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Human activities can globally modify natural ecosystems determining ecological,
demographic and range perturbations for several animal species. These changes can
jeopardize native gene pools in different ways, leading either to genetic homogenization,
or conversely, to the split into genetically divergent demes. In the past decades,
most European wild boar (Sus scrofa) populations were heavily managed by humans.
Anthropic manipulations have strongly affected also Italian populations through heavy
hunting, translocations and reintroductions that might have deeply modified their
original gene pools. In this study, exploiting the availability of the well-mapped porcine
genome, we applied genomic tools to explore genome-wide variability in Italian wild
boar populations, investigate their genetic structure and detect signatures of possible
introgression from domestic pigs and non-native wild boar. Genomic data from 134
wild boar sampled in six areas of peninsular Italy and in Sardinia were gathered using
the Illumina Porcine SNP60 BeadChip (60k Single Nucleotide Polymorphisms – SNPs)
and compared with reference genotypes from European specimens and from domestic
pigs (both commercial and Italian local breeds), using multivariate and maximum-
likelihood approaches. Pairwise FST values, multivariate analysis and assignment
procedures indicated that Italian populations were highly differentiated from all the
other analyzed European wild boar populations. Overall, a lower heterozygosity was
found in the Italian population than in the other European regions. The most diverging
populations in Castelporziano Presidential Estate and Maremma Regional Park can
be the result of long-lasting isolation, reduced population size and genetic drift.
Conversely, an unexpected similarity was found among Apennine populations, even
at high distances. Signatures of introgression from both non-Italian wild boar and
domestic breeds were very limited. To summarize, we successfully applied genome-
wide procedures to explore, for the first time, the genomic diversity of Italian wild boar,
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demonstrating that they represent a strongly heterogeneous assemblage of demes
with different demographic and manipulation histories. Nonetheless, our results suggest
that a native component of genomic variation is predominant over exogenous ones in
most populations.

Keywords: Sus scrofa, SNPs, endemic diversity, genetic structure, admixture, genomic introgression,
translocation, wild pigs

INTRODUCTION

Animal species can be strongly managed by humans across
their natural ranges, being harvested, translocated or sometimes
admixed with alien or domesticated forms. All these direct
actions can amplify the effects of other ecological perturbations,
such as habitat or landscape modifications, contributing to
jeopardizing the gene pool of wild populations and their adaptive
capacities (Allendorf et al., 2008; Laikre et al., 2010; Boyce et al.,
2011; Apollonio et al., 2014).

In Europe, large mammals, that have survived as
metapopulations after experiencing demographic and range
fluctuations, mainly due to human impacts, are recently
spreading to form larger continuous populations (Apollonio
et al., 2010a; Chapron et al., 2014; Martin et al., 2020). This
apparent new range continuity may underlie genetic gaps which
are the legacy of a past fragmentation and that are tricky to be
detected. On the opposite, admixture between species, subspecies
or populations can take place at suture zones or at release sites,
leading to a local increase of genetic variation and to a potential
loss of local adaptations.

In the past decades, most genetic investigations to identify
cryptic population structure or local admixture in different
species were conducted relying on limited sets of autosomal
microsatellites (Frantz et al., 2006; Dellicour et al., 2011;
Hindrikson et al., 2013; Olano-Marin et al., 2014; Biosa et al.,
2015; Silva et al., 2018). However, the genomic era has provided
new tools and a higher diagnostic power to detect gene
pool differences and admixture signals, creating the conditions
to disentangle complicated patterns due to high levels of
human disturbance.

The European wild boar (Sus scrofa) population is a good
example of the aforementioned changes: after a strong decline
resulting in a fragmented and scattered distribution, it is
now covering almost continuously all the continent up to
the Baltic countries (Apollonio et al., 2010a) with a steadily
increasing trend (Massei et al., 2015). In Italy, the species went
through demographic declines and range contractions until
the first half of the XX century (Ghigi, 1911, 1950), followed
by a continuous re-expansion (Apollonio et al., 1988) that
was sustained by socio-economic changes, leading to habitat
recovery, and by the release of captive-reared or imported
individuals (Apollonio et al., 2010b). After a progressive increase,
the wild boar today represents one of the most invasive
and impacting animals in the Country, likely due also to
its genetic make-up which might have played a crucial role
in its adaptation to a variety of different environmental and
ecological contexts.

During the major range contraction, Italian wild boar survived
only in the coastal Tyrrhenian region of Central Italy (named
Maremma), in a few central-southern areas of the peninsula,
where a relict isolated population persisted within a formerly
royal hunting estate that became presidential estate since 1948
(Castelporziano), and in the island of Sardinia (Ghigi, 1911).

