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The genetic diversity in the naked carp (Gymnocypris przewalskii) of China is threatened
by climate change, human activities, as well as natural factors, eliciting conservation
concerns. To explore the genetic aspects of G. przewalskii, the genetic diversity, genetic
structure, population differentiation, and historical demography of 566 representative
individuals from seven geographically distinct ranges of Qinghai Lake were evaluated
by mitochondrial DNA cytochrome oxidase subunit I (COI) and D-loop sequences.
Estimates of genetic parameters showed that the seven populations of G. przewalskii
had high levels of haplotype diversity (0.50243–0.94620) and low levels of nucleotide
diversity (0.00079–0.00624). Haplotype genealogy indicated there was no obvious
phylogenetic pattern between haplotypes. Both markers denoted the absence of
population genetic structure [the genetic differentiation coefficient F-statistics (Fst) < 0]
and the presence of high genetic flow (COI: 0.9731–1.0441; D-loop: 0.9480–1.0398).
The mismatch between the distribution and neutrality tests supported the evidence of
population expansion, which occurred during the late middle Pleistocene [COI: 0.36–
0.108 MYA (Million Years Ago); D-loop: 0.497–0.165 MYA]. Furthermore, this work
illustrated two simple, reliable, and inexpensive molecular markers for analysis of genetic
diversity, while the sensitivity of the mitochondrial D-loop region as a reflection of genetic
diversity in G. przewalskii is higher than that of the COI gene.

Keywords: Gymnocypris przewalskii, genetic diversity, mitochondrial DNA, habitat fragmentation, germplasm
protection

INTRODUCTION

Naked Carp (Gymnocypris przewalskii) is a cyprinid fish that mainly inhabits Qinghai Lake of
China at an altitude of 3,000–4,000 m (Wu et al., 1964; Tong et al., 2015). This species, the
unique dominant population in Qinghai Lake, is an endemic and ecologically important fish in the
Northwest Plateau ecosystem (Zhang and Zhang, 1963; Wang and Xie, 2004; Wang et al., 2014).
Particularly, G. przewalskii migrates into freshwater tributaries connected with Qinghai Lake to
spawn from April to July every year. Then, they migrate back to Qinghai Lake after the reproductive
behavior. However, much less is known about the specific migratory routes and whether there are
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genetic differences between different geographical populations
of G. przewalskii. Due to overfishing, dam construction, water
pollution, and environmental factors like climate, the wild
populations of G. przewalskii have declined dramatically in size,
and the utilization of this resource has far exceeded appropriate
limits (He, 2008; Luo, 2015). In response, and to evaluate this
resource, the government has developed a series of initiatives,
including the artificial restoration of migratory channels and
fishery stocking (Shi, 2008). Such a stocking may evaluate
resources, but may also result in negative impacts, such as
loss of genetic diversity and fitness, even causing genetic risk
(Anneville et al., 2015). Thus, additional research is needed
on the status of germplasm resources. Currently, research on
G. przewalskii mainly focused on fingerling breeding technology,
otolith marking, gene cloning, expression, and so on (Cao et al.,
2009; Feng et al., 2019, 2021; Min et al., 2020; Wu et al., 2020;
Jiang et al., 2021). Unfortunately, relatively little is understood
about this species’ genetic characteristics (Shi, 2008).

China’s wildlife species account for approximately 11% of
the world, so strengthening China’s wildlife conservation is of
great significance to global biodiversity (Gong et al., 2020).
Genetic characterizations of natural populations are key to
providing a point of surveillance and conservation (Liu, 2004;
Zhang et al., 2015; Yan et al., 2020). Knowledge of the genetic
variation in natural populations and the implementation of
an efficient management plan based on genetic features are
important measures for its maintenance and recovery (Cross,
2015; Rômulo et al., 2018). Nevertheless, limited effort has been
made to monitor the genetic diversity of G. przewalskii on wild
populations in China. Therefore, it is necessary to assess the
genetic diversity of G. przewalskii to understand the conservation
status and develop effective protection measures.

