the focus of national rocky
desertification and ecological restoration projects since 2000.

Data Source
The datasets used in this study included land use data
for 2005 and 2018, a digital elevation model (DEM), and
ground meteorological data derived from the Resources and
Environmental Science and Data Center of the Chinese Academy
of Sciences.1 The annual mean precipitation and temperature
data were obtained from the China Surface Climatic Data
Daily Dataset (v. 3.0) of the National Meteorological Science
Data Center2 and were calculated by inverse distance weighting
(IDW) interpolation. The NDVI data were obtained using the
MOD13Q1 product of the Land Processes Distributed Active
Archive Center of NASA.3 The MODIS reprojection tool (MRT4)
was used to extract the NDVI data and convert them to a
raster file. ArcGIS 10.4 software was used to obtain the largest
NDVI per pixel per year and the NDVI of each county-
level administrative region. County-level afforestation data were
acquired from the China Forestry and Grassland Statistical
Yearbook.5 Socioeconomic data were procured from the Guizhou

1http://www.resdc.cn/
2http://data.cma.cn/
3https://www.usgs.gov/
4https://modis-land.gsfc.nasa.gov/tools.html
5https://navi.cnki.net/knavi/yearbooks/YGFDS/detail?uniplatform=NZKPT

Statistical Yearbook.6 The research framework is shown in
Figure 2.

Identification of Core Area Patches by
the Morphological Spatial Pattern
Analysis Method
Morphological spatial pattern analysis is a classification
processing method based on mathematical morphology. It
analyzes the topological relationship of an image at the pixel
level. MSPA divides the pixels of a binary image into seven
mutually exclusive landscape elements (Soille and Vogt, 2009).
Using the MSPA method to extract ecological patches requires
no indicator selection or complex data processing.

Forestland coverage accounts for ∼53% of the total area in
Guizhou Province. Areas with relatively less human disturbance
are primarily mosaic communities dominated by forests. The
ecological function of forestland is greater than that of other
vegetation communities and thus partially determines the state
of the entire ecosystem. For the restoration and reconstruction
of karst regions, although other biological and engineering
measures also play a certain role in ecological regulation, it is
difficult to overcome the main contradiction that leads to the
degradation of karst ecosystems, that is, the problem of water
conservation. Forestland has a richer hierarchical structure than
other vegetation, and its water conservation function is much
higher than that of other vegetation. Therefore, forestlands were
selected as foreground elements while other land use types were
used as background elements. A binary image was generated and
GuidosToolbox software7 was used to identify the seven MSPA-
based landscape elements, namely, core, bridge, edge, branch,
loop, islet, and perforation. The core is the source of various
ecological processes. Bridges are linear elements connecting
various core area patches representing landscape connectivity.
Edges are transition zones between the external perimeters of the
core area and the non-forest landscape area. Branches are narrow
regions connected to the core areas. Loops are the internal access
points of material and energy exchange within a single core area.
Islets are isolated small patches with low landscape connectivity.
Perforations are the interior perimeters of a core area patch.
Here, we used GuidosToolbox to assess forestland connectivity,
adopted an eight-connectivity analysis, and set the edge width to
three (Gao J. et al., 2021).

Ecological Resistance Surface
Identification
The resistance surface is the basis of ecological network
identification and represents the resistance that various animal
species must overcome when they move in space. Here, habitat
quality was calculated with the habitat quality module in the
InVEST model. The resistance surface was the reciprocal of
the habitat quality as the latter indicates high biodiversity
and low species resistance. The resistance surface extracted
by this method was relatively more ecologically significant

6https://navi.cnki.net/knavi/yearbooks/YGUIZ/detail
7https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/
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FIGURE 1 | Study site in Guizhou Province.

FIGURE 2 | Study methodology.
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(Peng et al., 2018). Space limitations prohibit description of the
calculation processes here.