Morphometric analyses induced De Beaux and Festa (1927) to
propose the Maremma and Sardinian populations as belonging
to two different endemic subspecies, respectively, Sus scrofa
majori and Sus scrofa meridionalis. However, the population
recovery, which mostly followed the World War II, involved
both the natural spread from existing populations (like the
recolonization of the Western Alps from France) and artificial
processes such as reintroductions and population restocking
(Monaco et al., 2007; Apollonio et al., 2010b). These latter
operations implied a massive release of boars from different
sources, that possibly admixed with local wild stocks. In the
assessment of the status of Eurasian Sus scrofa populations dated
1993, the IUCN Specialist Group reported the Castelporziano
population as likely representing the “only surviving pure-bred
native stock” in Italy (Oliver et al., 1993). The first genetic studies
on Italian wild boar, based on mitochondrial DNA (mtDNA)
sequencing, revealed the existence of an endemic Italian mtDNA
lineage, occurring both in historical and modern samples (Randi,
1995; Larson et al., 2005; Scandura et al., 2008, 2009), that ended
up to be isolated in Italy during glacial periods (Vilaça et al.,
2014; Maselli et al., 2016; Khederzadeh et al., 2019). Further
studies confirmed the occurrence of native genetic variation
also in autosomal regions, although detecting signatures of
local admixture with non-native stocks (Vernesi et al., 2003;
Scandura et al., 2008; Veličković et al., 2016). Nonetheless, this
information was only partial and not conclusive, since these
studies were based on a limited number of molecular markers
and the number of sampled populations and individuals analyzed
were poorly representative of the variety of situations that are
likely to occur in the Italian peninsula. More refined details
were obtained on the Sardinian populations, which, despite the
intricate pattern of genetic structure and local introgression from
non-native wild boar and domestic pigs, still retain a meaningful
proportion of endemic diversity, well-distinguishing them from
the related peninsular conspecifics (Scandura et al., 2008, 2009,
2011; Iacolina et al., 2016).

However, all studies so far conducted on this species in
Italy have experienced the same difficulties to untangle local
effects of human manipulation, including the admixture among
individuals from multiple wild and domestic sources (Vernesi
et al., 2003; Scandura et al., 2011; Veličković et al., 2016;
Canu et al., 2018).
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The advent of genome-wide single nucleotide polymorphisms
(SNPs) can offer practical solutions. Such markers have, indeed,
the advantage to be the most widespread source of standing
variation at both neutral and non-neutral genomic regions, and
being bi-allelic, they permit to easily gather fully comparable data,
which can be also merged with already published and publicly
available datasets.

Additionally, the development of genome-wide genotyping
assays in the domestic pig (Porcine SNP60 BeadChip; Ramos
et al., 2009) and the availability of comprehensive genome data
for this model species provide a powerful tool to explore genomic
variation in wild boar populations and to investigate population
history, as well as patterns of differentiation and introgression
(Goedbloed et al., 2013a,b; Manunza et al., 2013; Iacolina et al.,
2016; Alexandri et al., 2017; Smyser et al., 2020).

Therefore, in this study we genotyped a set of Italian wild
boar collected from different peninsular and insular areas using
the Porcine SNP60 BeadChip, which were then combined and
analyzed together with publicly available genotypes of domestic
pigs and wild boar from several European populations. We
built an exhaustive genome-wide dataset including a good
representation of the overall genomic variation so far available
for the Italian population, which was analyzed by multivariate
and maximum-likelihood approaches to specifically: (i) assess
levels of genomic variation in the Italian wild boar populations;
(ii) detect local population structure and quantify the extent of
genomic differentiation; (iii) investigate the genomic make-up of
the most differentiated local populations, distinguishing between
multiple sources of standing variation (native vs. non-native wild
boar, and commercial vs. local domestic pig breeds).

MATERIALS AND METHODS

Sampling, Genotyping and Dataset
Building
We analyzed 98 wild boar (WB) individuals collected in six
administrative regions spanning the Italian peninsula (Aosta
Valley, Liguria, Tuscany, Latium and Calabria, Figure 1).
Sampling areas differ in latitude, orography, habitat, human
density, and WB presence. Moreover, for comparative purposes
we included in the analyses 7 rural domestic pigs (DP) from the
same area in Calabria where WB were sampled.

DNA was extracted from muscular tissue samples using
the Qiagen DNAEasy Blood and Tissue kit (Qiagen Inc.,
Hilden, Germany) according to the manufacturer’s instructions,
quantified using the QubitTM Fluorometer (Invitrogen Thermo
Fisher Scientific, Waltham, MA, United States) and normalized
to a final concentration of 25–50 ng/µl.

DNA samples were genotyped using the Illumina Porcine
SNP60 BeadChip v2 (Illumina Inc., San Diego, CA, United States;
Ramos et al., 2009) at AIA1 and the results were combined
with 164 additional homologous WB genotypes, including 36
samples from the Italian populations of Sardinia and Tuscany
and 128 spanning most of the European distribution range. All

1www.aia.it

these additional individuals were previously analyzed in a study
focused on the Sardinian WB (Iacolina et al., 2016). A total of
103 porcine genotypes (56 from Italian local breeds – LocDP –
and 47 from commercial breeds – ComDP) previously analyzed
from Iacolina et al. (2016) and AIA were added to verify possible
genomic introgression into WB populations (Table 1).

An overall dataset of 372 individuals (262 WB and 110 DP,
Table 1) genotyped at 48,296 autosomal SNPs was thus obtained.

The number of available genotypes to be included in
the dataset was selected so as to limit bias in the analyses
introduced by unequal sample sizes. Based on previous studies
(Goedbloed et al., 2013b; Alexandri et al., 2017; Iacolina et al.,
2018), we grouped European (non-Italian) samples into four
macro-regions: Iberia (WIbe), Central-Western Europe (WCW),
Central-Eastern Europe (WCE), South-Eastern Europe (WSE,
Table 1).

