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The excessive exploitation of coal resources has caused serious land subsidence,
which seriously threatens the lives of the residents and the ecological environment
in coal mining areas. Therefore, it is of great significance to precisely monitor and
analyze the land subsidence in the mining area. To automatically detect the subsidence
basins in the mining area from the interferometric synthetic aperture radar (InSAR)
interferograms with wide swath, a lightweight model for detecting the subsidence basins
with an anchor-free and adaptive sample assignment based on the YOLO V5 network,
named Light YOLO-Basin model, is proposed in this paper. First, the depth and width
scaling of the convolution layers and the depthwise separable convolution are used to
make the model lightweight to reduce the memory consumption of the CSPDarknet53
backbone network. Furthermore, the anchor-free detection box encoding method is
used to deal with the inapplicability of the anchor box parameters, and an optimal
transport assignment (OTA) adaptive sample assignment method is introduced to solve
the difficulty of optimizing the model caused by abandoning the anchor box. To verify the
accuracy and reliability of the proposed model, we acquired 62 Sentinel-1A images over
Jining and Huaibei coalfield (China) for the training model and experimental verification.
In contrast with the original YOLO V5 model, the mean average precision (mAP) value of
the Light YOLO-Basin model increases from 45.92 to 55.12%. The lightweight modules
of the model sped up the calculation with the one billion floating-point operations
(GFLOPs) from 32.81 to 10.07 and reduced the parameters from 207.10 to 40.39 MB.
The Light YOLO-Basin model proposed in this paper can effectively recognize and
detect the subsidence basins in the mining areas from the InSAR interferograms.

Keywords: InSAR, subsidence basin detecting, YOLO V5, depthwise separable convolution, anchor-free, optimal
transport assignment (OTA)

INTRODUCTION

Large-scale land subsidence resulting from coal mining has caused a series of ecological and
environmental problems, including destroying farmlands, damaging buildings, and even inducing
geological disasters (Wang et al., 2021a; Yuan et al., 2021). It threatens the lives and property of the
local residents and restricts the economic sustainable development in mining areas (Fan et al., 2018;
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Wang et al., 2020). Therefore, it is of great significance to
continuously monitor and analyze the land subsidence in mining
areas. Traditional geodetic surveying methods mainly include
precise leveling, total station measurement, and global navigation
satellite system (GNSS) (Fan et al., 2018). These methods
have some limitations such as low spatial resolution, limited
monitoring area, and low observation efficiency (Chen et al.,
2015; Chen Y. et al., 2020; Shi M. Y. et al., 2021). Interferometric
synthetic aperture radar (InSAR) technology has become a new
means for monitoring the surface deformation in mining areas
with the advantages of day/night data acquisition, all-weather
imaging capability, and strong penetrability (Ng et al., 2017; Chen
B. Q. et al., 2020; Wang et al., 2020).

Currently, the main research directions of InSAR technology
for monitoring mine subsidence have evolved from acquiring
single surface deformation information to three-dimensional
deformation information or subsidence prediction based on
deformation theory (Yang et al., 2017a,b, 2018a,b; Chen et al.,
2021; Dong et al., 2021; Fan et al., 2021). Most of these works
are targeted at one or more subsidence basins. However, the
imaging mode of mainstream synthetic aperture radar (SAR)
satellites, such as ALOS-2 and RadarSat-2, has an image width
of more than 80 km. The image width of the interferometric
wide swath (IW) mode of the Sentinel-1A satellite even reaches
250 km (Zheng et al., 2018). It is time-consuming and labor-
intensive to search for subsidence basins with a radius of only a
few hundred meters in a wide range of images. At present, there
have been few studies on the automatic detection of subsidence
basins from the InSAR interferogram. Hu et al. (2013) proposed
a differential interferometric synthetic aperture radar (D-InSAR)
based illegal-mining detection system, aiming to increase both
accuracy and efficiency of underground-mining detection. The
detection results are highly dependent on the quality of the
phase unwrapping and subjective processing experience. By using
the methods of D-InSAR technology, geographic information
system (GIS), and mining subsidence, Xia et al. (2018) proposed
a novel theory of effectively recognizing the subsidence basins.
This method can detect subsidence basins without manual
intervention. However, like the method proposed by Hu et al.
(2013), the detection accuracy will also be affected by the quality
of the phase unwrapping. Yang et al. (2018c) proposed a space-
based method for recognizing the subsidence basins by relating
the geometric parameters of subsidence basins to the InSAR
derived line of sight deformation with the probability integral
method (PIM). This method can determine the boundary of the
subsidence basins, but it is not suitable for detecting subsidence
basins in large-scale areas. Du et al. (2019) proposed a feature-
point-based method for efficiently detecting subsidence basins.
Du first used D-InSAR to monitor subsidence basins caused
by mining and then used the PIM to determine the inflection
and boundary points of the subsidence basins. Wang et al.
(2021b) proposed a model for detecting the subsidence basin
based on the histogram of oriented gradient features and support
vector machine classifier. This method is limited by the feature
detection operator and cannot effectively detect the subsidence
basin with obscure edge features and too small scope. Bala
et al. (2021) proposed a circlet transform method for detecting

subsidence basins. This method reduces manual intervention,
but the detection time is longer. Due to the long detection
time, the above methods are difficult to carry out in a large-
scale area. Furthermore, these methods conduct detection mostly
based on the deformation gradient and the shape characteristics
of the subsidence basin on the deformation map. The quality
of the phase unwrapping is susceptible to atmospheric effects
and noises, resulting in lower detection accuracy. Therefore, we
propose a new method to detect subsidence basins from InSAR
interferogram with large-scale areas.

