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Nearly 50% of the human genome is derived from transposable elements (TEs).
Though dysregulated transposons are deleterious to humans and can lead to diseases,
co-opted transposons play an important role in generating alternative or new DNA
sequence combinations to perform novel cellular functions. The appearance of an
adaptive immune system in jawed vertebrates, wherein the somatic rearrangement of
T and B cells generates a repertoire of antibodies and receptors, is underpinned by
Class II TEs. This review follows the evolution of recombination activation genes (RAGs),
components of adaptive immunity, from TEs, focusing on the structural and mechanistic
similarities between RAG recombinases and DNA transposases. As evolution occurred
from a transposon precursor, DNA transposases developed a more targeted and
constrained mechanism of mobilization. As DNA repair is integral to transposition
and recombination, we note key similarities and differences in the choice of DNA
repair pathways following these processes. Understanding the regulation of V(D)J
recombination from its evolutionary origins may help future research to specifically target
RAG proteins to rectify diseases associated with immune dysregulation.
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INTRODUCTION

Transposable elements (TEs) are pervasive in all kingdoms of life. There are two major classes
based on their mechanism of transposition (Figure 1): Class I TEs, also known as retrotransposons,
and Class II TEs, also known as DNA transposons. Class I TEs replicate via a copy-and-paste
mechanism through an RNA intermediate (Boeke et al., 1985; Finnegan, 1989; Kazazian, 2004).
This class is further divided into two subclasses: LTRs (long terminal repeats) and non-LTRs.
LTRs include endogenous retrovirus (ERV) retrotransposons and non-LTRs include both long and
short interspersed nuclear elements (LINEs/L1s and SINEs). Class II DNA transposons mobilize
through a cut-and-paste mechanism wherein the original sequence is excised from the genome
before being inserted at another site. A subclass of DNA transposons, Helitrons, mobilize through
a peel-and-paste mechanism with a circular DNA intermediate (Bourque et al., 2018).
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Functionally, TEs have both negative and positive effects
on host cell fitness. In this review, we present the beneficial
and detrimental effects of TEs. In particular, we focus on how
vertebrate adaptive immunity arose through harnessing genes
that arose by TE insertion. These recombination activation genes
(RAGs) are considered to be derived from Class II TEs (Huang
et al., 2016). This statement is made on the basis that the
structural domains and biochemistry of RAG action are strikingly
similar to that of Class II TEs (Carmona and Schatz, 2017). In
this review, we discuss the contribution of TEs in the evolution
of V(D)J recombination, present structural and functional
comparisons between transposase and V(D)J recombinase, put
forth several unanswered questions, and finally discuss how this
knowledge may aid treatment of immune disorders.

NEGATIVE AND POSITIVE EFFECTS OF
TRANSPOSABLE ELEMENT ACTIVITY

Unconstrained TEs have been linked to many human diseases.
A common origin for tumorigenic activity is by transposons
hopping into essential genes, activating proto-oncogenes, or
inactivating tumor suppressor genes. In this way, the new
insertion of TEs can impact regulatory regions, altering or
disrupting gene function and spatiotemporal dynamics. Another
possibility is that ectopic recombination can lead to duplications,
deletions, or insertions, all of which cause genomic instability
(Economou-Pachnis and Tsichlis, 1985; Meischl and Roos,
1998; Meischl et al., 2000; Claverie-Martin et al., 2005; Burns
and Boeke, 2012; Tarallo et al., 2012; Li et al., 2013; Burns,
2017; Guo et al., 2018; Ardeljan et al., 2020; Rodriguez-
Martin et al., 2020). Further, while it was thought transposons
are active only in the germ line with exceptions in the
brain (Muotri et al., 2005; Goodier, 2014), next generation
sequencing has demonstrated that retrotransposons can be
reactivated in somatic tissues under pathological conditions
(Hancks and Kazazian, 2016).

Reports of TE mobilization are not just confined to humans
(Bourque et al., 2018). Mus musculus, Danio rerio, Drosophila
melanogaster, Escherichia coli, and Arabidopsis thaliana (Huang
et al., 2012; Moschetti et al., 2020; Chang et al., 2022), among
other widely studied organisms, are known to have TE activity
with both detrimental and beneficial functions. However, some
TE functions have arisen uniquely for certain species over the
course of evolution. Adaptive immunity, a crucial function
that arose through TE co-option, is restricted in its species
distribution (Mitra et al., 2013; Morales Poole et al., 2017).