Dataset Filtering
The initial dataset was processed for quality control and filtering
in the SNP & Variation Suite 8.0.1 (SVS, Golden Helix Inc.,
Bozeman, MT, United States) keeping only samples and loci
with high genotyping rates (>0.95), and checking for related
individuals through Identity By Descent (IBD) pairwise tests to
remove one individual per pair where IBD > 0.5. After data
filtering for quality and IBD, our dataset consisted of 258 WB,
134 from Italy and 124 from other European countries, and
109 DP from commercial and local breeds, giving a total of 367
individuals genotyped at 47,809 autosomal SNPs (Table 1).

This dataset (hereafter called 48K) was then pruned for linkage
disequilibrium (LD, r2 > 0.5 calculated along sliding windows
of 50 SNPs) to delve into overall population structure, leaving
30,218 SNPs (30K).

We further explored WB population structure and
composition. In PLINK 1.9 (Chang et al., 2015) we created
a dataset including all WB (n = 249) and another dataset
including only the Italian WB (n = 125) but excluding Aosta
Valley because of its genetic composition highlighted by the
first analyses (see section “Results”). Both datasets contained
SNPs with a minimum minor allele frequency (MAF) of 0.05, in
order to exclude rare alleles which can bias structure analysis, in
linkage (LE, r2 < 0.3, windows of 50 SNPs) and Hardy-Weinberg
equilibrium (HWE, p-value > 0.001), in order to safely make
inferences on neutral loci (Jungerius et al., 2005; Purcell et al.,
2007; Benestan et al., 2016), thus resulting in 13,218 SNPs (13K)
and 14,155 SNPs (14K), respectively.

Finally, specifically for migration analysis in TREEMIX (see
below), WB data were merged with 11 publicly available Sus
barbatus (SB), used as outgroup, genotyped with the same SNP
chip (Yang et al., 2017). We kept only SNPs with no missing
values that were pruned for high LD (r2 > 0.5) in PLINK (see
Supplementary Material).

Genetic Variation and Differentiation
Genetic variability in our data (48K) was investigated by
computing with PLINK observed (Ho) and expected (He)
heterozygosity, minor allele frequency (MAF), and number of
polymorphic loci for each geographic region and separately
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FIGURE 1 | Wild boar historical and current distribution in Italy and sampling areas. The historical range refers to the minimum extension reached at the beginning
(Ghigi, 1911; Lepri, 1911) and at the middle of the XX century (Ghigi, 1950), which was followed by a progressive expansion leading to the current distribution.

for each Italian WB population. All available genotypes were
used, aiming at verifying the real genomic variability within
the sampled populations, regardless of the cause of their
similarities/dissimilarities (i.e., including possible hybrids).

Subsequently, we assessed levels of genetic differentiation
within the Italian populations, and between Italian samples
and reference WB and DP populations using the 30K dataset
filtered for high LD. Among the different parameters that can be
estimated for this purpose, we selected two indexes, a fixation
index (pairwise FST) and a measure of allelic differentiation
(Jost’s D, Jost, 2008), as they can be considered complementary
in comparing allele distributions between populations (see Jost
et al., 2018). We used ARLEQUIN v3.5 (Excoffier and Lischer,
2010) for pairwise FST calculations and the R package mmod
(Winter, 2012) for Jost’s D. With the same dataset, we also
explored the overall genetic structure in our samples by a
Principal Component Analysis (PCA) performed in SVS, using
all WB and DP together and only WB genotypes.

Then, we focused on the Italian WB, using the 14K dataset
and running a Discriminant Analysis of Principal Components

(DAPC) in the R package adegenet v2.1.1 (Jombart, 2008;
Jombart and Ahmed, 2011); the function find.clusters was used
to identify the most likely grouping and a cross-validation
approach allowed to determine the best number of Principal
Components (PCs) to retain. Furthermore, we evaluated the
contribution of different populations and groupings to the overall
genomic differentiation among Italian populations performing
an Analysis of Molecular Variance (AMOVA; Excoffier et al.,
1992) using the R package poppr v2.8.5 (Kamvar et al.,
2014, 2015) and the method implemented in R package ade4
(Dray and Dufour, 2007).

Admixture Analyses
Once obtained an overview of the overall genetic variation and
local differentiation among Italian samples, we investigated the
possible impact of anthropogenic drivers on the observed genetic
make-up. Indeed, hybridization with DPs or artificial gene
flow with distant populations (i.e., translocations) can generate
admixed WB populations, either geographically localized or more
widespread in case of high levels of human-mediated gene flow;
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TABLE 1 | List of Italian and European wild boar (WB) and domestic pig (DP)
samples used in the study.