After underground coal mining, a series of subsidence
basins will appear in the mining area. Subsidence basins are
scattered and large in number in the InSAR interferogram. It is
difficult to identify these subsidence basins manually. The single
subsidence basin of the mining area in the InSAR interferogram
is approximately concentric circles or concentric ellipses, with a
small scale and obvious edge features. Currently, the convolution
neural network (CNN)-based objection detection method has
been widely applied in many research fields (LeCun et al., 2015;
Shi et al., 2020; Ren et al., 2021). For SAR images, it is mainly
used to identify ships (Chang et al., 2019; Jiang et al., 2021;
Wu Z. T. et al., 2021) and marine oil spills, etc. The CNN-
based objection detection method can realize the automatic
detection of subsidence basins. CNN-based objection detection
frameworks primarily consist of three components, including
backbone network, neck network, and detection head (Chen
Q. S. et al., 2020; Fu K. et al., 2020). The backbone network
mainly extracts the basic features of the input image, such as the
ResNet (He et al., 2016; Xie et al., 2017) series and the DarkNet
series. The main function of the neck network is to further
strengthen the features extracted by the backbone network.
For example, the feature pyramid network (FPN) combined
features of different scales with lateral connections in a top-
down manner to construct a series of scale-invariant feature
maps, and multiple scale-dependent classifiers were trained on
these feature pyramids (Lin et al., 2017a). The detection head
network is responsible to predict and refine the bounding box,
calculating the bounding box coordinates, confidence score, and
classification score. According to the different head networks,
object detection frameworks can be primarily divided into two
categories. One is two-stage detectors that have high detection
accuracy, mainly including R-CNN (Girshick et al., 2014), Fast-
RCNN (Girshick, 2015), and Faster-RCNN (Ren et al., 2015),
etc. Two-stage detectors first use a region proposal network to
generate a sparse set of candidate object bounding boxes and then
to extract features from each candidate bounding box for the
following classification and bounding box regression tasks. The
other is one-stage detectors that achieve high inference speed,
mainly including the YOLO series (Redmon et al., 2016; Redmon
and Farhadi, 2017, 2018; Bochkovskiy et al., 2020), SSD (Liu
et al., 2016), and RetinaNet (Lin et al., 2017b), etc. One-stage
detectors generate prediction boxes, confidence scores, and object
classes concurrently.

At present, many CNN-based object detection methods have
been proposed, most of which are designed to detect objects in
natural images. However, there are two problems for recognizing
the subsidence basins when directly using these methods. First,
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due to the various object categories and shapes in natural images,
big networks (such as DarkNet53, Resnet101) are often used
as the backbone. However, the shape of the subsidence basin
is relatively simple and the detection category is single, hence
there is no need for a heavy network to detect subsidence
basin. In addition, with the continuous development of SAR
satellites, the image width is also increasing, then it will also
increase the burden on the computer hardware when using heavy
networks. Second, the anchor boxes obtained by clustering object
structure in natural images are not suitable for the detection of
subsidence basins.

The YOLO V5 model, a one-stage detector, has the advantages
of high accuracy and fast speed. It has been widely used in
various domains such as face recognition, text detection, and logo
detection (Wu W. et al., 2021; Yan et al., 2021; Zhao et al., 2021).
In order to automatically recognize and detect subsidence basins
in large-scale mining areas with high accuracy, we proposed a
lightweight detection model with adaptive sample assignment.
The proposed model is based on the path aggregation network
(PANet) of YOLO V5.

The main sections of this paper are organized as follows.
In section “Data and Materials,” the model proposed in this
paper for detecting the subsidence basins from the InSAR
interferogram is described. It mainly includes the depthwise
separable convolution, anchor-free, and OTA adaptive sample
assignment. The experimental results and quantitative evaluation
are presented in Section “Method.” Section “Results and
Analysis” shows the discussions and the analysis of each module
in the proposed model and the comparison results with the
original YOLOV5 model. Finally, some valuable conclusions of
this study are drawn in Section “Discussion.”

DATA AND MATERIALS

Study Area
We selected the Jining and Huaibei mining areas in China as
the study areas. The two mining areas are rich in coal resources
and have a long mining history. There are many mines in the
two areas with a complex distribution. The Jining mining area
(115◦50′–117◦48′E, 34◦58′–35◦59′N) is located in the southwest
of Shandong Province, China, with a cumulative proven coal
reserve of nearly 15.1 billion tons. The Huaibei mining area
(116◦23′–117◦12′E, 33◦16′–34◦14′N) is located in the north of
the Huaihe River of Anhui Province, China, with a cumulative
proven coal reserve of 13 billion tons. The locations of the study
areas are shown in Figure 1.

Experimental Data
We used 24 Sentinel-1A images acquired from November 2017
to March 2020 over the Jining mining area and used 34
Sentinel-1A images acquired from November 2017 to March
2020 over the Huaibei mining area. The specific information
of the partial interferometric pairs is shown in Table 1. The
experimental Sentinel-1A data are interferometric wide swath
imaging mode (Level 1 single-look complex images products)
and in VV polarization with the 38.9◦ incidence angle. The
revisit period of Sentinel-1A is 12 days and has a pixel size of

about 2.33 × 13.91 m. Moreover, the shuttle radar topography
mission digital elevation model (SRTM DEM) released by the
National Aeronautics and Space Administration (NASA) was
applied to remove both the flattening and terrain phases in
D-InSAR data processing.