In mammals, DNA transposons are generally not active,
excepting a few species (Mitra et al., 2013; Gallus et al.,
2015). In humans, DNA transposons occupy almost 3% of
the genome and are inert and fossilized (Lander et al., 2001).
By comparison, retroelements are more active in normal
physiology. Out of 500,000 copies of L1, the only autonomously
active Class I TE, around 100 are active in humans, and are
associated with 124 disease-causing insertions (Hancks and
Kazazian, 2012). L1 contains two open reading frames that
encode ORF1p and ORF2p, both of which are required for

retrotransposition. In addition to its own retrotransposition,
ORF2p-encoded reverse transcriptase can also be hijacked
by other RNAs in trans (e.g., SINEs-Alu) to complete their
retrotransposition activity (Stenz, 2021). These retroelements are
controlled by the host at multiple stages of the transcription cycle,
through transcriptional repression, RNA degradation, and other
mechanisms (Bourque et al., 2018).

Since DNA transposons are not endogenously active in
humans, their dysregulated activity is not known to be associated
with disease; as retroelements are active, their disease associations
are much clearer. Hemophilia was the first human disease
shown to be caused by a de novo L1 insertion (Kazazian et al.,
1988). Since this initial report, studies have elucidated similar
disease-causing roles for retrotransposons in a wide range of
disorders. For example, ORF1p has RNA chaperone activities
(Martin, 2010), and its expression has been documented in
various cancers. In specific, L1 integration into the adenomatous
polyposis coli (APC) gene stratifies with colon cancer, and
demethylation of a LINE promoter causes constitutive activation
of the MET protein in bladder cancer (Ogino et al., 2008; Wolff
et al., 2010). Further, L1 elements can evade genomic DNA
methylation, enabling them to contribute new L1 insertions
(Burns and Boeke, 2012; Hancks and Kazazian, 2016; Burns, 2017;
Rodriguez-Martin et al., 2020). Moreover, a wide spectrum of
neurodegenerative diseases also involve TEs (Saleh et al., 2019;
Tam et al., 2019).

Despite their dangerous effects when unchecked, several TEs
have become co-opted into the human genome over time.
One explanation for the gradual loss of deleterious activity is
that TEs were modified during domestication and lost their
ability to autonomously transpose. In fact, several retroviruses
have been repurposed into protein-coding genes and small
RNAs (Figure 2A), providing important cellular functions.
There are many examples of TE co-option and domestication,
a few of which we present below. (i) Retrovirus-derived
sequences modulate genetic circuits in embryonic development
(Gerdes et al., 2016; Chuong, 2018). ERV gag-pol functions
as regulators during placental development (Fu et al., 2019;
Figure 2B). (ii) ERVs provide transcription regulatory regions
for interferon genes. (iii) L1 retroelement mobilization in the
brain is thought to diversify neuronal cell populations (Muotri
et al., 2005; Coufal et al., 2009; Baillie et al., 2011). (iv) The
neuronal gene arc, derived from gag proteins of the Ty3/gypsy
retrotransposon, mediates synaptic plasticity (Pastuzyn et al.,
2018; Figure 2C). (v) TEs affect the expression of genes at
both transcriptional and post-transcriptional levels by providing
alternative promoters or small RNAs (Chuong et al., 2016;
Petri et al., 2019). (vi) TEs provide cis-regulatory sequences,
which alter gene expression by acting as enhancers (Bejerano
et al., 2006; Chuong et al., 2013, 2016), providing transcription
factor binding sites (Wang et al., 2007; Sundaram et al., 2014;
Ito et al., 2017), or acting as insulators (Bourque et al., 2008;
Figure 2D). (vii) RAGs, derived from the protoRAG DNA
transposon, catalyze V(D)J recombination in the vertebrate
immune system (Figure 2E; Hencken et al., 2012). This allows for
the generation of a vast repertoire of antigen binding receptors in
lymphocytes.
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FIGURE 1 | Mechanism of action of the two classes of transposons. Class I TEs mobilize through an RNA intermediate. They can be further divided into two
subcategories: non-LTRs (long terminal repeats) and LTRs/ERVs (endogenous retroviruses). (A) A prominent example of a non-LTR retrotransposon is LINE1/L1
(long interspersed nuclear element 1), which uses the process of target-primed reverse transcription carried out by the self-encoded proteins ORF1p and ORF2p.
This process involves a nick in the target DNA by an endonuclease followed by reverse transcription and integration, both of which are enabled by the enzymatic
activities of ORF2p. (B) ERV and LTR retrotransposons are flanked by LTRs and utilize a double-stranded DNA intermediate (dsDNA) prior to integration into the
target site. Class II TEs require excision of genomic DNA with the help of self-encoded transposases. Subsequently, transposases help insert the excised DNA into a
target site. (C) DNA transposons excise at the TIR, which is subsequently inserted as dsDNA in the target site. (D) Helitrons transpose by the rolling circle
mechanism, involving strand invasion and DNA replication, without excision of the donor transposon DNA.