Ecological Networks Identification
Circuit theory treats landscape as an electrical circuit.
Heterogeneous landscapes may be viewed as circuits containing a
series of nodes and resistors. Ecological corridors link ecological
sources and usually consist of belt-like areas with specific widths.
In the raster data, the CCD is defined as the amount of current
flowing through a single pixel, and it can reflect the probability
that a wanderer will move along a certain node or path. With
the increase of the circuit path number, the effective resistance
of the parallel circuit decreases and the corresponding current
increases. That is to say, when resistance to the movement of
species in the landscape decreases, CCD will increase, meaning
that functional connectivity will also improve. Prior studies
regarded ecological corridors as optimal paths for species
migration (Beaujean et al., 2021; Fan et al., 2021). However, not
all species may accurately identify the optimal path they must
follow to reach their habitat destinations. Therefore, certain
suboptimal paths are potential ecological flow corridors. Based
on random walk characteristics of species in landscape, circuit
theory can provide multiple potential corridors. This is better
aligned with the behavioral characteristics of species (Ciudad
et al., 2021). Besides, circuit theory model also can be used
to identify “pinch points” corresponding to areas with high
CCD in the voltage diagrams. Pinch point is the area with good
connectivity between source areas, which is very important
to maintain the connection of the whole ecological networks.
Animal species either prefer to move through them or do so
because there are no alternate paths. If a pinch point is removed
or changed, it may significantly affect landscape connectivity
(McRae et al., 2008; Cushman et al., 2013). Besides, circuit theory
can provide a basis for improving the quality of existing corridors
and patches and identifying key conservation and restoration
areas, thereby helping to control and improve biological and
abiotic flows and improve the efficiency of other important
ecological processes and services (Taylor et al., 2006). In this
study, Circuitscape 4.0 software8 and Linkage Mapper9 were
applied to calculate the CCD and create voltage diagrams across
the landscape based on available node and resistance surface data.

Theil-Sen Median Trend Analysis and
Mann-Kendall Trend Test
A combination of Theil-Sen Median trend analysis and the
MK trend test analyzes patterns of variation in vegetation over
extended time series (Fensholt and Proud, 2012; Fensholt et al.,
2012; Jiang et al., 2015). Theil-Sen Median trend analysis is a
non-parametric statistical method used to calculate trends in
variation (Healy et al., 1983). Its slope was used here to evaluate
improvement and degradation in the vegetation of Guizhou
Province between 2005 and 2018. The formula is as follows:

SNDVI = median
(
NDVIa−NDVIb

a−b

)
, 2005 ≤ b < a ≤ 2018 (1)

8https://circuitscape.org/downloads/
9https://linkagemapper.org

where SNDVI is the slope of the Theil-Sen median and NDVIb
and NDVIa are the NDVI for years b and a. SNDVI > 0 indicates
a rising trend while SNDVI ≤ 0 indicates a falling trend.

The MK trend test is also a non-parametric statistic measuring
the significance of SNDVI. Its input samples need not conform to
certain distributions and it is not susceptible to the interference
of outliers. The MK trend test has also been proposed to study
patterns of variation in vegetation over extended time series
(Jiang et al., 2015). The significance level |Z| > u1−α/2 indicates
that the time series significantly varies at the α level. Here, the
significance of the SNDVI from 2005 to 2018 was measured at the
0.05 confidence level.

Division of Karst Landform Counties
As there are extensive karst landforms in Guizhou Province,
lithology strongly affects the heterogeneity of landscape structure
and function. The 88 counties of Guizhou Province were divided
into four categories according to their proportions of carbonate
rocks. Lin (2001) divided the counties of Guizhou Province into
four classes based on their proportions of karst area. The county
categories were: (a) higher proportion of karst landforms; (b)
lower proportion of karst landforms; (c) interlaced karst and
non-karst landforms; and (d) non-karst landforms. According to
this classification system, the 88 counties in Guizhou Province
were reclassified by lithology data and changes in administrative
division. Sixty-two counties had >60% karst area, seven had karst
area in the range of 50–60%, another seven had interlaced karst
and non-karst landforms in an area ratio of 25–50%, and the
remaining 12 were non-karst counties.

