AUTHOR=Zhai Tianlin , Huang Longyang TITLE=Linking MSPA and Circuit Theory to Identify the Spatial Range of Ecological Networks and Its Priority Areas for Conservation and Restoration in Urban Agglomeration JOURNAL=Frontiers in Ecology and Evolution VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2022.828979 DOI=10.3389/fevo.2022.828979 ISSN=2296-701X ABSTRACT=

Rapid urbanization has led to the continuous degradation of natural ecological space within large urban agglomerations, triggering landscape fragmentation and habitat loss, which poses a great threat to regional ecological sustainability. Ecological networks (ENs) are a comprehensive control scheme to protect regional ecological sustainability. However, in the current research about ENs, most studies can only determine the orientation of ecological corridors but not their specific spatial range. This leads to the fact that ENs can only be abstract concepts composed of points and lines, and cannot be implemented into concrete spatial planning. In this study, taking the Shandong Peninsula urban agglomeration as an example, ecological sources were identified by morphological spatial pattern analysis (MSPA) and habitat quality assessment, ecological resistance surfaces were constructed based on habitat risk assessment (HRA). And circuit theory was used to simulate the ecosystem processes in heterogeneous landscapes via by calculating the cumulative current value and cumulative current recovery value, to identify the spatial range and key areas of ecological corridors. The results showed that the ENs includes 6,263.73 km2 of ecological sources, 12,136.61 km2 of ecological corridors, 283.61 km2 of pinch points and 347.51 km2 of barriers. Specifically, ecological sources were distributed in a spatial pattern of five groups, and ecological corridors were short and dense within groups, long in distance and narrow in width between groups. The pinch points and barriers mainly exist in the ecological corridors connecting the inner and outer parts of the central city and in the inter-group corridors. In order to ensure the connectivity and effectiveness of ENs, it is necessary to focus on the pinch points and barriers and include them in the priority areas for protection and restoration. Based on MSPA and circuit theory, this study provides a new method for determining the spatial range of ENs and the specific locations of priority areas, and provides a feasible solution for the concrete implementation of ENs to achieve effective ecological protection and restoration.