DNA TRANSPOSONS: A SUBSTRATE
FOR THE EVOLUTION OF VERTEBRATE
ADAPTIVE IMMUNITY

The appearance of V(D)J recombination in jawed vertebrates
was a pathbreaking step in the evolution of the adaptive
immune system (Jones and Gellert, 2004; Cooper and Alder,
2006). Crystallography and electron microscopy studies suggest
that the transposase enzyme is the evolutionary progenitor
of RAG1 and RAG2 (Liu et al., 2019). Functionally, RAG
recombinases initiate V(D)J recombination in developing
lymphocytes by generating DNA double stranded breaks
(DSBs) at Recombination Signal Sequences (RSSs) (Schatz and
Swanson, 2011), which are thought to have evolved from
the terminal inverted repeats (TIRs) of Transib transposons
(Huang et al., 2016). During V(D)J recombination, the 12
RSS and 23 RSS pair into a synaptic complex with RAG,
which catalyzes nick formation at the RSSs and enables DSB
formation (van Gent et al., 1996). Further, the endonuclease
activity of RAG1/RAG2 utilizes RNase H-mediated trans-
esterification chemistry that is shared with transposases. Such
structural comparisons between DNA transposons and the V(D)J
recombination machinery are summarized in Figure 3. Notably,
unlike the cut-and-paste mechanism of DNA transposition,
V(D)J recombination circularizes the ends of the excised
segments in the signal joint to protect the genome against
hazardous insertions.

Transib and protoRAG from Branchiostoma belcheri
(common Lancelet) (Huang et al., 2016) are considered to be
the two most promising RAG TE precursor candidates. Based
on structural and functional analysis, Transib is an ancient
evolutionary ancestor to RAGs, while protoRAG is a proximal
ancestor with more features in common with RAG. While
Transib and protoRAG both contain TIRs that are similar to
RSSs, only protoRAG genes are homologous to both RAG1

and RAG2 and encode proteins with structural and functional
similarities to vertebrate RAG.

REGULATION OF V(D)J
RECOMBINATION

One of the drawbacks of the generation of a large repertoire of
lymphocyte receptors with small energy investment in germline
coding capacity is the generation of DNA DSBs. Therefore, to
safeguard the genome and ensure that recombination is tightly
restricted by cell type and developmental stage, multiple layers
of DNA repair and regulation have evolved. In this section, we
review important mechanisms that have evolved to regulate the
activity of recombinases to preserve genomic integrity in adaptive
immune system function.

One key characteristic of RAG function is its highly ordered
catalysis. V(D)J recombination of immunoglobulin and T cell
receptor (TCR) genes during B and T cell development requires
specific recognition of the 12/23 asymmetric RSS by the RAG1
endonuclease. The RAG2 protein assists RAG1 in DNA binding
and cleavage (Liu et al., 2019). Since there are often many
V, D, and J domains to choose from, permutation of the
V(D)J sequences results in diverse B and T cell receptors.
These newly rearranged receptors then facilitate negative and
positive selection (Klein et al., 2014). The elegant orchestration
of these highly regulated processes culminates in a mature
immune repertoire.