Geographical Detector Model
The geographical detector is a spatial statistic model proposed by
Wang et al. (2010). It has been used to quantify the influences
of potential driving factors on geographical phenomena based on
spatial variance analysis (Wang et al., 2016, 2017; Gao F. et al.,
2021). Our aim was to investigate the effects of structural changes
in regional landscape connectivity on key ecological processes
and ecosystem functions. To this end, we selected three dynamic
indicators representing changes in spatial structure, namely, the
rates of change in the core, bridge, and average CCD. However,
the NDVI was also related to climatic, surface, and human activity
factors. Therefore, we added the following control variables:
annual average and temperature, urbanization growth rate, land
surface relief, percentage of carbonate rocks, areas of artificial
afforestation and closing hillsides to facilitate afforestation, and
rates of change in GDP per capita and population density. The
pixel-level NVDI slope was calculated for Guizhou Province
and the average slope of each county unit was calculated as
the dependent variable by using the zonal statistics method in
ArcGIS. Factor and interaction detectors were used and they
indicated which factors had the most significant impact on the
slope of NDVI. They also disclosed the interactive effects among
various pairs of factors.

Factor Detector
The factor detector calculates the q-value which quantifies the
impact of potential driving factors on the spatiotemporal trend in
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NDVI variation. The influence of q on the spatiotemporal trend
in NDVI variation increases with its value:

q = 1−
∑L

h = 1 Nhσ
2
h

Nσ2 = 1−
SSW
SST

(2)

SSW =

L∑
h = 1

Nhσ
2
h (3)

SST = Nσ2 (4)

where N is study area comprising N units layered into h = 1,
2, 3, . . . L strata. Stratum h comprises Nh units. σ2 and σh

2

are the global variance of the dependent variable of the study
area and the variances of the dependent variables in the sub-
areas, respectively. SSW and SST are the “within sum of squares”
and “total sum of squares,” respectively. The q-value is in
the range of 0–1.

Interaction Detector
The interaction detector indicates whether two factors strengthen
or weaken each other. It compares their combined and separate
contributions (Wang et al., 2010). The model categorized five
interactive effects (Table 1).

RESULTS

Identification of Ecological Sources and
Resistance Surface
In 2005 and 2018, the Guizhou Province forestland occupied
94,781.33 and 93,082.51 km2, respectively. The changes in
morphological spatial pattern were most evident in Central
and Western Guizhou Province. By contrast, the other regions
remained relatively stable. The proportions of various landscape
elements in the foreground area were also stable. The proportion
of perforation decreased by 0.48%. The core area was 57,806.25
and 56,870.55 km2 in 2005 and 2018, respectively, and occupied
mainly the northeastern and southeastern parts of the study area.
However, there were also small dispersive core areas and the
landscape was fragmented (Figure 3). Cores with areas >10 km2

(based on MSPA) were defined as ecological sources. They were
entered into the circuit theory model for landscape connectivity
analysis (Gao J. et al., 2021). There were 453 and 507 core patches
extracted as ecological sources in 2005 and 2018, respectively.
Overall, the ecological sources were large but fragmented. This

TABLE 1 | Interactions between covariate pairs.

Description Interaction

q(A∩B) < Min (q(A), q(B)) Weakened and non-linear

Min (q(A), q(B)) < q(A∩B) < Max (q(A), q(B)) Weakened and univariate

q(A∩B) > Max (q(A), q(B)) Strengthened and bivariate

q(A∩B) = q(A) + q(B) Independent

q(A∩B) > q(A) + q(B) Strengthened and non-linear

finding was consistent with the distribution characteristics of
typical karst landform vegetation.

Connectivity of the landscape ecological flow must overcome
resistance contributed by various influencing factors in the space.
As is shown in Figure 4, the average ecological resistance values in
Guizhou were 1.2039 and 1.2074 in 2005 and 2018, respectively.
Thus, ecological resistance rose slightly but nonetheless remained
low. The areas with strong resistance were located mainly in the
urban areas of Guiyang, Zunyi, Kaili, and Liupanshui City and
their environs. The habitat quality of these areas was zero. Hence,
they showed infinite resistance.