According to present knowledge, early studies performed
a restriction fragment length polymorphism analysis in
G. przewalskii and reported high levels of genetic diversity
(Zhao et al., 2001; Qi, 2002; Xu et al., 2003). Similarly, based
on the mitochondrial D-loop region, Zhang et al. (2013) found
that G. przewalskii possessed high levels of genetic diversity
and a certain degree of differentiation among G. przewalskii
in different geographical populations (Qinghai Lake, Crooke
Lake, Ganzi River, and Cao Dalian). The analyses of amplified
fragment length polymorphism and simple sequence repeat
further demonstrated a high level of genetic diversity, which
may be related to the origin and evolution of G. przewalskii
and the specificity of the plateau environment (Jiang et al.,
2009; Wang et al., 2015). Nonetheless, some researchers
reported that there existed quite a weak genetic differentiation
between the Heima River, Buha River, and Shaliu River
populations and quite a strong gene exchange among the
three populations, simultaneously (Zhang et al., 2005; Chen
et al., 2006). This point of view was also supported by Zhao
et al. (2006) who found evidence for the absence of extensive
population structure and a low level of diversity. These
issues addressed in previous studies obtained discrepant or
even paradoxical results. Hence, it is urgently needed to
have a better understanding of the genetic characteristics of
G. przewalskii.

Fish mitochondrial DNA has a simple structure, small
molecular weight, high conservation, and maternal inheritance.
The genetic diversity of fish can be more reliably analyzed
by comparing base sequence composition and analyzing
mutation sites (Perez-Enriquez et al., 1999). Mitochondrial
cytochrome oxidase subunit I (COI) is a relatively conservative
gene sequence with a moderate evolution rate. It is one
of the most thoroughly studied mitochondrial genes and
is ideal as a molecular marker (Sari et al., 2015). At the
same time, the D-loop control region has the characteristics
of rapid evolution and more genetic variation because of
no coding pressure, which is suitable for detecting the
genetic diversity within and between populations (Gatt et al.,
2000). In this study, the genetic diversity and population
differentiation of G. przewalskii from 7 different locations in
Qinghai Lake were evaluated based on the COI gene and
D-loop control region to provide a theoretical basis for their
resource protection.

MATERIALS AND METHODS

Materials
A total of 566 G. przewalskii individuals were collected
randomly from the Buha River Estuary (BHE), Yilang
Jian (YLJ), Heima River (HMR), Buha River (BHR),
Quanji River (QJR), Shaliu River (SLR), and Haergai River
(HeGR) from 2019 to 2020 (Table 1 and Figure 1), which
were representative. The detailed geographical positions
can be seen in Figure 1. These five rivers are the largest
tributaries connected with Qinghai Lake, where G. przewalskii
migrate to spawn annually, and the YLJ area is located
in the Qinghai Lake area, where G. przewalskii returns
after spawning. After the morphological identification
(Zhao et al., 2005), the caudal fins of each individual were
collected and preserved in anhydrous ethanol at room
temperature for later use.

DNA Extraction, Amplification, and
Sequencing of the Mitochondrial
Fragments
No more than 30 mg of each fin were used for genomic DNA
extraction using a genomic DNA extraction kit (TIANamp

TABLE 1 | Details for sampling sites and quantities of Gymnocypris przewalskii.

Locality GPS Abbreviation Numbers Tissues Date

Buha River 99.74◦E, 37.04◦N BHR 81 Caudal fin 2019-05

Heima River 99.77◦E, 36.73◦N HMR 80 Caudal fin 2019-07

Quanji River 99.89◦E, 37.24◦N QJR 80 Caudal fin 2020-07

Shaliu River 100.18◦E, 37.24◦N SLR 81 Caudal fin 2019-06

Haergai River 100.48◦E, 37.22◦N HeGR 83 Caudal fin 2020-08

Buha River
Mouth

99.88◦E, 36.95◦N BHE 82 Caudal fin 2019-08

Yilangjian 100.40◦E, 36.70◦N YLJ 79 Caudal fin 2020-06

Total 566
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FIGURE 1 | Sampling sites of Gymnocypris przewalskii.