Complete antigen receptor production involves two sequential
gene segment rearrangements, one for each receptor chain
locus. The immunoglobulin heavy chain and TCR β-chain
loci are the first to be assembled in pre-B-cells and double
negative thymocytes, respectively. Assembly occurs serially, with
D to J rearrangement followed by V to DJ rearrangement.
Following these steps, recombination of the immunoglobulin
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FIGURE 2 | Examples of beneficial TE functions that arose through co-option. (A) Beneficial TE functions can be broadly classified into three categories: introducing
new gene functions, regulating existing functions, or downregulating negative functions. (i) New gene functions are typically introduced through co-option of TEs,
repurposing natural cut/paste or copy/paste activities, which can result in new beneficial functions. (ii) Altered spatiotemporal gene expression occurs through
insertion or modification of cis-regulatory elements, which can introduce binding sites for transcription and regulatory factors. (iii) Downregulation of deleterious genes
can be achieved at transcriptional and post-transcriptional levels through small RNA hybridization and degradation of specific targets. (B) Upregulation of ERVs
during embryonic development provides cis and trans elements for the expression of genes involved in pluripotency. (C) The Arc protein, derived from the gag
protein of retrotransposons, forms capsid-like structures that deliver mRNA during neuronal communication. (D) TEs regulate the expression of neighboring genes in
various ways (i) by acting as enhancers, (ii) by modulating splicing junctions, and (iii) by functioning as promoters. (E) RAG1 and RAG2, thought to be derived from
TEs, mediate V(D)J recombination. This process generates the diverse repertoire of antigen receptors in immune cells.

light chain and TCR α-chain loci is initiated. The highly ordered
nature of recombination events creates important checkpoints
in lymphocyte development to identify the formation of non-
functional receptors. DNA cleavage by RAG recombinases is
also regulated by chromatin structure, trans factors, the spatial
localization of the antigen receptor loci, and transcription
factors. Cis elements, such as promoters and enhancers,
precisely direct transcription of V(D)J loci by interacting with

transcription factors. Enhancers and promoters are so essential
in this process that their deletion causes a complete block
in recombination events and a loss of germline transcription.
Further, transcriptional control restricts the expression of RAGs
to the progenitor stages of B and T cell development, thereby
ensuring that V(D)J recombination occurs solely in developing B
and T lymphocytes (Gellert, 2002; Krangel, 2003; Schlissel, 2003;
Del Blanco et al., 2011).
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FIGURE 3 | Parallel mechanisms of DNA transposition and V(D)J recombination. (A) Self-encoded transposases excise a DNA transposon, including flanking
terminal inverted repeats (TIRs). Subsequently, the transposon inserts into a new DNA sequence. The excision site must now be repaired through host DNA repair
machinery. (B) In V(D)J recombination, V, D, and J segments are separated by intervening recombination signal sequences (RSSs) with similarity to transposons
TIRs. RAG1/RAG2 recognize the RSS using the 12–23 rule, enabling cleavage of the intervening segment. The two ends of DNA that are separated (D and J ends as
shown here) are subsequently joined through end processing and NHEJ to form the signal and coding joint.

DNA TRANSPOSASE PRECEDES
RECOMBINATION ACTIVATION GENE
RECOMBINASE: STRUCTURAL AND
FUNCTIONAL JUSTIFICATIONS

The dominant hypothesis for RAG evolution explains the origin
of adaptive immunity through the domestication and co-option
of the protoRAG transposon. This hypothesis gained support
from converging lines of evidence, including the in vitro ability
of RAGs to mediate efficient transposition of RSS-flanked
DNA insertions (Agrawal et al., 1998; Hiom et al., 1998).
Structurally, the ProtoRAG DNA transposon contains BbRAG1L
(homologous to RAG1) and BbRAG2L (homologous to RAG2).
RAG1 contains several key domains, including an N-terminal
RING/Zn finger, nonamer binding domain, and a catalytic core
(Kim et al., 2015). BbRAG1L retains sequence similarity with the
core domain of RAG1 (Carmona and Schatz, 2017). Importantly,
the nonamer binding domain of RAG replaced the general DNA-
binding domain of BbRAG1L (Zhang et al., 2019), suggesting
that as the transposon was co-opted its function was gradually
constrained. Vertebrate RAG2 is composed of a core domain (six
Kelch beta-stranded motifs that together form a beta-propeller),
an acid hinge, and a plant homeodomain (PHD) finger (Carmona
and Schatz, 2017). BbRAG2L retains some similarity to the core
domain but not the PHD finger of RAG2. The PHD confers
the novel ability to read histone post-translational modifications
to regulate gene expression (Jain et al., 2020), explaining the
increased regulation of vertebrate RAG2. Structural comparisons
cannot be complete without a discussion of substrates, and in
fact it was the similarity between TIRs flanking DNA transposons
and RSSs that prompted Tonegawa et al. to initially propose
that RAGs originated by TE domestication (Sakano et al., 1979;
Tonegawa, 1983; Fugmann, 2010; Huang et al., 2016). A good
visualization of structural comparisons between protoRAG and
RAG can be found in Zhang et al. (2019).