Identification of Ecological Networks
and Their Variations
The ecological networks (Figures 5A,B) showed that the
numbers of ecological sources and corridors in Guizhou
Province increased overall and the potential corridors were
extended. In Guiyang City, the ecological sources and
corridors became scattered and their numbers decreased.
Hence, urbanization markedly contributed to the change
in vegetation cover in Guizhou Province. However, this
degradation was ecologically compensated in remote areas.
In 2018, small forest patches appeared in the southwest and
they improved the landscape connectivity of the surrounding
area. Figures 5C,D show the CCD values for 2005 and 2018.
The maximum and average CCD were 1,681.94 and 58.49,
respectively, in 2005 and 1,896.97 and 81.74, respectively,
in 2018. Though the total forestland area and the core area
decreased, there was overall improvement in forest landscape
connectivity in Guizhou Province. Figure 5D shows that
the positions of most pinch points in Western Guizhou
remained unchanged. However, their ranges narrowed. Thus,
resistance around the pinch points decreased and landscape
connectivity improved in Western Guizhou. New pinch
points appeared in Northeastern Guizhou. Therefore, the
ecological resistance around them increased and the landscape
connectivity deteriorated.

The Variation in Trends of Vegetation
Coverage
Integration of the Theil-Sen Median trend analysis and the MK
trend test reflects variations in the vegetation trends of Guizhou
Province. Regions with SNDVI = 0 do not exist. Therefore, we
created the categories according to real SNDVI conditions. Areas
with SNDVI in the range of−0.0005 to 0.0005 were rated as stable.
Areas with SNDVI ≥ 0.0005 were rated as improved. Areas with
SNDVI < 0.0005 were rated as degraded. The results of the MK
trend test were classified as significant (Z > 1.96 or Z < −1.96)
or insignificant (−1.96 ≤ Z ≤ 1.96) variations and categorized
into five grades (Table 2).

Overall, the NDVI improved; however, greening and
degradation may have occurred in different areas. Regions
with improved vegetation far exceeded degraded ones in
Guizhou Province between 2005 and 2018 (Figure 6). Regions
with significantly improved vegetation coverage were located
primarily in Northwestern and Southwestern Guizhou Province.
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FIGURE 3 | Spatial distributions of morphological spatial pattern analysis (MSPA) in 2005 (A) and 2018 (B). Percentages of forestland are shown.

FIGURE 4 | Spatial distributions of resistance surfaces in 2005 and 2018.

Regions with slightly improved vegetation coverage showed a
dispersive distribution. Regions with stable or slightly degraded
vegetation coverage were distributed mostly in Central and

Eastern Guizhou Province. Regions with severe degradation
were distributed mainly in Guiyang City, Xingyi City, Zunyi
City, and Kaili City.
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FIGURE 5 | (A,B) Spatial distributions of ecological sources and corridors in 2005 and 2018. (C,D) Cumulative current density (CCD) maps for 2005 and 2018.

TABLE 2 | Normalized difference vegetation index (NDVI) trend variations in Guizhou Province.

SNDVI Z Trend variation Area percentage (%)

≥0.0005 ≥1.96 Significant improvement 28.81%

≥0.0005 −1.96 to 1.96 Slight improvement 48.96%

−0.0005 to 0.0005 −1.96 to 1.96 Stable or no significant variation in vegetation 7.95%

<0.0005 −1.96 to 1.96 Slight degradation 12.43%

<0.0005 <−1.96 Significant degradation 1.85%
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Coupling Analysis of Landscape
Connectivity and Normalized Difference
Vegetation Index
Landscape structure influences the representation of landscape
function. Coupling analysis identifies the relationship between
landscape connectivity and NDVI at the statistical level and
reflects regional ecological security. According to the result of
the division of karst landform counties, we then explored the
correlations between the average CCD values and the NDVI in
the various karst counties in 2005 and 2018. Figure 7 shows
that in general, the average CCD values increased especially for
counties with higher proportions of karst areas. Their average
CCD were relatively low in 2005 and had significantly increased
by 2018. In 2018, the NDVI for most counties had gradually
improved relative to those of 2005. Hence, the ecological
environment was sustainably developed. Certain counties with
higher proportions of karst landforms were not conducive to
the growth or restoration of vegetation because of high levels of
urbanization or high proportions of carbonate rocks. Hence, their
average CCD and NDVI had declined over time.