Population Code Macro-
region

Wild/
Domestic

N Source

Castelporziano WCpo WIta Wild 19 This study

Liguria WLig WIta Wild 20 This study

Pollino N.P. WCal WIta Wild 36 This study

Aosta Valley WVao WIta Wild 9 This study

Maremma WMar WIta Wild 14 This study

North Tuscany WTos WIta Wild 13 Iacolina et al., 2016

Sardinia WSar – Wild 23 Iacolina et al., 2016

Total Italian WB 134

Spain WSpa WIbe Wild 7 Iacolina et al., 2016

Portugal Wpor WIbe Wild 10 Iacolina et al., 2016

France Wfra WCW Wild 15 Iacolina et al., 2016

Luxembourg Wlux WCW Wild 4 Iacolina et al., 2016

Germany WGer WCW Wild 5 Iacolina et al., 2016

Netherlands Wned WCW Wild 15 Iacolina et al., 2016

Greece Wgre WSE Wild 9 Iacolina et al., 2016

Bulgaria WBul WSE Wild 5 Iacolina et al., 2016

Croatia Wcro WCE Wild 16 Iacolina et al., 2016

Serbia Wser WCE Wild 4 Iacolina et al., 2016

Slovenia WSln WCE Wild 13 Iacolina et al., 2016

Slovakia WSlk WCE Wild 5 Iacolina et al., 2016

Poland Wpol WCE Wild 9 Iacolina et al., 2016

Hungary WHun WCE Wild 11 Iacolina et al., 2016

Greece Wgre WSE Wild 9 Iacolina et al., 2016

Bulgaria WBul WSE Wild 5 Iacolina et al., 2016

Total European WB 128

Casertana DCas LocDP Domestic 10 Iacolina et al., 2016

Nera Siciliana DNsi LocDP Domestic 10 Iacolina et al., 2016

Mora Romagnola DMro LocDP Domestic 8 Iacolina et al., 2016

Calabrese DCal LocDP Domestic 10 Iacolina et al., 2016

Cinta Senese DCse LocDP Domestic 10 Iacolina et al., 2016

Sardinia rural DSar LocDP Domestic 8 Iacolina et al., 2016

Pollino rural DPol LocDP Domestic 7 This study

Berkshire DBer ComDP Domestic 10 Iacolina et al., 2016

Duroc DDur ComDP Domestic 10 Iacolina et al., 2016

Large White DLwh ComDP Domestic 8 Iacolina et al., 2016

Yorkshire DYor ComDP Domestic 9 Iacolina et al., 2016

Pietrain DPie ComDP Domestic 10 Iacolina et al., 2016

Total DP 110

For each population the adopted code, geographic macro-region (WIta, Italian
peninsula; WIbe, Iberian peninsula; WCW, Central-Western Europe; WCE, Central
Eastern Europe; WSE, South Eastern Europe) or pig group (LocDP, local breed;
ComDP, commercial breed), sample size (N) and source are reported.

this latter case can lead to “genetic homogenization” (sensu
Olden et al., 2004).

A specific analysis to ascertain possible differences in
the local levels of admixture was performed using the
software ADMIXTURE v1.2.3 (Alexander et al., 2009).
We ran the program with the WB + DP dataset (30K)
for K ranging from 1 to 30 and determined the best K
according to the lowest cross-validation error (Alexander
et al., 2009). At the best K we checked for domestic and

extra-Italian genetic components in the Italian populations.
As a signature of genomic admixture might appear also
in the reference DP breeds, we run the cluster analysis
twice, with and without DP, to ascertain whether possible
past hybridization events were masked by the variegated
nature of some DPs.

Since the interpretation of ADMIXTURE results can be
cumbersome (Lawson et al., 2018), on account of the available
historical information, we considered the possibility that past
introductions of European WB (from multiple sources) to the
Italian peninsula had produced a composite genomic make-up,
not associable to any of the reference populations. Therefore,
we further verified the origin and composition of the Italian
populations putatively carrying signs of past admixtures with
European WB (see section “Admixture Analyses” in “Results”)
using two different approaches. Specifically, we performed a
PCA with adegenet on the WB 13K dataset, leaving out the
populations that were suspected to be admixed; we subsequently
projected their coordinates on the first two axis (i.e., PC1
and PC2) with the function suprow in ade4. This approach
eliminates the possible bias in PCA calculation introduced by
admixed populations and allows to evaluate their actual origin
according to their projection on the PCs estimated from the
reference populations (McVean, 2009; see also Smyser et al.,
2020).

We also tested for past gene flow from other European
populations into one or more Italian WB populations with
the program TREEMIX (Pickrell and Pritchard, 2012). The
approach used in TREEMIX consists first in drawing a maximum
likelihood (ML) tree, and then to add migration edges to verify
if the data are better explained by a network-like model. As the
program corrects for LD by dividing the whole dataset into blocks
of k SNPs (where k is specified by the user), using PLINK we first
computed the LD decay as the distance at which r2 < 0.2 (option
-r2), and then we obtained the mean number of SNPs in our
dataset within that distance with a custom R script. We rooted the
ML tree with no migration events on WSE (see Supplementary
Material for details) and built the ML tree sampling blocks of
200 SNPs (option -k) and activating the -global option for a
global rearrangement after adding all the populations to the tree.
We then started to add migration events from 1 to 21 (option
-m), supplying at each run the tree with n-1 migration edges
(option -g) to save time. We calculated the variance explained
by each model thus obtained with the function get_f that comes
with the program in an R script; after identifying in m = 5 the
knee point (i.e., where the increment of the variance explained
started to be less pronounced) we ran 200 bootstrap replicates
(option -bootstrap), and then we used the functions provided by
Zecca et al. (2020) to visualize the best ML tree and to calculate
the migration support (MS) and the extended migration support
(MSE) across our replicates for the migration events involving
the Italian populations (see Zecca et al., 2020 for the description
of the indexes). We finally calculated the f4 statistic with the
program fourpop, included in TREEMIX, to formally test for
admixture. It requires four populations (A, B, C, and D) and
tests if the tree topology (A, B; C, D) is correct; if the Z score
is significantly different from zero it means that the history of
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the four populations is not strictly tree-like (Reich et al., 2009;
Pickrell and Pritchard, 2012).