Marine Animals DNA Kit, TIANGEN) in the laboratory.
The extracted DNA was verified by electrophoresis in 1%
agarose gel and then stored at -20◦C until use. The fragments
of the COI gene were amplified with primers L5956-COI
(5′-CACAAAGACATTGGCACCCT-3′) and H6855-COI (5′-
AGTCAGCTGAAKCTTTTAC-3′) (Miya and Nishida, 2000).
The fragments of the D-loop control region were amplified
with primers D-loop-F5 (5′-GGGATATGTCATCCTTTATGG-
3′) and D-loop-R5 (5′-GGGTTTGACAAGAATAACAGG-3′)

TABLE 2 | Nucleotide composition of G. przewalskii populations by two
mitochondrial markers.

Population A (%) T (%) C (%) G (%)

COI D-loop COI D-loop COI D-loop COI D-loop

HMR 24.44 31.12 32.89 31.71 24.11 22.35 18.56 14.83

BHR 24.43 31.12 32.89 31.72 24.12 22.34 18.56 14.81

YLJ 24.43 31.13 32.89 31.78 24.11 22.30 18.56 14.80

BHE 24.44 31.11 32.89 31.4 24.12 22.33 18.55 14.82

HeGR 24.43 31.11 32.89 31.76 24.11 22.32 18.57 14.82

SLR 24.43 31.11 32.89 31.74 24.11 22.32 18.57 14.83

QJR 24.44 31.12 32.90 31.70 24.11 22.37 18.55 14.82

Average 24.44 31.12 32.89 31.73 24.11 22.33 18.56 14.82

(Zhang et al., 2015). PCR analysis was performed using 25 µl
final volume containing 2 µl template DNA, 1.25 µl of upstream
and downstream primers, 12 µl of premix, and 8.5 µl of double-
distilled H2O. After an initial 5 min denaturing step at 94◦C, 35
cycles of amplification were performed at 94◦C for 10 s, annealing
for 10 s (COI 57◦C and D-loop 58◦C), elongation at 72◦C for 30
s, and a final extension at 72◦C for 10 min. The PCR products
were verified by 2% agarose gel electrophoresis. The purified PCR
products were sequenced at the Shanghai Yixin Biotechnology
Company (Shanghai, China).

Data Analysis
Nucleotide sequences obtained were aligned using Clustal X
2.0 with the default settings and manually examined (Larkin
et al., 2007). The base composition, genetic distance within and
between populations, variable sites, and parsimony-informative
sites were determined using the MEGA X (Kumar et al., 2018)
software. The phylogenetic neighbor-joining (NJ) tree was built
using the Kimura 2-parameters method with MEGA X, with
1,000 bootstrap replicates (Kumar et al., 2018). We compared
our COI sequences with Gymnocypris dobula (accession
number HQ198864.1), Gymnocypris namensis (accession
number HQ198865.1), Gymnocypris firmispinatus (accession
number MF122270.1), and Gymnocypris potanini (accession
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number MK716230.1), and compared our D-loop sequences
with G. dobula (accession number MK886318.1), G. namensis
(accession number MK886398.1), Gymnocypris waddellii
(accession number KY461279.1), and G. potanini (accession
number MG756690.1) that were downloaded from GenBank.
We used the COI sequence (accession number JX983283.1) and
D-loop sequence (accession number KX576711.1) of Cyprinus
carpio from GenBank as the outgroup. Additionally, the gene
flow (Nm) and genetic diversity parameters such as haplotype
number (h), haplotype diversity (Hd), and nucleotide diversity
(pi) were inferred using the program DnaSP v6.0 (Julio et al.,
2017) for downstream analyses. The relationships among the
samples were visualized using a haplotype network constructed
based on the Network 10.2 software (Bandelt et al., 1999).
The analysis of molecular variance (AMOVA) was determined
in Arlequin 3.5 (Laurent and Heidi, 2010). Furthermore,
the historical population expansion was examined using a
neutrality test and the mismatch distribution in DnaSP v6.0.
For the neutrality test, the values of Tajima’s D and Fu’s FS
were calculated (Tajima, 1989; Fu and Li, 1993). The timing
of possible population expansions (t) was calculated from the
relationship t = Tτ /2 µk, where T was the generation time, τ