The trend of the eight fitting lines for 2005 and 2018
demonstrated inconsistent correlations between the average CCD
and the NDVI of the counties with different geomorphologies.
The average CCD and the NDVI were positively correlated for
the counties with non-karst landforms and those with interlaced
karst and non-karst landforms. For the counties with lower
proportions of karst landforms, the average CCD was negatively
correlated with the NDVI in 2005 and 2018, but negative
correlation alleviated in 2018. For the counties with higher
proportions of karst landforms, the average CCD and the NDVI
were negatively correlated in 2005 but positively correlated in
2018. The rocky desertification projects improved the landscape
connectivity and positively changed the NDVI in areas with
widespread karst landforms.

FIGURE 6 | Spatial SNDVI distribution in Guizhou Province between 2005 and
2018.

Effects of Influencing Factors on Trends
in Normalized Difference Vegetation
Index Change
We described the statistical correlation between landscape
connectivity and the NDVI. We also used metrology and a
regression model to quantify the impact of this association.
We selected the corresponding control variables, used
SNDVI as the dependent variable, and applied the factor
detector to calculate the q-value for each factor on SNDVI
between 2005 and 2018. Seventy-five percent of the q-values
were statistically significant at the 1% level (Table 3). The
order of the q-values corresponding to each factor was:
X5 > X3 > X6 > X4 > X1 > X2 > X7 > X8 > X12 > X11 > X10 > X9.
Non-climatic factors are the main reasons for the observed
general improvements in the vegetation of Guizhou Province.
Urbanization growth rate, rate of change in GDP per capita,
and population density all affect vegetation change in Guizhou
Province to varying degrees. Urbanization promotes the
adjustment of rural industrial structure, and a huge number of
rural labor forces choose to work in non-agricultural industries,
which increases per capita income and land utility intensive
level. According to the 2019 Statistical Yearbook, the population
in rural areas of Guizhou province decreased by 30.74% from
2005 to 2018, indicating the phenomenon of population outflow
and significant reduction of human disturbance on rural land,
which is beneficial to vegetation restoration. The reconstruction,
restoration and protection of vegetation not only change the
composition of landscape types, but also strongly affect the
landscape structure. Closing hillsides to facilitate afforestation
reduces anthropogenic disturbance of vegetation, and artificial
afforestation also accelerates forest growth. The ecological
benefits brought by ecological restoration projects are being
reflected. Moreover, the relief degree of land surface and the
proportion of carbonate rocks also influence variations in
vegetation. Thus, ecological construction must be conducted
based on local conditions to restore vegetation. The rates of
change in average CCD and bridge also affected the change in
the NDVI, which proved that the improvement of landscape
connectivity also had a certain effect on vegetation change. The
improvement of the connectivity of the landscape pattern is
conducive to the improvement of the ecological function of the
vegetation and the promotion of the ecological process.

Twelve factors and 33 of their interactions were evaluated
using the interaction detector. Table 4 shows that each factor had
a different interactive effect. All interactions contributed bivariate
or non-linear enhancement. Therefore, SNDVI was the product
of synergy among multiple factors. The interactions adding the
highest q-values to SNDVI were [urbanization growth rate ∩
annual average temperature] (q = 0.7477) and [urbanization
growth rate ∩ annual average precipitation] (q = 0.7176). It
indicates that the influence of temperature and precipitation
on vegetation change will be enhanced in areas with high
urbanization growth rate. Urbanization migrated the population
to cities and towns and significantly altered vegetation which,
in turn, reduced human activity, mitigated forest damage, and
increased land abandonment in rural areas. Moreover, we found
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FIGURE 7 | Correlation analysis of average cumulative current density (CCD) and normalized difference vegetation index (NDVI) in counties with different geomorphic
forms.

TABLE 3 | Factors influencing the q-value for the normalized difference vegetation index (NDVI) trend in Guizhou, 2005–2018.