In addition to structural parallels, functional parallels exist
between the two machineries. A key functional similarity between
protoRAG and RAG is their end product (Huang et al., 2016).
The cleaved TIR ends that are generated from protoRAG-
induced DNA cleavage can undergo transposition or be joined
together to form structures resembling the signal joints formed
during V(D)J recombination. The non-TIR ends generated by
the same mechanism resemble the coding joints formed during
V(D)J recombination (Carmona and Schatz, 2017). Analysis
of functional conservation lends further support to the notion
that the co-option of protoRAG has added restrictions on
the typically deleterious effects of unchecked transposition
(Etchegaray et al., 2021). In particular, RAG-specific coupled
cleavage activity, adherence to the 12/23 rule, and suppressed
transposition, all impose restraints on the full extent of RAG
action in vertebrate adaptive immunity (Zhang et al., 2019).
These descriptions of structural and functional similarities, and
the tighter regulation of RAG function, highlight that the
evolutionary process of co-option was involved in the vertebrate
acquisition of V(D)J recombination.

DNA REPAIR IN V(D)J RECOMBINATION
AND TRANSPOSITION: HOW ARE THEY
SIMILAR?

Since the core functionality of transposition and RAG-
mediated recombination depends on the generation of (often
double-stranded) chromosomal breaks, DNA repair mechanisms
are essential at the excision site (Schlissel et al., 1993;
Hedges and Deininger, 2007; Helmink and Sleckman, 2012).
Transposon-induced breaks and RAG-induced breaks are
different regarding how each is repaired; there are two
pathways responsible for the repair of transposon-induced
breaks, but only one pathway for the repair of RAG-induced
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breaks (Izsvak et al., 2004; Munoz-Lopez and Garcia-Perez,
2010). Transposons have two options for DNA repair: (i) non-
homologous end joining (NHEJ), which closes DSBs without
great specificity, and (ii) homologous recombination (HR), which
typically copies information present on the sister chromatid to
fill the break (Figure 4A). In case either of these mechanisms
is inhibited, the other can usually take its place. In contrast, the
RAG machinery relies exclusively on NHEJ to repair DSBs (Lee
et al., 2004; Figure 4B). This reliance on NHEJ facilitates the
generation of a large assortment of B and T cell receptors. Use of
the HR machinery would dampen this diversity. Irrespective of
the cause of DSBs, both transposons and RAGs rely on the host’s
repair pathways to fix these breaks (Izsvak et al., 2004).

In greater detail, NHEJ typically involves DNA-dependent
protein kinase (DNA-PK), DNA ligase IV, and X-ray repair
cross-complementing protein 4 (XRCC4) (Drouet et al., 2005).
DNA-PK is composed of a catalytic subunit (PKcs) and a
Ku heterodimer that binds specifically to free DNA ends
(Gottlieb and Jackson, 1993). Once the heterodimer binds to
a DSB, it recruits other protein factors crucial for NHEJ.
These factors subsequently phosphorylate various proteins in
the NHEJ pathway, some of which are involved in the stability
of the DNA complex, and others in end processing. DNA end
processing occurs by various proteins depending on the nature
of the break. In the case of lymphocytes, and therefore relevant
to the RAG machinery, terminal deoxynucleotidyl transferase
(Tdt) and the Artemis endonuclease add/remove nucleotides
from DNA ends (Davis and Chen, 2013). Once end processing
is complete, DNA ligase IV and XRCC4 (a scaffold protein)
seal the breaks. Specific to the RAG machinery, these proteins
operate by joining coding and signal ends; XRCC4 is strictly

required for coding end joining, but signal end joining can
proceed without it in some cases (Roy et al., 2012). Often,
the steps are flexible and depend on the nature of the DSB,
although the recruitment of the Ku heterodimer is a crucial
first step (Helmink and Sleckman, 2012; Davis and Chen,
2013).