In order to obtain the differential interferograms of the
two mining areas, we used the two-pass D-InSAR technology
(Ou et al., 2018; Dai et al., 2020) to process these Sentinel-1A
data. The procedures of D-InSAR technology mainly include
interferogram generation, SAR simulation based on digital
elevation model (DEM), differential processing between the
real interferogram and the simulated interferogram, phase
unwrapping, transformation from phase to deformation, and
geocoding (Ilieva et al., 2019; Chen D. H. et al., 2020).
Figure 2 is a flow chart of the two-pass D-InSAR data
processing. Interferograms with serious decoherence and large
noise influence were excluded. We set the temporal baseline
threshold of the interferogram to 36 days and the spatial
baseline threshold to 200 m. The longest spatial baseline of
the interferogram in this paper is 155.71 m. We obtained 62
interferograms in the Jining and Huaibei mining areas. The ratio
of multi-looking is 1:5. The pixel size in the range direction is
18.54 m, and the pixel size in the azimuth direction is 13.89 m
for the interferogram. The interferograms are too large to be
used by the deep neural architecture, which generally accepts
an image with a size of 416 × 416 as an input. Therefore, we
segment the interferograms into smaller sub-images with a size
of 416 × 416 according to the standard of the YOLO V5 model.
The image data annotation software called “LabelImg” was used
to draw the outer rectangular boxes of the subsidence basins on
each sub-image, realizing the manual annotation of the border
and labels of the ground truth box. The ground truth boxes
were annotated according to the features of the subsidence basin.
The subsidence basin on the InSAR interferogram is a series of
approximately circular or elliptical interferometric fringes with a
small scale and obvious edge features (Wang et al., 2021b). We
have obtained a total of 1,160 sample images. In this study, 812
sample images were randomly selected from 1,160 images as the
training samples; the remaining 30% were selected as the testing
samples, which had a total of 348 images. The partial examples of
the sample datasets are shown in Figure 3. In order to alleviate the
over-fitting phenomenon during the training model incurred by
limited sample datasets, rotation, translation, and flipping were
used for data augmentation.

We selected two Sentinel-1A images acquired from December
2020 to January 2021 over the Jining mining area and two
Sentinel-1A images acquired from January 2021 over the Huaibei
mining area, constituting a total of two interferometric pairs to
test the performance of the proposed model for detecting the
subsidence basins from the interferograms. The parameters of the
two interferometric pairs are listed in Table 1.

METHOD

To automatically detect the subsidence basins from the InSAR
interferograms, a lightweight detection model with an adaptive
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FIGURE 1 | Location of the study area. (A) The geographic location of the Jining mining area; (B) geographic location of the Huaibei mining area.

TABLE 1 | Sentinel-1A interferometric pairs for constructing the training/testing datasets and verifying the performance of the proposed model.

Mining area Master image Slave image Path Frame Temporal baseline/d Perpendicular baseline/m

Datasets Jining 28/11/2017* 22/12/2017 142 111 24 101.52

Jining 11/11/2018 05/12/2018 142 111 22.76

Jining 30/11/2019 24/12/2019 142 111 56.14

Huaibei 10/12/2017 03/01/2018 142 106 81.53

Huaibei 11/11/2018 05/12/2018 142 106 21.79

Huaibei 18/11/2019 12/12/2019 142 106 115.70

Verifying data Jining 30/12/2020 11/01/2021 142 111 12 25.10

Huaibei 11/01/2021 23/01/2021 142 106 −22.02

*Date/month/year.

sample assignment based on the YOLO V5 model was proposed.
We first use the channel number scaling and depthwise separable
convolution (Howard et al., 2017) to make the CSPDarknet53
network lightweight, and then model the prediction boxes as a
width and height fit problem based on the center point like the
anchor-free strategy in FCOS (Tian et al., 2019). In addition, we
also introduced an OTA (Ge et al., 2021) that assigns positive and
negative samples in an adaptive manner. The proposed model for
detecting the subsidence basin was named the Light YOLO-Basin
model. The network architecture of the Light YOLO-Basin model
is shown in Figure 4.

YOLO V5 Network
The YOLO V5 model, as the basic framework for detecting
the subsidence basins in this paper, mainly consists of three
components: backbone network, neck network, and detection
head. The backbone network is designed to extract the features
of the subsidence basin, mainly composed of the CSPDarknet53
network and spatial pyramid pooling (SPP) (Purkait et al., 2017).
The neck network adopts the path aggregation network instead
of feature pyramid networks in YOLO V5. The detection head,
as the final detection part of the model, is used to output the
detection results of the subsidence basin. It utilizes the high-
level semantic information outputted from the neck network to
classify the category and regress the location of the objects.

The loss function of the YOLO V5 network mainly consists of
three parts: bounding box regression loss, classification loss, and

confidence loss (Shi P. F. et al., 2021). Since this paper only has
the category of the subsidence basins, we only used confidence
loss and bounding box regression loss, as shown in Formula (1).

Loss = Lobj + λLDIoU (1)

where Lobj and LDIoU mean confidence loss and bounding box
regression loss, respectively. λ is the balancing factor and the
value is 5 (Yan et al., 2021).

The Light YOLO-Basin model used the Focal Loss (Lin et al.,
2017b) function confidence loss to alleviate the problem caused
by the imbalanced number of hard and easy samples, as shown
in Formula (2), in which the positive sample p with the high
confidence is the easy sample and vice versa. Focal loss reduces
the weight of easy samples so that the model can focus more on
hard samples, ensuring that the contributions of all samples to
model parameter updating are relatively balanced.

Lobj =
{
−α

(
1− p

)γ log (p) , y = 1
− (1− α) pγlog

(
1− p

)
, y = 0

(2)

where y = 1 means positive samples and y = 0 means negative
samples; the parameter α is used to balance the weight of
the positive and negative samples during the model training;
the parameter γ is used to balance the weight of the easy
samples in the model; the parameter p ε [0,1] is the model
estimated probability for the confidence loss. The bounding
box regression loss of the original YOLO V5 model adopts
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FIGURE 2 | The data processing flow of the two-pass differential
interferometric synthetic aperture radar (D-InSAR). The blue part is the data
processing implemented in the paper.

generalized intersection over union loss (GIoU Loss), but it only
focuses on the overlapping areas and other non-overlapping
areas, which ignores the impact of the bounding box on the
IoU. The Light YOLO-Basin model used distance IoU loss (DIoU
Loss) (Luo et al., 2020) as the bounding box regression loss. DIoU
Loss is defined as Formula (3). It not only considers the distance
of the center and the overlapping area between the ground truth

box and prediction box, but also minimizes the center point
distance.

IoU = |A∩B|
|A∪B|

LDIoU = 1−IoU + ρ2(b,bgt)
c2

(3)

where A represents the area of the prediction box and B
represents the area of the ground truth box; the parameter b and
bgt mean the center points of the prediction box A and ground
truth box B, respectively; ρ2 is the Euclidean Distance between
b and bgt ; the parameter c represents the diagonal length of the
smallest closed shape that includes the ground truth box A and
the prediction box B.