Variable q Variable q

X1 = Rate of change in GDP per capita 0.2783*** X7 = Annual average precipitation 0.2319***

X2 = Rate of change in population density 0.2725*** X8 = Annual average temperature 0.1936**

X3 = Area of artificial afforestation 0.4023*** X9 = Rate of change in core 0.1930

X4 = Area of closing hillsides to facilitate
afforestation

0.2963*** X10 = Rate of change in bridge 0.1427***

X5 = Urbanization growth rate 0.5002*** X11 = Proportion of carbonate rocks 0.1911***

X6 = Relief degree of land surface 0.3365*** X12 = Rate of change in average CCD 0.1914***

** and *** indicate significance at the 5 and 1% levels, respectively.

TABLE 4 | Effects of interactions among influencing factors on SNDVI in Guizhou Province, 2005–2018.

Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1

X2 0.5014

X3 0.5831 0.6038

X4 0.6067 0.6064 0.414

X5 0.6673 0.6225 0.7126 0.6321

X6 0.5054 0.4442 0.5702 0.5246 0.5611

X7 0.6352 0.6059 0.5576 0.4877 0.7176 0.5353

X8 0.6648 0.522 0.5062 0.5651 0.7477 0.5729 0.4947

X9 0.6312 0.5954 0.4965 0.4757 0.672 0.4697 0.5377 0.4836

X10 0.5816 0.5113 0.5464 0.5098 0.6903 0.4866 0.3946 0.4571 0.3819

X11 0.4037 0.4813 0.4314 0.3395 0.6444 0.367 0.367 0.3799 0.4425 0.335

X12 0.4718 0.4972 0.5494 0.4725 0.6148 0.4601 0.5535 0.4651 0.4724 0.4921 0.371
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that the interactions between landscape connectivity (X10 and
X12) and other factors enhanced the variation in vegetation.

DISCUSSION

The core and forestland areas of Guizhou Province have
decreased in response to natural factors and human activity.
Moreover, landscape connectivity and the trends of vegetation
coverage have also been markedly altered in Guizhou Province.
Significant ecological sources and corridors have increased
and overall landscape connectivity has improved. The area of
vegetation significantly improved was much larger than that of
vegetation degradation. Current studies have analyzed regional
changes in vegetation by regarding natural and human factors.
Nevertheless, they did not consider the impact of changes
in landscape structure on ecological function and process. In
this paper, rate of change in bridge representing structural
connectivity and rate of change in average CCD representing
functional connectivity are introduced into vegetation change
analysis. According to the result of factor detector, although these
two factors are not the dominant factors affecting vegetation
change, their impact on landscape change is still significant.
Circuit theory models simulate migration and diffusion in the
biological flow within ecosystems, which use the random walking
characteristic of electrons in a circuit. Species diffusion and
migration may be predicted based on the current strength
between source areas. Landscape elements and pinch points
that strongly influence landscape connectivity may be effectively
identified. MSPA and circuit theory model need only small
amount of data required for calculation and the simple process,
and integrate structural connectivity and functional connectivity
between ecological source areas. This paper meets the needs of
multi-species migration and is more consistent with the real
situation of species movement. It provides a new method for
quantitative identification of key areas in ecological networks and
can provide scientific basis for ecological protection planning
in karst area. However, landscape connectivity strongly depends
on the scale characteristics of the research object. The ecological
process and function of landscape spatial structure characteristics
at different scales are different, and landscape connectivity varies
greatly. Therefore, multi-scale studies on landscape connectivity
need to be further explored, and more attention should be paid to
the effect of landscape pattern on vegetation change.

In this study, we considered the positive impact of human
activity and improvements in landscape connectivity on changes
in vegetation. However, we ignored the significant degradation
of the vegetation in certain areas. The impact of ecological
engineering implementation on landscape connectivity and
ecosystem processes and functions is complex. Large-scale
afforestation may increase vegetation transpiration, consume
more water, and reduce vegetation coverage in the afforestation
area. Most artificially planted species are not indigenous and
grow rapidly. Hence, they simplify the community structure,
have a negative effect on biodiversity, and may interrupt or even
reverse ecological succession. Afforestation reduces the incident
light below the canopy, thereby attenuating photosynthesis in

the understory plants. Changes in ecosystem types caused by
urbanization, drought, and illegal logging and overgrazing may
also lead to poor vegetation growth. At the same time, the
National Forestry and Grassland Administration’s Bulletin on the
Status of Rocky Desertification in 2018 also indicated that local
rocky desertification land is still expanding, causing vegetation
degradation in some areas, and the prevention and control
situation is grim. Environmental engineering must consider
the original landscape structure and landscape connectivity
improvement to produce beneficial ecological and economic
results. As the karst ecological environment is fragile, forest,
shrub, and grass collocation must be regarded as well. In the
future research, we should evaluate the vegetation restoration
situation in karst areas more comprehensively, and deeply
explore the positive and negative effects of ecological restoration
projects on regional vegetation changes.