was the mode of the mismatch distribution, µ was the mutation
rate per nucleotide, and k was the number of nucleotides of the
analyzed fragment (Rogers and Harpending, 1992). The time
of initial maturity for G. przewalskii was estimated to be 3–4
years. Here, we used 4 years as the generation time (Ministry of
Agriculture and Rural Affairs of the People’s Republic of China,
2003). We used a range of mutation rates (COI: 1–3% per million
years, D-loop: 3–10% per million years) (Donaldson and Wilson,
1999; Wang et al., 2013) and the value of τ was calculated using
Arlequin 3.5 (Laurent and Heidi, 2010).

RESULTS

Nucleotide Composition
After submitting the company’s sequencing results to the NCBI
database and editing for calibration, among the 566 individuals of
seven regional populations of G. przewalskii, the partial sequences
of the COI gene were 725 base pairs (bp), and the length of the
D-loop region was 611 bp. The A+T content was rich (57.33
and 62.85%, respectively) in the nucleotide composition of the
COI and D-loop sequences, and the D-loop region had the higher
A+T content compared to that in COI (Table 2).

For the COI gene, 17 haplotypes were identified. Among them,
only four haplotypes (Hap 1, Hap 2, Hap 5, and Hap 6) were
found in seven populations, and Hap1 was the most frequent one
(Table 3 and Figure 2). For the D-loop region, 66 haplotypes were
identified. Among them, eleven haplotypes were found in seven
populations, and Hap1 and Hap4 were the most frequent ones
(Table 3 and Figure 3).

Genetic Diversity
A total of 15 and 55 variable sites, including 8 and 38 parsimony
informative sites, were observed in the COI and D-loop region
sequences, respectively. The h, Hd, and Pi of the COI gene in

different populations ranged from 5 to 10, 0.50243 to 0.67184,
and 0.00079 to 0.00118, respectively (Table 3). Among them, the
QJR population had the highest h, Hd, and Pi (10, 0.67184, and
0.00118, respectively) (Table 3).

Additionally, the h, Hd, and Pi of the D-loop region in
different populations ranged from 23 to 31, 0.91790 to 0.94620,
and 0.00509 to 0.00632, respectively (Table 3). A closer inspection
of the table showed the h, Hd, and Pi, for each population
based on the D-loop region, were higher than those based
on the COI gene. Besides, the Nm values based on the
COI and D-loop sequence ranged from 0.9731 to 1.0441 and
0.9480 to 1.0398, respectively (Table 4). The gene flow between
the HMR population and the QJR population was minimal
based on two markers.

Population Differentiation and Structure
The construction of the COI haplotype network (Figure 2) was
based on 17 different haplotypes. Some haplotypes were shared
by different groups, while others were exclusive to one group. For
example, Hap 1, Hap 2, Hap 5, and Hap 6 were shared by all seven
populations. On the contrary, Hap 3 was exclusive to the BHR
population, Hap 14 was exclusive to the QJR population, and
Hap 12 was exclusive to the HMR population. Many haplotypes
formed clusters around Hap 1, and Hap 1 appeared the most
frequently. Other haplotypes, except Hap 3, Hap 11, Hap 12, and
Hap 14, were all differentiated from Hap 1. It is inferred that Hap
1 was the initial haplotype, and there was no obvious phylogenetic
pattern between haplotypes.

The NJ tree was based on the COI marker, and the same
samples gave similar results (Figure 4). The results showed that
the haplotypes were divided into two branches with Hap 1 as
the axis and the other three small branches outside. It should be
noticed that G. dobula and G. namensis had the closest relation
with G. przewalskii. In addition, the genetic distance between
the haplotypes of G. przewalskii ranged from 0.00139 to 0.00698
based on the COI gene. The genetic distances between Hap
1, Hap 2, Hap 5, and other haplotypes were relatively small,
and the genetic distances between Hap 3, Hap 14, and Hap 12
were the farthest.