The detection head module of the YOLO V5 model directly
uses a single convolutional layer to calculate the classification
loss, confidence loss, and bounding box regression loss. However,
there is no classification loss in our study, the structure of
the detection head requires to be changed. Some researches
demonstrated that there is a conflict between classification
and regression tasks (Song et al., 2020; Wu et al., 2020), so
referencing the ideas of FCOS (Tian et al., 2019) and the literature
(Song et al., 2020), the Light YOLO-Basin model used double-
head as the detection head module. The Light YOLO-Basin
model architecture after decoupling is shown in Figure 4. The
double-head splits the output features of the subsidence basin
into regression and confidence branches. The regression branch
provides prediction box coordinates. Meanwhile, the confidence
branch calculates the probability of positive samples.

The Lightweight of the CSPDarknet53
Network
At present, the YOLO V5 model has achieved great success in
natural image datasets such as PASCAL VOC, ImageNet, and
MS COCO. However, compared with objects in natural images,
subsidence basins on the interferograms have more obvious edges
and texture features and simpler shapes. Intuitively, the detection

FIGURE 3 | Some examples of sample datasets. (A) Partial training data; (B) partial testing data. The red boxes represent the manual annotation of the ground truth
box in panel (A).
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FIGURE 4 | Architecture of the Light YOLO-Basin network. SPP is spatial pyramid pooling. Upsample uses bilinear interpolation. Obj and distance intersection over
union loss (DIoU) represent confidence loss and bounding box regression loss, respectively. In addition, convolution modules that can be lightweight are in orange.

FIGURE 5 | Comparison results between the mean average precision (mAP) and parameters/inference memory of the three versions of YOLO V5 (Large, Middle,
and Small) model. The abscissa in panel (A) represents the parameter amount of the model; the abscissa in panel (B) means the inference memory of the model for
processing a 416 × 416 image. The numerical values of the mAP of the three versions of the YOLO V5 model.

of the subsidence basins on the interferogram from D-InSAR is
simpler than the multi-category detection on natural images. This
also leads to the conjecture of whether the heavy CSPDarknet53
network is necessary for detecting the subsidence basins. In
order to verify that, we used the three versions of the YOLO V5
model (Large, Middle, and Small) to detect the subsidence basins
from the interferograms. The variation of detection accuracy
is shown in Figure 5. Experimental results show that as the
number of parameters and computations of the model reduces,
the detection accuracy of the model shows a rising trend instead
of decreasing. The results demonstrate that the detection of
subsidence basins does not require a heavy network. In addition,
since the swath of SAR images is large wide, for example, the
swath of Sentinel-1 is about 250 km, a lightweight model is used

to detect subsidence basins from the interferograms to lighten
the burden on the computer hardware. Therefore, we introduced
depthwise separable convolutions to make the CSPDarknet53
network lightweight.

Compared with standard convolution, depthwise separable
convolution generally sacrifices a small amount of detection
accuracy to save the computations and parameters of the
model. Depthwise separable convolution is a form of factorized
convolutions that factorizes a standard convolution into a
depthwise convolution and a pointwise convolution. Firstly,
the depthwise convolution applies a single convolution to each
channel feature map to extract feature information and keeps
the number of feature maps unchanged. Secondly, the pointwise
convolution applies multiple 1 × 1 convolutions to combine the
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FIGURE 6 | The structure diagram of depthwise separable convolution. W and H are the spatial width and height of the feature map, respectively. C is the number of
feature channels; N is the number of feature channels after depthwise separable convolution.

FIGURE 7 | Location encoding of bounding box in YOLO V5 and Light YOLO-Basin. (A) Location encoding of YOLO V5 bounding box. The red box denotes the
anchor box and the black box denotes the prediction box. Pw and Ph mean the width and height of the anchor box, respectively; tw and th are the predicted ratio of
the width and height between the prediction box and anchor box. (B) Anchor-free location encoding of the bounding box. The black box denotes the prediction box;
tw and th directly predicted the width and height. bx and by , respectively represent the coordinates of the center point x and y of the prediction box; bw and bh

represent the width and height of the prediction box, respectively. tx and ty are the offsets between the center point of the prediction box and the top left corner of
the cell computed by the model; σ is the Sigmoid function; Cx and Cy are the coordinates of the top left corner of the cell.

FIGURE 8 | Sample assignment of YOLO V3, YOLO V5, and optimal transport assignment (OTA). Panel (A) is the image with bounding box; panel (B) is the sample
assignment of YOLO V3; panel (C) is the sample assignment of YOLO V5; panel (D) is the adaptive sample assignment of OTA. The value is the transporting cost
value in panel (D). The blue grid and the green box denote the positive sample and the ground truth box, respectively, and the red point is the center point of the
ground truth.

feature maps obtained by the depthwise convolution. The process
of performing depthwise separable convolution on a feature map
with the size of W × H × C (W and H are the spatial width
and height of the feature map, respectively, and C is the number
of feature channels) is shown in Figure 6. The computation
of the standard convolution is 3 × 3 × C × N × W × H,

while the computation of the depthwise separable convolution is
3× 3× C×W× H+1× 1× C× N×W× H = (3× 3+N)×
(C × W × H), which is approximately 1/N + 1/(3 × 3)
of the standard convolution. The parameter of the standard
convolution is 3 × 3 × C × N, while the parameter of the
depthwise separable convolution is 3× 3× C+ 1× 1× C× N,
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FIGURE 9 | Results of qualitative comparison experiment. Large, Middle, and Small mean the three models produced by scaling, respectively. (A) Cropped original
image; (B) detection results of subsidence basins using YOLO V5 model; (C) detection results of subsidence basins using YOLO-Basin model; (D) detection results
of subsidence basins using Light YOLO-Basin. (E) Ground truth box.

which is about 1/N + 1/(3 × 3) of the standard convolution.
The depthwise separable convolution has the effect of drastically
reducing the computation and model size. In this study,
the depthwise separable convolution is introduced into the
CSPDarknet53 network, which is combined with the scaling of
the depth (the number of convolutional layers) and the width
(the number of channels of the convolution kernel) to realize the
lightweight of the model, as shown in the orange part of Figure 4.