A geographical detector accurately identifies the relationships
and interactions among multiple factors and is widely used to
analyze driving force mechanisms. We explored the changes
in vegetation cover in response to the natural environment,
human activity, and changes in landscape structure at the
county scale. The change in vegetation cover was influenced
mainly by anthropogenic factors. The urbanization growth rate
strongly interacted with the annual mean precipitation and
temperature. Urbanization has concentrated people in cities and
towns. Reduced human activity in rural areas has decreased
deforestation and/or increased land abandonment. Thus, an
increase in urbanization can reinforce interactions among
factors. Interactions among landscape connectivity and other
factors also significantly increased the variation in vegetation.
The geographical detector model is affected by a modifiable
areal unit problem when it is used to analyze the factors
influencing variation in vegetation including the scale and zoning
effects. The number of layers also affects the results. Here,
we selected several unsupervised classification discretization
methods and quantities using the “optidisc” function in the GD
package of R. We made comparisons to choose the optimal
combinations of discretization methods to avoid the subjectivity
of artificial classification. However, the influences of number and
stratification method on the results remain to be established.

CONCLUSION

The MSPA indicated that the degree of fragmentation was
still high for each element. However, the proportion of
each element did not markedly change. Several cities with a
high level of urbanization, their morphological spatial pattern
changed significantly. By contrast, the other regions remained
relatively stable. Ecological resistance was reduced in certain
areas which led to improvements in the ecological resistance
surface of biological migration, the path and quantity of
ecological corridors, and landscape connectivity. The structure
of the ecological networks steadily improved because the
number of ecological sources and ecological corridors were both
increased. Identification of the ecological networks enhanced
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the function of the ecological barriers and provided guidance
for future ecological protection and restoration programs in
Guizhou Province.

The areas with improved vegetation coverage were
substantially larger than the degraded areas in Guizhou Province
in 2005–2018. The improved and degraded areas accounted for
77.77 and 14.28% of the total area, respectively. The remaining
7.95% was stable. We divided the 88 counties into four categories
based on their karst landforms. Most of them were counties with
higher proportions of karst landforms. A coupling analysis of
the average CCD and the NDVI showed that they were generally
higher in 2018 than 2005 for most counties. Nevertheless, the
growing demands for economic development and the limitations
of the karst environment lowered the average CCD and the
NDVI for several counties with higher proportions of karst
landforms. The average CCD and the NDVI were positively
correlated for counties with non-karst and interlaced karst and
non-karst landforms. In 2005, the average CCD and the NDVI
were strongly negatively correlated for counties with lower
proportions of karst landforms. By 2018, however, the average
CCD and the NDVI were only weakly negatively correlated for
these counties. For counties with higher proportions of karst
landforms, the average CCD and the NDVI were negatively
correlated in 2005 but positively correlated in 2018. It can
be concluded that ecological restoration projects have a more
obvious impact on counties with higher proportions of karst
landforms. The rocky desertification problem and landscape
connectivity have been improved.

Natural and socioeconomic factors as well as improvement
in landscape connectivity significantly influenced the change in
the NDVI. The interactive detector revealed that [urbanization
growth rate ∩ annual average temperature] and [urbanization
growth rate ∩ annual average precipitation] jointly drove
the variation in vegetation in Guizhou Province. Therefore,
the urbanized area is more likely to enhance the effects of
temperature and precipitation than the rural area because the
latter has a smaller population. In addition, interactions among

landscape connectivity and other factors significantly enhance
the spatial variations in vegetation. Thus, changes in landscape
pattern play crucial roles in the restoration of vegetation in
this region. Future research should investigate the coordinated
development of urbanization and ecological restoration within
the karst region.
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