Turning now to the experimental evidence on the D-loop
region, the construction of the D-loop haplotype network
(Figure 3) was based on 66 different haplotypes. The 66
haplotypes were divided into 4 clusters: Group 1 centered around
Hap 17, Group 2 centered around Hap 8, Group 3 centered
around Hap 1, and Hap 57 as a single group. In addition, Hap
61, Hap 62, and Hap 63 were exclusive to the HMR population,
Hap 28 and Hap 31 were exclusive to the GJR population, and
Hap 20 was shared by the QJR and SLR population.

A ring for the NJ tree of the D-loop region was used for better
presentation. The NJ phylogenetic tree of the D-loop region
showed that the lineages of G. przewalskii were divided into
several single families and were not clustered according to each
region. It should be noticed that G. potanini and G. waddellii had
the closest relation with G. przewalskii (Figure 5). Furthermore,
the results of the sequence analysis based on the D-loop region
showed the genetic distance that spans between haplotypes was
small, ranging from 0 to 0.02831. Among them, the genetic
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TABLE 3 | Genetic diversity indices of G. przewalskii populations by two mitochondrial markers.

Population Sample size N h Hd Pi

COI D-loop COI D-loop COI D-loop COI D-loop

BHR 81 8 29 8 23 0.53179 0.91790 0.00092 0.00558

HMR 80 7 35 8 28 0.55063 0.94620 0.00094 0.00509

QJR 80 9 31 10 26 0.67184 0.93259 0.00118 0.00534

SLR 81 8 31 8 25 0.54259 0.93179 0.00091 0.00624

HeGR 83 6 32 7 31 0.53041 0.92418 0.00084 0.00598

BHE 82 5 27 6 24 0.54682 0.92472 0.00088 0.00600

YLJ 79 4 34 5 25 0.50243 0.92308 0.00079 0.00632

Total 566 15 55 17 66 0.55221 0.92822 0.00092 0.00578

N, number of variable sites; h, number of haplotypes; Hd, haplotype diversity; Pi, nucleotide diversity.

FIGURE 2 | Haplotype network of G. przewalskii based on COI gene. Each circle represents a haplotype and its size is proportional to haplotype frequency.
Numbers indicate the name of haplotypes and colors represent geographic locations.

distances between Hap 31 and Hap 61, Hap 28 and Hap 62, and
Hap 20 and Hap 63 were 0. The genetic distances between Hap 57
and Hap 53 as well as Hap 57 and Hap 13 were both the maximum
value of 0.02831. Hap 57 and Hap 53 were exclusive to the YLJ
population, while Hap 13 was shared by the HeGR, SLR, and
QJR populations.

The AMOVA revealed that most of the molecular variance
came from the within-population based on the two markers
(Table 5). The total variability observed among populations in
the COI and D-loop region sequences were –0.31 and –0.24,
respectively, whereas 100.31 and 100.24% of the variation were
found within populations, respectively. Moreover, the genetic
differentiation coefficient F-statistics (Fst) for both the mt DNA
molecular markers were negative values, which indicated that
the degree of genetic differentiation of G. przewalskii was not

high and there was no obvious genetic differentiation between
G. przewalskii populations (Table 5).

Historical Demography
The neutrality tests (Table 6) and mismatch distribution
(Figure 6) based on the COI gene supported the hypothesis
of population expansion of G. przewalskii. The Tajima’s D-test
and the Fu’s FS-test of COI gene showed negative values that
reached a significant level (total: P < 0.05, Table 6). Also, a
unimodal pattern was observed for all populations except the YLJ
population in the mismatch distribution analyses based on the
COI gene (Supplementary Figure 1). However, both the Tajima’s
D-test and the Fu’s FS-test of the D-loop region were negative,
with the former not reaching a significant level while the latter
did (Tajima’s D p-value > 0.05, Fu’s FS p-value < 0.05, Table 6).
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FIGURE 3 | Haplotype network of D-loop region in G. przewalskii. Each circle represents a haplotype and its size is proportional to the haplotype frequency. The
numbers indicate the name of the haplotypes and the colors represent geographic locations.