Anchor-Free and Adaptive Sample
Assignment
YOLO V5, an anchor-based method, predicts boxes by fitting
the deviation of the anchor boxes, where the anchor boxes
have a preset width and height. Although anchor-based methods
improve the detection accuracy to a certain extent, there are still
some drawbacks (Fu J. M. et al., 2020). First, a large number
of anchor boxes are used in the model, resulting in excessive
redundant computation and slowing down the detection speed
of the model. Second, only a tiny fraction of the anchor boxes
is labeled as positive samples, resulting in a huge imbalance
between positive and negative samples. Third, fixed anchor boxes
cannot be applied to various data, which increases the difficulty
of model optimization. Anchor boxes generally require to be reset
according to different data. Currently, the anchor boxes obtained
by clustering objects in natural images are quite different from the
features of the subsidence basins in the InSAR interferograms.
In addition, since the training data cannot represent all the

subsidence basins, the anchor-boxes obtained by clustering the
characteristics of the subsidence basins cannot guarantee their
versatility. Therefore, we used an anchor-free method to detect
the subsidence basins from interferograms.

The location of the prediction box in the original YOLO V5
model is determined by the center point and the width and
height of the anchor box, as shown in Figure 7A. The coordinate
value of the center point is represented by the offset from the
top left corner of the cell, and the width and height are the
scaling ratios of the corresponding anchor box. However, if
the anchor box is abandoned, the width and height cannot be
expressed. Hence, the Light YOLO-Basin model directly fits the
width and height instead of the ratio of the anchor box and
keeps the computation of the center point unchanged to achieve
anchor-free (Law and Deng, 2018; Duan et al., 2019), as shown
in Figure 7B.

The lack of the constraint of anchor boxes in the anchor-
free method increases the degree of freedom of the model and
also increases the difficulty of optimizing the prediction box.
Adopting IoU at a certain threshold as positive and negative
assignment criterion, which is commonly used in anchor-based
detection methods, is usually not suitable for the anchor-free
method. For example, the two-stage Faster R-CNN network labels
the prediction box with an IoU value greater than 0.7 as a positive
sample and less than 0.3 as a negative sample; the one-stage
YOLO V3 model labels the prediction box with the highest IoU
value as a positive sample, as shown in Figure 8B. Moreover,
based on the anchor-free method, using a certain IoU threshold
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FIGURE 10 | Detection results of partial subsidence basins in the Interferometric synthetic aperture radar (InSAR) interferogram with wide swath. We select two
differential interferograms obtained from the experimental data in Table 1 to test the performance of the Light YOLO-Basin model. Panels (A,B) are representative
areas selected from the detection results of the Jining mining area; panels (C,D) are representative areas selected from the detection results of the Huaibei mining
area.

to assign prediction boxes will cause a large number of useful
prediction boxes to be discarded. To increase the number of
positive samples, the YOLO V5 model expands the selection
range of positive samples to the surrounding pixels, reducing
the difficulty of model optimization, as shown in Figure 8C.
However, the YOLO V5 model still selects a fixed number of
positive samples with a certain IoU threshold, and it cannot
adaptively determine the number and assignment of hard and
easy positive samples. Therefore, we used the OTA (Ge et al.,
2021) to model the positive and negative samples assignment
as an optimal transmission problem, which selects and balances
positive and negative samples in an adaptive manner.

The OTA method treats the ground truth box as the supplier
in the optimal transport theory, and the prediction box in
the model training as the demander. The unit transportation
cost between each demander and supplier is defined as the
weighted summation of losses between the ground truth box
and prediction box. If a demander receives enough goods from
the supplier, this demander becomes one positive sample. The
model needs the best positive and negative samples assignment
solution to minimize the global transportation cost. Concretely,
assuming that there are m ground truth boxes and n prediction
boxes for image I, the ground truth box, namely supplier, holds
k units of goods, while the prediction box, namely demander,
needs d units of goods. ci,j represents the transporting cost of
each unit of good from the i-th supplier to the j-th demander.

The positive and negative sample assignment problem can be
defined as finding an optimal transmission strategy π = {πi,j|i =
1, 2, ...,m, j = 1, 2, ..., n} to minimize the transportation cost, as
shown in Formula (4). The formula behind s.t. is a condition that
needs to be satisfied during optimization.

min
π

m∑
i=1

n∑
j=1

ci,jπi,j

s.t.
m∑
i=1

πi,j = dj,
n∑
j=1

πi,j = ki (4)

m∑
i=1

ki =
n∑
j

dj

πi,j = 0, i = 1, 2, · · ·m,j = 1, 2, · · · n

The key of the OTA is how to define the transportation
cost. The original OTA method defines transportation cost
between the ground truth box and the prediction box as the
weighted summation of their regression loss and classification
loss. Since there is only the category of subsidence basin in
our study, the transporting cost was defined as the weighted
summation of confidence loss and bounding box regression loss.

Frontiers in Ecology and Evolution | www.frontiersin.org 9 March 2022 | Volume 10 | Article 840464

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-840464 March 2, 2022 Time: 15:30 # 10

Yu et al. Subsidence Basin Detecting

The computation equation is as follow:

ci,j = Lobj
(
Pobjj ,Gobj

i

)
+ αLreg(Pboxj ,Gbox

i ) (5)

where Lobj and Lreg represent the binary cross-entropy and

bounding box regression loss; Pobjj and Gobj
i denote the

confidence score of the model prediction box and ground truth
box, respectively; Pboxj and Gbox

i , respectively, represent the
coordinates of the prediction box and the ground truth box. α

is the balanced coefficient with the value of 3. The visualization
result of transporting cost value is shown in Figure 8D.