RESULTS

Genomic Diversity
Minor allele frequencies were comparable among the Italian
populations (ranging from 0.147 in WCpo to 0.193 in WVao)
and appeared slightly lower in Italy than in other European
geographic regions (0.169 vs. 0.186–0.194). The number of
polymorphic loci varied from the lowest value observed in
WCpo (n = 18,544) to the highest in WCal (n = 28,401)
for Italy, whereas in the rest of Europe it ranged between
n = 26,944 in WIbe and n = 28,598 in WCE (Table 2). Overall,
heterozygosity levels were generally higher in DP than in WB.
In particular, observed and expected heterozygosity differed
significantly, especially in WB, with all Italian populations
showing a remarkable deficit of heterozygotes (Wilcoxon test
p-value < < 0.001), which was less pronounced in the other WB
populations. The lowest values of Ho were observed in WLig and
WCpo (0.135 and 0.139, respectively), whilst WSar showed the
highest value (0.215, see Table 2).

Genomic Differentiation
The exploratory PCA clearly separated WB from DP along
PC1, and the Italian WB from the European populations along
PC2 (Figure 2A). Individuals from the Aosta Valley population
(WVao, North Italy) clearly clustered with the European

TABLE 2 | Genetic diversity in Italian wild boar populations compared to the
reference European macro-regions and domestic pig groups (local and
commercial breeds).

Population N MAF (SD) NP Ho He

Wild Boar
(WB)

WCpo 19 0.147 (0.241) 18,544 0.139 0.312

WLig 20 0.169 (0.204) 27,079 0.135 0.314

WCal 36 0.173 (0.189) 28,401 0.190 0.282

WMar 14 0.161 (0.229) 21,776 0.198 0.276

WTos 13 0.165 (0.206) 24,440 0.173 0.224

WVao 9 0.193 (0.238) 27,852 0.210 0.258

WSar 23 0.173 (0.236) 22,973 0.215 0.263

WIta 111 0.169 (0.185) 27,697 0.186 0.212

WIbe 16 0.193 (0.228) 26,944 0.189 0.207

WCW 36 0.186 (0.203) 28,056 0.194 0.221

WCE 58 0.186 (0.200) 28,598 0.206 0.223

WSE 14 0.194 (0.216) 27,895 0.201 0.219

Domestic
Pig (DP)

LocDP 62 0.264 (0.193) 40,791 0.250 0.314

ComDP 47 0.306 (0.203) 42,868 0.267 0.343

For each population, sample size (N), minor allele frequency (MAF) and
corresponding standard deviation (SD), number of polymorphic sites (NP),
mean observed heterozygosity (Ho) and mean expected heterozygosity (He) are
reported. Areas/breeds corresponding to the population codes are reported in
Table 1.Values referring to European macro-regions and domestic pig groups are
in bold.

FIGURE 2 | Principal component analysis (PCA) computed using wild boar
(WB) and domestic pig (DP) 30K genotypes. Plots show relative genomic
distances among sampled individuals in (A) Italian WB, European WB, and
local and commercial DP breeds and (B) Italian and European WB only.

populations (see also ADMIXTURE results). When DP were
removed from the analyses, WB population structure became
clearer (Figure 2B): the most diverging Italian populations were
WCpo and WSar. WMar, WTos, WLig, and WCal clustered in
close proximity, but WTos was split into two separate groups,
corresponding, respectively, to the western (coastal) and eastern
(Apennine) areas in Figure 1. These results are also mirrored by
pairwise FST (Figure 3A) and Jost’s D (Supplementary Table 1)
values, as well as by the DAPC restricted to the Italian populations
(WVao excluded, Figure 3B). The most supported partition of the
Italian populations on the basis of BIC values corresponded to
four discrete groups (Supplementary Figures 1A,B), specifically:
WSar (group 1), WMar (group 2), WCpo (group 3), and WLig-
WTos-WCal (group 4). Coherently, the AMOVA showed that
this partition was associated with the highest percentage of
variance between groups explaining 15.26% of the total variance
in the Italian sample (p < 0.001), more than double compared
to the percentage of variance between populations within groups
(6.88%, Supplementary Table 2).

Admixture Analyses
A contribution to clarify the nature of the identified groupings
arose from the admixture analyses. ADMIXTURE results
depicted a variegated picture of the Italian populations. The
lowest cross validation error was reached at K = 19 but local
minima were observed at K = 12 and K = 16 (Figure 4B). At
theseK values, WVao clearly clustered with the western European
populations, consistently with its geographical proximity. In
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FIGURE 3 | Genomic differentiation among Italian wild boar populations expressed by (A) Pairwise FST heatmap and (B) Discriminant Analysis of Principal
Components (DAPC). WVao population was excluded from the DAPC because of its clear assignment to non-Italian populations (Figure 2). The most supported
partition is into four groups: WCpo, WMar, WSar and a joint group including WLig, WTos, and WCal. WCpo and WSar represent the populations with the highest
genomic divergence.

agreement with PCA and FST results, starting from K = 12, the
other Italian populations were roughly assigned each to their
own clusters, except the group WLig-WCal-WTos (Figure 4A).
This group formed a single cluster at K = 12 and was split into
two clusters at higher K values. Striking signals of introgression
from domestic pigs or from other European populations did not
emerged in the Italian samples, with a few exceptions only in
WCal and some individuals from WLig and WMar.