The bimodal distribution was observed for all populations in
the mismatch analyses based on the D-loop region (Figure 6
and Supplementary Figure 2). In terms of the beginning of
population expansion, the τ value of 0.781 and 3.038 derived
based on COI and D-LOOP suggested a time of approximately
0.36–0.108 MYA (Million Years Ago) and 0.497–0.165 MYA,
occurring during the late middle Pleistocene.

DISCUSSION

Nucleotide Composition
Our finding that the content of A+T (57.33%) was higher
than that of C+G (42.67%) of COI gene in G. przewalskii is
consistent with the previous research in Aspiorhynchus laticeps
(A+T = 54.9%), Schizothorax biddulphi (A+T = 53%, 53.1%),
and Schizothorax irregularis (A+T = 53.2%) (Yang et al., 2011,
2013). This confirms our findings and indicates that the content
of A+T was higher than that of C+G, which was common in
the sequence composition of the COI gene of schizothoracids.
In addition, our result based on the D-loop region reflects that
of Zhang et al. (2013) who also found that the content of A+T
(63.1%) was significantly higher than the content of C+G (36.9%)
in G. przewalskii.

Comparison of Genetic Diversity Based
on Cytochrome Oxidase Subunit I Gene
and D-Loop Region
One interesting finding is that the h (17 and 66, respectively)
and Hd (0.55221 and 0.92822, respectively) among populations
of G. przewalskii differed by the COI and D-loop regions. The
difference may be attributed to the evolutionary rate of different
molecular markers (Wu, 2017; Yan et al., 2020). The mutation

TABLE 4 | Gene flow (Nm) analysis of G. przewalskii populations by two
mitochondrial markers.

Population BHR HMR QJR SLR HEGR BHE YLJ

BHR 1.0441 1.0043 1.0401 1.0352 1.0304 1.0214

HMR 1.0062 1.0135 1.0352 1.0343 1.0355 1.0260

QJR 1.0115 1.0225 1.0051 1.0150 1.0224 0.9731

SLR 1.0313 1.0030 1.0117 1.0406 1.0180 1.0351

HeGR 1.0282 1.0089 1.0053 1.0302 1.0055 1.0360

BHE 1.0394 1.0106 1.0090 1.0398 1.0293 0.9937

YLJ 0.9989 0.9541 0.9480 1.0075 1.0077 1.0045

Pairwise estimates of Nm based on COI gene (above diagonal) and D-loop region
(below diagonal) for seven populations of G. przewalskii.

rate and evolution rate in the D-loop region, as no selection
pressure for coding, are higher than that in the COI gene. Clearly,
the current results showed both the mitochondrial COI gene
and D-loop region markers can be very helpful in analyzing
the genetic variation of G. przewalskii. In addition, the Pi of
mitochondrial DNA is one of the crucial indicators to measure
the genetic diversity of the population. The larger the Pi value, the
higher the polymorphism of the population. What emerges from
the results reported here is that both the h and Pi of G. przewalskii
from the COI gene were lower than those from the D-loop region,
indicating that the sensitivity of the D-loop control region to
reflect the genetic diversity of G. przewalskii is higher than that of
the COI gene. It also confirmed the view that the evolution rate
of the D-loop control region is higher than that of the COI gene.