The original OTA method uses Sinkhorn-Knopp Iteration
(Cuturi, 2013) to solve the optimal transmission problem, but the
multiple iteration optimization of the Sinkhorn-Knopp greatly
reduces the training efficiency of the model. Hence, the Light
YOLO-Basin adopted an approximate method to solve the
optimal transmission problem. The OTA solution mainly consists
of two parts: (1) k value, which is the number of positive samples
of each ground truth box; (2) the assignment of the k value, that is,
how the positive samples are assigned to the prediction box. Since
the cost matrix has been determined, the assignment solution
of k can be simplified to assign k of each ground truth box to
the prediction box with the lowest cost in turn, as shown in the
blue grid in Figure 8D. The determination of the value of k for
each ground truth box is simplified to a statistical problem: first,
sorting all the prediction boxes in the model according to the IoU
value, and then adding up the cost value of the prediction box
with the top Z (default 10) IoU value to round to get the estimated
value of k, as shown in Formula (6).

ki = sum
(
TopZIoU

(
λ∗ci,j

))
, j = 1, 2, · · · n (6)

where ki means the k value of the i-th ground truth box; λ is set
to 0.1 derived from experiments.

RESULTS AND ANALYSIS

Experimental Setting
Accuracy Evaluation Index
The average precision (AP) and mAP (Li et al., 2017; Sun et al.,
2021) were used to evaluate the performance of the Light YOLO-
Basin model proposed in this study. The detection results mainly
include four categories: true-positive (TP) and false-positive
(FP)are the numbers of positive samples that are correctly
predicted and incorrectly predicted, respectively; true-negative
(TN) and false-negative (FN) mean the number of negative
samples that are correctly predicted and incorrectly predicted,
respectively. Precision refers to the proportion of all detected
samples that are correct, and recall refers to the proportion of the
objects recognized by the model among all the objects that require
to be recognized. The precision (P) and recall (R) are defined in
Formula (7). The P-R curve takes the precision as the ordinate
and the recall as the abscissa.

P =
TP

TP + FP

R =
TP

TP + FN
(7)

The AP measures the detection performance of a single category,
as shown in Formula (8). The evaluation indicators of the Light
YOLO-Basin model proposed in this paper are AP50 : AP95. AP50
: AP95 is the value of AP at different IoU thresholds that the
IoU ranges from 0.5 to 0.95 and the step size is 0.05. The mAP
measures the detection performance of all the categories. Since
there is only the category of subsidence basin in this paper, mAP
is defined as the average AP at different IoU thresholds, as shown
in Formula (9).

AP =
∫ 1

0
P (R) dR (8)

mAP =
∑9

i=0 AP50+i∗5

10
(9)

Training Settings
The experiment was conducted using the Microsoft Windows,
64-bit operating system. The central processing unit (CPU) is
Intel Core i5-8300H. The graphics processing unit (GPU) is
NVIDIA GeForce GTX 1050 Ti (4GB video memory). The deep
learning framework is Facebook PyTorch 1.8. In this study, all
subsidence basin detection models in this paper were trained by
the adaptive moment estimation (Adam) optimization method
(Kingma and Ba, 2014). The initial learning rate is set to 0.001 and
decayed according to the formula 0.001∗(1− (iter/max_iter)0.9),
where iter is the current number of iterations and the maximum
number of iterations (max_iter) is set to 60,000.

Results
According to the standard of the YOLO V5 model, we divided
the Light YOLO-Basin into three versions: Large (L), Middle
(M), and Small (S). The three versions are distinguished by
three scaling ratios of the depth (the number of convolutional
layers) and the width (the number of channels of the convolution
kernel), which are (1.0, 1.0), (0.67, 0.75), and (0.33, 0.50),
respectively. The model that does not introduce depthwise
separable convolution in this paper is called YOLO-Basin.
Examples of the qualitative comparison results of the Light
YOLO-Basin model and the YOLO V5 model are shown in
Figure 9. It can be seen that the Light YOLO-Basin model
can detect the subsidence basin misdetected by the YOLO
V5 model. Importantly, in order to verify the performance
of the Light YOLO-Basin model in the actual scene, we
selected two representative InSAR interferograms with the size
of 7,636 × 8,205 and 8,127 × 10,338, respectively. We first cut
the whole images regularly to obtain a large number of sub-
images with a size of 416× 416, then used the Light YOLO-Basin
model to detect the subsidence basins for each sub-image, and
finally stitched the detection results of each sub-image. Figure 10
exhibits part of the detection results of subsidence basins using
the Light YOLO-Basin model. It can be seen that most subsidence
basins have been correctly detected. 42 and 40 subsidence basins
were detected in Jining and Huaibei mining areas, respectively.
Regardless of the time consumption on image segmenting and
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TABLE 2 | Quantitative experiment comparison between the Light YOLO-Basin model and the YOLO V5 model.

Method Backbone mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

YOLO V5-L CSPDarknet-53 45.92 88.33 80.76 61.91 21.94

YOLO V5-M CSPDarknet-53 46.82 86.57 78.43 63.15 28.31

YOLO V5-S CSPDarknet-53 47.65 89.78 84.36 65.70 20.12

YOLO-Basin-L CSPDarknet-53 49.96 87.45 82.79 69.21 30.89

YOLO-Basin-M CSPDarknet-53 51.77 89.08 84.23 69.18 36.21

YOLO-Basin-S CSPDarknet-53 51.92 90.03 85.12 71.24 35.32

Light YOLO-Basin-L Light CSPDarknet-53 53.46 88.95 84.02 71.68 40.53

Light YOLO-Basin-M Light CSPDarknet-53 54.61 90.37 86.48 75.29 41.96

Light YOLO-Basin-S Light CSPDarknet-53 55.12 90.64 86.21 75.20 43.17

Light CSPDarknet-53 represents the CSPDarknet-53 backbone network after introducing the depthwise separable convolution. L, M, and S represent the three versions
of YOLO V5, YOLO-Basin, and Light YOLO-Basin model Large, Middle, and Small, respectively. The bold values is the maximum value of each column.

TABLE 3 | The experiment for test the accuracy and efficiency of lightweight module.