Based on the results above and on historical information,
we hypothesized that WLig, WTos, and WCal appeared to be
similar while diverging from other Italian populations, because
they were carrying a unique genomic assemblage influenced
by a past introgression from non-Italian gene pools (see
section “Discussion”). The projected PCA confirmed, indeed, a
much higher proximity of the three tested Italian populations
to the European clusters (with respect to Figure 2) and a
central position in the plots, providing an indirect support to
the hypothesis of past admixture events (Figure 5). Like in
the previous PCA and DAPC, most of the genotypes from
WLig, WTos, and WCal overlapped, confirming their genomic
homogeneity despite their geographical location.

The ML tree obtained in TREEMIX (Figure 6 and see also
Supplementary Figure 2) confirms the overall WB structure.
With no migration edges, the ML tree explained 97.7% of
the variance. The long branches of WCpo, WMar, and WSar
confirmed their high genomic differentiation from the other
Italian populations, under the effect of drift. WVao fell in a
separate branch and appeared as a sister group to WCW. With
five migration edges the percentage of variance explained by
the model increased to 99.7%. According to the MS and MSE

(Supplementary Tables 3, 4), both WSar and WVao received
a migration from populations of central Italy, whereas WCal
showed a signature of immigration from the WMar-WCpo
lineage. The f4 statistic confirmed that WVao is admixed with the
Italian populations (Z > 2, Supplementary Table 5).

DISCUSSION

In the present study, we explored, for the first time, the genome-
wide diversity of the Italian WB, analyzing a set of populations
sampled from several locations in the Italian peninsula and
Sardinia. We expected that the present overall levels of
diversity and the genomic make-up of the Italian populations
were largely influenced by their demographic histories and
human manipulations.

The progressive decline and range contraction of the species
in Italy that occurred between the end of the XIX and the
beginning of the XX century caused its fragmentation into
small isolated demes (Ghigi, 1917, 1950). These nuclei have
lasted for decades until the more recent re-expansion, that
started after World War II, and have likely suffered bottlenecks
accompanied by a loss of genetic variation and changes in allele
frequencies. This historical process might explain why the levels
of genomic diversity are lower in Italy than in most European
populations (Table 2), particularly those recorded in areas that
suffered prolonged and strong isolation (e.g., Presidential Estate
of Castelporziano).

However, the translocations of wild animals and the release of
captive specimens that occurred in the last 60 years, have taken
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FIGURE 4 | Admixture analyses in wild boar (WB) populations conducted using the software ADMIXTURE. (A) Membership proportions of every genotyped
individual to each of the K inferred clusters are shown as different colors. Reference European WB and domestic pig (DP) genotypes are included to test for genomic
introgression in Italian WB. Histograms are reported for the best K values indicated by the cross-validation error (B). Arrows in (B) indicate local minima. WB and DP
population codes are shown in Table 1.

place with no homogeneity throughout the country and have
determined a human-mediated gene flow that can be responsible
for a fairly higher variation in some zones, where individuals of
different origins may have mixed up.

Indeed, for a long time the Italian legislation allowed the
release of wild boar for restocking or reintroduction. Yet, since
the end of 1980s a ban was introduced, first in single regions and
then, only in 2015, at national level.

Genomic Diversity and Differentiation of
Italian Wild Boar Populations
Our results on genome-wide heterozygosity levels in WB and
DP were consistent with findings from other studies, based
on the analyses of similar types and number of genomic
markers (Goedbloed et al., 2013b; Alexandri et al., 2017; Iacolina
et al., 2018), showing a considerable heterogeneity within
and among groups.

However, the low levels of polymorphism we observed
in Italian WB, even though comparable with genome-wide
values from other European WB populations, should be treated
with caution due to the possible ascertainment bias from the
applied SNP array. The majority of the SNPs were indeed
discovered in commercial pig breeds, and only a pooled set
of 31 Central European WB was included in the discovery

panel (Ramos et al., 2009). Thus, polymorphisms of the Italian
population are likely to be under-represented in the SNPs chip.

The most diverging population turned out to be the one
living in the Castelporziano Presidential Estate (WCpo), which
was deemed in the past the only pure indigenous nucleus of
Italian WB remaining in the peninsula (Oliver et al., 1993).
Such a pronounced divergence of this population can be
the result of long-lasting isolation and limited effective size,
which have likely shaped its allele frequencies by genetic drift.
A similar interpretation can be given for WB living in the
Maremma Regional Park (WMar), which also showed a certain
level of divergence from the other Italian populations, yet
lower than WCpo. Similar results had been already found
by Vernesi et al. (2003), who included these two populations
in their analyses based on microsatellite markers, detecting
a certain level of differentiation that was interpreted as a
possible expression of two native lineages. These populations
were also included in previous phylogeographic analyses
(Scandura et al., 2008; Vilaça et al., 2014), which detected
a high proportion of endemic diversity both at autosomal
microsatellite and mitochondrial D-loop regions. Specifically,
Castelporziano samples showed exclusively mtDNA haplotypes
belonging to the Italian lineage E2, which were also detected
in museum specimens of Maremma WB (Larson et al., 2005).
The observed divergence of WCpo and WMar might thus,
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FIGURE 5 | Principal component analysis (PCA) of Italian and European wild boar genotypes. PCA was first calculated excluding the three Italian populations of
WLig, WTos, and WCal, whose genotypes were added afterward by projecting their a posteriori estimated coordinates. Plots refer to the following pairwise
combinations: PC1 vs. PC2 (A), PC1 vs. PC3 (B), and PC2 vs. PC3 (C).