To repair breaks caused by DNA transposons, HR is also an
option. HR strongly relies on Rad51 for appropriate functioning.
This process involves trimming the DSB to a 3’ overhang, after
which Rad51 binds to the DNA, in a process termed pre-
synapsis. Pre-synapsis is followed by synapsis, during which
junctions form, eventually yielding a D-loop intermediate. From
here, pathways diverge as to how the strands are processed.
However, all routes use a template (typically a sister chromatid
or homologous chromosome) to “refill” the DSB (Li and Heyer,
2008; Shrivastav et al., 2008).

Since transposon-induced DSBs can be repaired using either
NHEJ or HR, a decision must be made on which pathway to
use. Between different transposons, differences exist regarding
how each one prefers to close DSBs. For example, the Sleeping
Beauty transposon excision site is repaired using NHEJ factors
(including Ku) and ataxia-telangiectasia mutated (ATM) (a
protein kinase with roles in DSB signaling). HR is used
to close the break only in the absence of both Ku and
ATM (Izsvak et al., 2004; Brandsma and Gent, 2012). Another
common transposon is Drosophila P-elements, whose excision
site strongly prefers HR for DSB repair (Gloor et al., 2000). This
process is probably to avoid deleterious and/or non-templated
mutations in the germline. NHEJ remains the dominant process
by which breaks are repaired in mammalian somatic cells
(Ochmann and Ivics, 2021).

FIGURE 4 | Mechanisms of double-strand break repair for DNA transposition and V(D)J recombination. DNA repair occurs to seal double stranded breaks (DSBs)
created in the donor strand due to DNA transposition and V(D)J recombination. (A) In DNA transposition, once the transposon has been excised, the DSB can be
repaired using either NHEJ or HR, with preference generally given to NHEJ. (i) In NHEJ, the process starts with the binding of the Ku 70/80 heterodimer to the broken
DNA ends. A phosphorylation cascade initiated by DNA PKcs results in the recruitment of various proteins in the NHEJ pathway that are responsible for both the
stability of the DNA complex and end processing. Finally, DNA ligase IV and XRCC4 act to seal the breaks in the DNA strand. (ii) In the case of HR, a sister chromatid
or homologous chromosome serves as a template to repair the DSB. The process is contingent on the DNA-binding activity of Rad51. After replication based on the
template strand, the donor DNA reseals. (B) In V(D)J recombination, the DSB must be repaired using NHEJ. The NHEJ process in V(D)J recombination generally
involves the same components as are used in the repair of DSBs caused by transposons. Proteins specific to the V(D)J recombination process are highlighted.
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Just as a balance must be obtained between TE activity and
genomic integrity, a balance must be struck between NHEJ and
HR to repair DSBs. There are two reasons why NHEJ might
be preferred over HR for non-co-opted TEs: (1) generation
of increased diversity through error-prone joining, and (2) an
increase in efficiency. Since NHEJ is inherently non-templated,
there is potential for greater genetic diversity (Weterings and
Chen, 2008), thereby greater functional diversity in the target
sequence after insertion. Since transposons are evolutionarily
thought of as parasitic, increased TE diversity maximizes their
survival fitness. NHEJ also places greater emphasis on speed
(Mao et al., 2008), trading quality for rapid sealing of potentially
deleterious DSBs.

Since the priority for co-opted TEs (potentially including
Drosophila P-elements that function in the fly germ line) is non-
hazardous TE function, co-opted TEs have special requirements
to preserve DNA. These TEs would only be selected for if
the insertions were beneficial and did not damage the host,
underscoring the preference for HR over NHEJ in situations
of exaptation. It would be interesting to further dissect the
possibility of the co-option of P-elements in Drosophila germline.

However, the emergence of adaptive immunity further
complicates the discussion (Cui and Meek, 2007). The critical
need for an increased diversity of antigen receptors prompted
the proto-RAG induced DSBs to choose NHEJ over HR.
Mechanistically, one dominant hypothesis for why NHEJ is
exclusively used is that the post-cleavage complex (composed
of RAG proteins, DNA signal ends, and blunt DNA hairpin
coding ends) shepherds the generated signal ends. The RAG
proteins disallow signal ends from accessing the HR pathway by
holding on to the ends rather than allowing for their early release
(Lee et al., 2004). Further, V(D)J recombination is restricted to
the G1 phase of the cell cycle, as the RAG2 enzyme that is
necessary for the process is destroyed during the G1-S transition
(Li et al., 1996). While NHEJ can happen during the G1 phase
(Takata et al., 1998), HR cannot occur efficiently during G1 due
to the lack of a sister chromatid (Johnson and Jasin, 2000). As
such, only NHEJ is observed to repair V(D)J recombination-
induced breaks.