Method Backbone mAP (%) Parameters (MB) GFLOPs Inference memory (MB)

YOLO-Basin-L CSPDarknet-53 49.96 207.10 32.81 434.96

YOLO-Basin-M CSPDarknet-53 51.77 108.99 19.25 285.76

YOLO-Basin-S CSPDarknet-53 51.92 55.08 11.99 172.22

Light YOLO-Basin-L Light CSPDarknet-53 53.46 92.09 16.63 559.73

Light YOLO-Basin-M Light CSPDarknet-53 54.61 60.12 12.54 352.60

Light YOLO-Basin-S Light CSPDarknet-53 55.12 40.39 10.07 198.95

The bold values is the maximum value of each column.

TABLE 4 | Roadmap of the Light YOLO-Basin model in terms of mAP and average precision (AP) (%).

mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

YOLOV5-S 47.65 89.78 84.36 65.70 20.12

+Depthwise 46.98 86.77 79.19 66.01 24.34

+Anchor-free and OTA 54.84 91.52 86.82 75.85 40.88

+Double-head 54.62 88.62 86.17 75.48 42.75

+Focal Loss 55.12 90.64 86.21 75.20 43.17

The bold values is the maximum value of each column.

TABLE 5 | Ablation study for loss function.

Loss mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

IoU loss 54.91 90.28 87.40 74.70 41.41

GIoU loss 54.08 89.67 85.73 74.89 42.01

DIoU loss 55.12 90.64 86.21 75.20 43.17
CIoU loss 54.89 91.27 87.86 75.05 40.98

The bold values is the maximum value of each column.

TABLE 6 | Ablation study of Z in optimal transport assignment (OTA).

Z mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

5 54.12 90.33 86.81 74.62 38.63

10 55.12 90.64 86.21 75.20 43.17

15 54.47 90.70 88.43 75.91 37.43

20 54.15 90.01 85.15 74.52 42.31

The bold values is the maximum value of each column.

stitching, the Light YOLO-Basin model only consumed 16.28 s to
detect the whole image. We made statistics on the deformation
values of the detected subsidence basins from the Jining and
Huaibei mining areas, among which, the deformation value of the
subsidence basin with the smallest deformation is 1.5 cm.

Quantitative Evaluation
The detection accuracy of the Light YOLO-Basin model and
the YOLO V5 model are shown in Table 2. The experimental
results demonstrate: (1) with the same experimental method,
the smaller the scaling ratio of the model is, the higher the
detection accuracy is. The value of mAP increased from 45.92%
of the YOLO V5-L model to 47.65% of the YOLO V5-S model.
This further verified the hypothesis proposed above that the
detection of subsidence basins does not require a heavy network.
(2) Benefiting from the introduction of the anchor-free detection
box encoding method and OTA, the mAP value of the YOLO-
Basin-S model has greatly improved compared to the YOLO
V5-L model which was 6% higher than that of the original
YOLO V5-L model. By comparing the detection accuracy in
Table 2, it can be found that the improvement of the YOLO-
Basin model detection accuracy is mainly manifested by the
strict evaluation indicators such as AP70 and AP80. The AP70
value increased from 65.70 to 71.24%, and the AP80 value
increased by 15.20%. (3) The detection accuracy of the Light
YOLO-Basin model is further improved, benefiting from the
introduction of the depthwise separable convolution. Similarly,
the improvement of the Light YOLO-Basin model detection
accuracy is also mainly manifested by the evaluation indicators

Frontiers in Ecology and Evolution | www.frontiersin.org 11 March 2022 | Volume 10 | Article 840464

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-840464 March 2, 2022 Time: 15:30 # 12

Yu et al. Subsidence Basin Detecting

FIGURE 11 | The detection results using different spatial resolutions of DEM. Panel (A) is the result using DEM data with a spatial resolution of 30 m; panel (B) is the
result using DEM data with a spatial resolution of 90 m.

FIGURE 12 | The influence of noise on the detection results. Panel (A) is the detection result of this paper to remove noise; panels (B,C) are the detection results
under Gaussian complex noise with the variance of 0.001 and 0.01, respectively.

such as AP70 and AP80. The AP70 value improved from 71.24
to 75.20%, and the AP80 value increased by 7.85% compared
to the non-lightweight model. In summary, on the one hand,
the experimental results prove the effectiveness of anchor-free
and OTA methods in detecting the subsidence basins. On the
other hand, depthwise separable convolution can improve the
detection accuracy of the Light YOLO-Basin model with less
model parameters.

DISCUSSION

Efficiency Experiment of the Lightweight
Module
The lightweight module of the Light YOLO-Bain model mainly
includes scaling and depthwise separable convolution. The
lightweight detection model needs to pay attention to two
aspects: (1) whether the lightweight module can improve model
computing efficiency and reduce memory utilization; (2) whether
the lightweight module affects detection accuracy. We used
network parameters, GFLOPs, and inference memory as the
evaluation indicators of model efficiency and mAP as the
evaluation indicator of model accuracy. The results are shown in
Table 3. The image size is set to 416 × 416 and the batch size is
set to 1 when training the model.

Firstly, by analyzing the values of the evaluation indicators
of model efficiency in Table 3, introducing depthwise separable

convolution and scaling can exponentially decrease the number
of model parameters and speed up model training. The
improvement of model efficiency by depthwise separable
convolution is mainly reflected in the number of model
parameters and detection speed. Note that the smaller the model
is, the smaller the effect of the depthwise separable convolution is.
In addition, since the depthwise separable convolution factorizes
a standard convolution into two parts, the computation memory
utilization of the model increases. Table 3 indicates the use
of scaling and depthwise separable convolution has a better
lightweight effect on the model. Secondly, observing the model
accuracy evaluation indicators data in Table 3, compared with
the detection method of natural images, the lightweight of the
model can improve the accuracy of the detection of subsidence
basins rather than reducing the accuracy. Compared with the
YOLO-Basin-S model, the Light YOLO-Basin-S model increases
the mAP value from 51.92 to 55.12%.