FIGURE 6 | Maximum likelihood tree obtained with TREEMIX describing the relationships among the analyzed wild boar populations sampled in Italy and in the rest
of Europe.

in principle, be determined also by a different level of
introgression with respect to other (Apennine) populations.
The artificial selection for “native morphotypes” that was
carried out in the Maremma Natural Park in the past

might have contributed to the lower introgression of the
individuals sampled in this area, while the isolation of
WCpo should have prevented any genetic contamination (see
Supplementary Material).
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All analyses confirmed the high genomic differentiation of
Sardinian WB from all mainland populations. This situation
had been already described by Iacolina et al. (2016), who were
also able to detect a major proximity with the mainland Italy
populations by analyzing a larger sample of Sardinian specimens.
This was attributed to a likely shared ancestry, but also at least in
part to a recent genetic introgression from mainland populations,
due to translocations for hunting purposes. Our results are also
coherent with recent findings described by Petrelli et al. (2022)
who investigated population genomic and selection patterns in
WB living on the island.

The uniqueness of Castelporziano and Sardinian WB had
been detected also in a study using microsatellite loci to assess
the differentiation among European WB populations (Veličković
et al., 2016). Both populations showed significant evidences of
past bottlenecks, thus calling into question the main role of
genetic drift in determining their differentiation.

The Aosta Valley population clearly showed a different make-
up from the other Italian samples. It clustered with Central-
Western European populations (WCW), which is consistent
with an origin by range expansion from neighboring areas, as
known for the Piedmont population (De Beaux and Festa, 1927;
Monaco et al., 2007) and suggested by spatial information on
the recolonization process in the region (Peracino and Bassano,
1995). This result, however, contrasts with the presumed release
of captive hybrid stocks in the region (Apollonio et al., 2010b).
Our genomic data thus suggest that natural processes (i.e.,
expansion from surrounding areas) have prevailed over human-
mediated causes (i.e., releases).

An outstanding unexpected outcome of our study was
represented by the mismatch between genetic and spatial
distance we found. Wild boar from WTos, WLig, and WCal
populations showed indeed a high similarity in all the
analyses conducted, despite their geographical position. These
populations are likely to represent the most manipulated
WB populations in our sample. Their genomic composition
could be affected by a number of human interventions
(reintroductions, translocations) that have mixed up and spread
an admixed gene pool, appearing as a separate cluster in
ADMIXTURE analyses. This interpretation is confirmed by
the central position of these three WB populations in the
projected PCA (Figure 5). Within the WTos population, we
found a different genetic composition between localities: a
group of individuals sampled in the San Rossore estate, on
the Tyrrhenian coast, slightly deviated from the other WTos
individuals from eastern Tuscany and also from the nearby
WLig population, showing similarities with individuals from
WMar (Figures 2, 5). According to its history, this coastal
nucleus has probably a higher proportion of native variation
than the other individuals sampled in northern Tuscany (see
Supplementary Material).

Genomic Introgression in Italian Wild
Boar Populations
Despite human intervention has to be invoked to interpret the
observed patterns of genomic variation in Italy, the detected

signals of admixture with DP and non-Italian WB in the sampled
populations were lower than expected based on prior knowledge
(Oliver et al., 1993; Apollonio et al., 2010b). Both ADMIXTURE
and f3 analyses did not show relevant signals of introgression
from external sources into the Italian populations, contrasting
with patterns emerging from other studies based on microsatellite
and MC1R analyses (Vernesi et al., 2003; Scandura et al., 2008,
2011; Canu et al., 2016).

Despite close proximity of WTos, WLig, and WCal to
European populations in the projected PCA, only weak
signatures of introgression from other European macro-
areas were detected by ADMIXTURE and f3 analyses. Two
possible explanations could be proposed for our findings: (1)
introgression from multiple European WB and DP populations
was relevant but it occurred many generations ago and was
followed by a local divergence of the admixed gene pool
from all parental populations; (2) releases of WB of foreign
origin or WB × DP hybrids took place locally but involved
a limited number of individuals, which were outnumbered by
translocated individuals of Italian origin and/or by naturally
expanding native populations (so non-native alleles were diluted
by the native ones). In the former situation, the novel
gene pool would appear as a different exclusive cluster in
the ADMIXTURE analyses (see Figure 4A, K = 12), as it
would not be possible to track back the contribution of the
parental populations. In the second case, the prevailing native
origin of the individuals would explain the observed lack of
introgression; however, the origin by translocation from multiple
areas in Italy would still generate an admixed and unique
gene pool.

Historical information available for our sampling areas (see
Supplementary Material) and results of f3 analyses support
the second line of interpretation, considering the expansion
of remnant native populations sustained by human restocking
with native boars, as main drivers of WB recovery in the
peninsula. Both past and more recent translocations in fact,
although partly undocumented, were carried out using free-
ranging or captive animals from central Italy, that derived in
large part from the Tyrrhenian populations (like Castelporziano
estate or Maremma).