UNANSWERED QUESTIONS AND
FUTURE DIRECTIONS

In searching for whether and how V(D)J recombination
retains structural and functional parallels to TEs, we looked
at other processes necessary for adaptive immunity that
involve DNA modifications: N/P-nucleotide addition (addition of
palindromic sequences and non-genomic nucleotide sequences
in the junctions between V, D and J gene segments of the
immunoglobulins and T cells), somatic hypermutation, and
isotype class switching. For each process, we reviewed the nature
of the DNA modification to determine whether it might have
originated from TE co-option.

Based on current knowledge, it appears that none of these
processes have a proximal TE comparison. N/P-nucleotide
addition generates diversity in joining regions between different

domains of B-cell and T-cell receptors (Meier and Lewis, 1993;
Repasky et al., 2004). This process involves NHEJ DNA repair
through the action of Tdt, but no excision and repair steps
directly resembling TEs (Repasky et al., 2004; Sandor et al.,
2004). For further details on how N/P-nucleotide addition
generates diversity see Srivastava and Robins (2012). Somatic
hypermutation involves several factors that form a complex
responsible for single nucleotide replacement to generate
antibody diversity. This process, initiated by the targeting of
cytidine deaminase to newly rearranged genes, does not involve
excision and repair analogous to V(D)J recombination or TE
action (Pilzecker and Jacobs, 2019). Isotype class switching is
the process by which IgG, IgE, and IgA antibodies can be
produced by mature B-cells. This process requires excision and
repair, with the intervening constant domains deleted, which is
quite similar to V(D)J recombination (Stavnezer et al., 2008).
However, the complex structurally lacks specific recognition sites
flanking the constant domains, and endonucleases perform a
large portion of the cutting, splicing, and repair activity (Xu
et al., 2014). As such, it is conceivable that V(D)J recombination
stands on its own, uniquely having TE predecessors in basal
organisms that were co-opted in jawed vertebrates over the
course of evolution.

In writing this review, we have encountered numerous
questions spanning several domains that warrant further study.
These selected questions may prompt future studies on TEs and
immunological processes:

• TEs are known to have a bias (Cutter et al., 2005; Green
et al., 2012). Does the sequence of a TE contain a code for
bias? If so, how can it be manipulated?

• As discussed previously, there are several protein
components involved in appropriate NHEJ DSB
repair. Which of these components are necessary and/or
sufficient for DNA repair after transposition and V(D)J
recombination? Does manipulation of these components
influence the efficiency or functioning of TEs or RAGs?

• Can we repurpose transposase inhibitors as solutions to
RAG-related immune dysregulation? More specifically,
can we repurpose HIV reverse transcriptase inhibitors as
therapeutic solutions to lymphoblastic leukemia and related
cancers?

• Experimentally, is it possible to determine the conditions
under which TEs will preferentially repair DSBs using HR
over NHEJ?

• p53, a trans-repressor of transposons (Tiwari et al., 2017,
2018, 2020), regulates the DNA double strand break
response. How might p53 and DNA transposons have
interacted during the co-option of RAG recombinase?

• As this review has mentioned, studying how V(D)J
recombination has arisen from TE co-option suggests that
RAG predecessors have become increasingly regulated in
the course of evolution. How can this knowledge of possible
RAG origins be applied to human health and disease?

To this final question, our knowledge of TEs may be
harnessed for therapeutic potential. For instance, many
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diseases result from RAG mutations. In cases of immune
deficiency, TEs synthetically targeted to the RAG locus might
restore RAG recombinase function, thereby ameliorating
immune system deficits. Another value in considering
these lines of questioning is their contribution to basic
science. Generating transgenic organisms has long been time-
consuming and fraught with failure. Understanding and
manipulating the insertion biases of TEs can generate tools
to increase the efficiency of generating transgenic organisms.
Collectively, the study of how TEs and immunological
processes intersect sheds light on many unexplored areas
and offers exciting possibilities for advancing basic science
and therapeutics.
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