Ablation Study for Detection Head and
Loss Function
To address the problem caused by the anchor boxes, the Light
YOLO-Basin model introduces the anchor-free method and the
OTA method. In addition, we also changed the neck network and
loss function of the YOLO V5 model, as seen in Section “YOLO
V5 Network.” We used mAP and AP50 : AP95 as the evaluation
indicators of model accuracy in Table 4, showing the accuracy
changes of the modules added to the YOLO V5-S model.
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FIGURE 13 | Detection results of different multi looking numbers of the interferogram. Panels (A–D) are the detection results with multi looking ratios of 1:5, 1:4, 1:3,
and 1:2, respectively.

It visually shows the change of model accuracy with added
different modules in Table 4. By analyzing the changes in
model accuracy, we can draw the following three conclusions:
(1) The anchor-free detection box encoding method and OTA
have the greatest effect on improving the detection accuracy of
the model, greatly increasing the value of AP70 and AP80. The
accuracy evaluation indicators mAP has also been significantly
improved, increasing from 47.65 to 55.12%. (2) The introduction
of depthwise separable convolution did not improve the detection
accuracy of the YOLO V5 model. However, it can improve the
accuracy of the Light YOLO-Basin model, perhaps benefiting
from the combined effects of depthwise separable convolution
and OTA. (3) Compared with the OTA, the double-head and
Focal loss only less improve the accuracy.

We also analyzed the influence of different IoU loss functions
on the Light YOLO-Bain model accuracy, as shown in Table 5. It
can be seen from Table 5 that the detection accuracy is the highest
when we used the DIoU loss function. Hence, we used DIoU loss
as the bounding box regression loss function.

Ablation Study for Optimal Transport
Assignment
To avoid the inefficient iterative computation of Sinkhorn-Knopp
Iteration, we used statistical methods to estimate the k value
corresponding to the ground truth box in the Light YOLO-Bain
model, each of which represents the number of corresponding

positive samples. The k value is obtained by adding up the
cost value of the prediction box of the top Z in the IoU
value and rounding it. Hence, the number of Z determines the
size of the k value to a certain extent. According to Formula
(6), the larger the value of Z is, the larger the corresponding
k value is. That is, each ground truth box is assigned more
positive samples. However, too many positive samples will divide
the poorly optimized prediction boxes into positive samples,
resulting in incorrect detection of the Light YOLO-Bain model.
Too few positive samples will cause the imbalance of positive and
negative samples, increasing the difficulty of model optimization.
Therefore, it is important to choose a suitable Z. Table 6 shows
the effect of different values of Z on the accuracy of the Light
YOLO-Basin model. It can be seen that the detection accuracy
of the model is highest when the value of Z is 10.

Robustness of Light YOLO-Basin Model
To test the robustness of the model, we, respectively, tested
the effects of DEM, decorrelation noise, and the number of
interferogram multi looking on detection. We first conducted
a set of comparative experiments using DEM with a spatial
resolution of 30 and 90 m. The detection results of subsidence
basins using different levels of DEM are shown in Figure 11.
Since the DEM does not affect the features of the subsidence
basins, it has little influence on the detection results where
14 and 13 subsidence basins were detected using DEM with
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a spatial resolution of 30 and 90 m, respectively. Note that
the spatial resolution of DEM used in this paper is 30 m.
Then, to test the effect of decorrelation noise on detection, the
Gaussian complex noise was used to simulate the decorrelation
noise. Figure 12 gives the influence of noise on the detection
results. It can be seen that noise has a greater influence on the
detection results. Hence, we used the Goldstein filtering method
to remove image noise in this paper. Finally, we conducted a
set of comparative experiments with different numbers of multi-
looking. The comparison of the detection results is shown in
Figure 13. It can be seen that the number of interferogram multi-
looking changes the aspect ratio of the subsidence basin but has
little effect on the detection result of the subsidence basin. We
adopted a more appropriate ratio of multi looking is 1: 5.

CONCLUSION

Based on the YOLO V5 network architecture, the Light YOLO-
Basin model for automatically detecting subsidence basins
from interferograms was proposed in this paper. The Light
YOLO-Basin model uses depthwise separable convolution as the
lightweight module and introduces the anchor-free detection box
encoding method and OTA to solve the problem caused by fixed
anchor boxes. Through experiment, the valuable conclusions can
be obtained as follows:

1. Depthwise separable convolution generally sacrifices a
small amount of accuracy to improve the detection
efficiency. The depthwise separable convolution of the
Light YOLO-Basin model can improve the detection speed
and reduce the model parameters from 207.10 to 40.39 MB.
More importantly, the detection accuracy of the Light
YOLO-Basin model has also been significantly improved.
The value of mAP is increased by 3.2% compared with the
non-lightweight model, which verifies the assumption that
it does not require a heavy network when detecting the
subsidence basins from interferograms.

2. It can effectively detect the subsidence basins through
combined anchor-free and OTA adaptive sample
assignment methods. The ablation experiments in this
study indicate that anchor-free and OTA methods in the
Light YOLO-Basin model increase the value of mAP from
46.98 to 54.84%, and the value of AP50, AP60, and AP70
increase by 4.75, 7.63, and 9.84%, respectively.

3. We introduce the Focal Loss function in the Light YOLO-
Basin model when computing the confidence loss to
balance the weight of the hard and easy samples during
model training, increasing the value of mAP from 54.62 to
55.12% and AP50 from 88.62 to 90.64%.

The Light YOLO-Basin model proposed in this paper has
good performance to detect subsidence basins from InSAR
interferograms with wide swaths. This study also has some
limitations. When making sample datasets, the labeling of
training samples has a greater impact on the detection accuracy of
the model. For subsidence basins with poor visual interpretation,
the Light YOLO-Basin model also has false detection or missing
detection in the poor interferogram. In addition, the reason
why the depthwise separable convolution improves the detection
accuracy of the subsidence basin may be related to the shape of
the subsidence basin on the InSAR interferogram. We will solve
these above problems in future works. We will propose a better
detection model by analyzing the difference in morphological
characteristics between the subsidence basin on the InSAR
interferogram and the object in the natural image.
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