The low rate of introgression from DP detected in this study
is consistent with previous findings. Using the same set of
markers, no hybrid was indeed detected by Iacolina et al. (2018)
in a subsample of 19 Italian WB (from Tuscany) among those
considered in the present study, whereas 3 hybrids out of 25
individuals (12%) were detected in a random sample of Sardinian
WB. Conversely, using a multiple-marker approach (coat color,
MC1R, SNPs), (Petrelli et al., 2022) found a complete overlap
among the genomes of Southern Italian known hybrids with
those of the sympatric WB, likely as a result of deep introgression
into the latter.

Interestingly, though in the present work signals of
human-caused introgression were not expected for WSar,
as the used Sardinian genotypes had been selected among
the less introgressed individuals detected in a previous
study focused on the insular population (Iacolina et al.,
2016), f3 analyses detected a migration from mainland
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WB to Sardinia (Figure 6), thus supporting a recent
gene flow.

Evidence of a recent introgression from mainland
Italy, as well as from DPs, had been also detected by
microsatellite analyses (Scandura et al., 2011), while reciprocal
introgression with Sardinian DPs was proven by the analysis
of allelic variation at nuclear genes (MC1R and NR6A1,
Canu et al., 2016).

CONCLUSION

Despite the prevalent opinion among hunters and managers
depicted the native Italian WB as almost genetically extinct,
the present study reveals that Italian populations may still
maintain a high proportion of native genomic diversity. The
strong divergence that Italian populations showed from all other
European WB and from DPs, as well as the occurrence of
an exclusive mtDNA lineage, are clear indicators of a retained
endemic variation.

Our results suggest that the impact of long-term natural
processes (such as Quaternary climatic fluctuations, range
expansions, natural selection), as well as the prolonged
geographic isolation of Italy determined by the Alps and
the Mediterranean Sea, might still affect the phylogeographic
structure of a number of species, prevailing over the effects of
human manipulations in shaping WB genetic diversity patterns.
Similar results were recently found in a genomic study on
managed populations of red-legged partridges (Alectoris rufa,
Forcina et al., 2021).

The most preserved Italian WB populations appear to
occur along the central Tyrrhenian coast of the peninsula
(WCpo and WMar). The high genomic differentiation of these
WB populations, together with their morphometric uniqueness
(Apollonio et al., 1988; Tinelli et al., 1999), would call for a
re-evaluation of the subspecies Sus scrofa majori (De Beaux
and Festa, 1927), as recently already proposed for other
highly differentiated Italian mammal populations, such as
the Mesola red deer (Cervus elaphus italicus; Zachos et al.,
2014), the Italian roe deer (Capreolus capreolus italicus; Randi
et al., 2004), and the Apennine wolf (Canis lupus italicus;
Montana et al., 2017).

However, the Italian WB populations we investigated, yet
contributing to the overall genetic variation of the Italian
WB, represent only part of it. Populations of north-eastern
Italy, not included in the present study, showed a different
composition from those living in central Italy, revealing higher
similarities with eastern European populations (Scandura et al.,
2008). Similarly, in southern Italy, a highly detectable rate
of introgression from DPs was found in WB living north to
WCal population (Cilento area), where a high morphological
variation was also described (Fulgione et al., 2016; Petrelli
et al., 2022). Unfortunately, no genetic nor phenotypical
information is instead available for reintroduced WB that are
spreading across Sicily, as well as for other areas of more
recent recolonization.

It is therefore evident that the Italian WB population
represents a strongly heterogeneous assemblage of demes with
different histories and genomic make-up, determined by a
combination of human-mediated factors such as reintroductions,
translocations, restocking activities with farmed (sometimes
hybrid) individuals, range fragmentation and demographic
events, resulting in a genomic heterogeneity much higher than
in any other European region.

Evidence from the present work clearly acknowledges the
endemic value of Italian WB native genomic diversity. Thus our
findings strongly recommend its conservation (a) by preventing
further admixture among WB populations, strictly regulating WB
farming and permanently banning wild boar import (as currently
regulated due to sanitary reasons, i.e., African Swine Fever
prevention), as well as (b) by minimizing domestic introgression
by carefully preventing the interaction with pig breeds, especially
when raised in a semi-natural state, and with released captive wild
boar stocks, possibly deliberately introgressed by domestic swine.

Future studies based on whole genome sequencing could
contribute to definitively clarifying the evolutionary histories
and divergence timing of Italian WB populations through the
analyses of demographic trajectories and past gene flow patterns
with other European wild populations and domestic breeds.
Paleogenomic and ancient DNA approaches could additionally
help assess how much of the current diversity in WB local
stocks can be ascribed to a native gene pool comparing modern
and historical samples (i.e., museum specimens or stuffed
trophies) dated before 1950, thus prior to most human-mediated
gene flow.

Moreover whole-genome and transcriptome analyses could
help identify further evidences of genetic differentiation and
adaptive variation in Italian WB, which could not be detected
by the Porcine SNP60 chip due to limitations in its development
(not including Italian animals). Such additional genomic regions
could allow us to investigate possible selection or adaptive
patterns in Italian WB populations, potentially hosting genes
responsible for their local adaptation to the Mediterranean
environment, and, theoretically, for their high phenotypic
divergence. Finally, the availability of entire genomes could also
shed lights on the long-term evolutionary potential of Italian
WB populations, their ability to actively face the ongoing climate
changes and their future ecological role in the Anthropocene.
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