Moreover, according to Millar et al. (1991), when Nm > 1, the
gene flow between populations is considered high and genetic
similarity is high. Except for the weak genetic flow between
the YLJ and QJR, BHE, BHR, HMR populations, respectively,
all other populations showed a high genetic flow (Nm > 1),
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FIGURE 4 | NJ tree of COI gene of G. przewalskii based on Kimura-2-parameter model. Numbers at the nodes represent bootstrap values.

indicating high genetic similarity among the populations, thus,
causing a low level of genetic differentiation, as has been reported
previously for Macropodus ocellatus in the Yellow River and
Yangtze River (Zhang et al., 2019). Next, the gene flow among YLJ
and the other populations was low based on two markers. This
might be because the YLJ population is located in the southeast
of Qinghai Lake and no rivers are entering the lake nearby, which
makes it more difficult to migrate to other rivers. Therefore, the
YLJ population may not participate in reproductive migration.

Population Differentiation
Another momentous finding is that the genetic variation of
G. przewalskii primarily occurred within the population (Fst
COI = –0.00308; Fst D-loop = –0.00240) based on the above
two molecular markers. The result may be associated with the
reproductive migration of G. przewalskii. The migration route
of G. przewalskii may be varied every year. Such a migration
process has greatly increased the gene exchange of the entire lake
area. In this study, the result based on the D-loop region was
similar to the results of the previous study (Fst = 0.01926) in the
HMR, BHR, and SLR (Chen et al., 2006). The previous studies
estimated from the D-loop sequence demonstrated that there
was little genetic differentiation among the three reproductive
populations of G. przewalskii, and genetic variation mainly
existed within the population (Chen et al., 2006). Likewise, it

was previously reported that the gene exchange of G. przewalskii
was so frequent that no obvious population structure was found
by sequencing the mitochondrial cytochrome b (Cytb) gene
(Zhao et al., 2006). However, using an evaluation based on
random amplified polymorphic DNA (RAPD) markers, Zhang
et al. (2005) showed that there was little genetic differentiation
(Fst = 0.1070) between three G. przewalskii populations. This
differs slightly from the findings presented here probably due to
the different molecular marker methods.

Genetic Structure
Estimates of population genetic parameters showed that
G. przewalskii had high levels of haplotype diversity (0.55221
and 0.92822, respectively) and low levels of nucleotide diversity
(0.00092 and 0.00578, respectively) based on the COI gene and
D-loop region. Historically, the values defining the level of
haplotype diversity and nucleotide diversity by Grant were 0.5
and 0.005, respectively (Grant and Bowen, 1998). Hence, the
structure of G. przewalskii in this study was more inclined to the
type of high haplotype and low nucleotide diversity as previously
reported (Zhang et al., 2013). Similarly, previous research
recorded the haplotype and nucleotide diversities from the
mitochondrial DNA Cytb gene of populations of G. przewalskii
(0.8042± 0.0424 and 0.00201± 0.00124, respectively), G. eckloni
of the Yellow River (0.8720 ± 0.0205 and 0.00485 ± 0.00249,
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FIGURE 5 | NJ tree of the D-loop region of G. przewalskii based on Kimura-2-parameter model. The numbers at the nodes represent the bootstrap values.

TABLE 5 | Analysis of molecular variance (AMOVA) for the G. przewalskii populations.

Source of variation df Sum of squares Variance components Percentage of variation (%)

COI D-loop COI D-loop COI D-loop COI D-loop

Among populations 6 6 1.249 9.598 –0.00085 Va –0.00476 Va –0.31 –0.24

Within populations 559 559 154.751 1109.336 0.27684 Vb 1.98450 Vb 100.31 100.24

Total 565 565 156.000 1118.935 0.27599 1.97974

df, degrees of freedom; Fst (COI) = -0.00308; Fst (D-loop) = -0.00240; (P > 0.05).

respectively), and G. eckloni of the Geerm River (0.5771± 0.1182
and 0.00096± 0.00073, respectively) (Zhao et al., 2005).

Generally, a large population, different environments, and
living habits suitable for the rapid growth of the population
are required for the persistence of high haplotype diversity
of the population in nature (Grant and Bowen, 1998). As it
happens, these situations are present on G. przewalskii. First,
through the measures implemented by the Qinghai Provincial
Government, such as embargo fishing and stock enhancement of

G. przewalskii, the resource of G. przewalskii has been restored
to 29% of the original reserve. The resource has increased from
26,000 tons in 2002 to 50,000 tons in 2014 and 93,000 tons in
2019. Second, the ecological environments of lakes and rivers
are different, which can better provide diverse conditions for
the feeding, reproduction, and over-wintering of G. przewalskii.
Finally, G. przewalskii will undergo reproductive migration from
April to July every year. They migrate from the Qinghai Lake
into the various rivers connected with the Qinghai Lake. After
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the reproductive behavior is over, they swim back to the Qinghai
Lake. The routine habits have led to a yearly recovery of
G. przewalskii year by year. Therefore, it is speculated that
the type of high haplotype and low nucleotide diversity of
G. przewalskii comes from these conditions.

Population History
The Tajima’s D-tests and the Fu’s Fs-test were not uniform
for the D-loop region, which has a slightly faster evolutionary
rate and cannot accurately analyze the population dynamics
of G. przewalskii combined with the nucleotide mismatch
distribution. Therefore, the results of the COI gene analysis were
applied to determine whether there was population expansion.
In short, evidence from the neutrality tests and mismatch
distribution revealed that G. przewalskii may have experienced
population expansion (Tajima, 1989; Fu and Li, 1993). This may
be the primary reason why little population differentiation was
detected. A similar result was obtained for G. dobula from three
localities (Pali, Lasa, and Yanghu) in the Tibetan plateau (Chan
et al., 2016). Simultaneously, these outcomes were in accordance
with the pattern of high haplotype diversity and low nucleotide
diversity observed, with the “star-like” shape of the haplotype
network in this study, and with the variation of resources in
G. przewalskii.

To our knowledge, the complicated climatic changes as the
Tibetan plateau uplift play a crucial role in the demographic
history of fish species (Gang et al., 2009; Chan et al., 2016).
In the Tibetan plateau, the largest glacial retreat has been
occurring since 0.17 MYA (Zheng et al., 2002). Based on the
expansion time we studied (0.36–0.108 MYA, 0.497–0.165 MYA),
the demographic history could conform with the period of
the largest glacial retreat during the Pleistocene. Therefore, we
suggest that climatic conditions during the Pleistocene period
had a degree of influence on the contemporary distribution

TABLE 6 | Neutrality test of G. przewalskii by two mitochondrial markers.

Population Gene Tajima’s D Fu’s FS

D P FS P

BHR COI –1.48136 >0.10 –4.105 0.012

D-loop –1.07559 >0.10 –7.549 0.000

HMR COI –1.26351 >0.10 –3.990 0.013

D-loop –1.64363 >0.05 –16.648 0.000

QJR COI –1.37040 >0.10 –5.309 0.004

D-loop –1.30112 >0.10 –11.709 0.000

SLR COI –1.49289 >0.10 –4.157 0.011

D-loop –0.98521 >0.10 –8.352 0.000

HeGR COI –1.14505 >0.10 –3.206 0.027

D-loop –1.13029 >0.10 –16.454 0.000

BHE COI –0.81948 >0.10 –1.981 0.077

D-loop –0.74558 >0.10 –7.680 0.000

YLJ COI –0.62079 >0.10 –1.286 0.131

D-loop –1.23569 >0.10 –8.395 0.000

Total COI –1.78116 <0.05 –13.289 0.000

D-loop –1.44274 >0.10 –32.562 0.000

FIGURE 6 | Nucleotide mismatch distribution in G. przewalskii of all
populations for two markers: (A) COI and (B) D-loop.

of the genetic variation of G. przewalskii, as reported in
G. dobula (Chan et al., 2016). Additionally, the population
expansion occurring in the Pleistocene agreed with the previous
findings of schizothoracine fishes in the Yellow River. The
Yellow River schizothoracine fishes have younger expansion than
G. przewalskii (Duan et al., 2009).

Germplasm Protection Mechanism
Historical records showed that the Qinghai Lake was originally
connected to the ancient Yellow River, but after the strong uplift
of the Qinghai-Tibet Plateau, the water could not be drained
to the Yellow River, so the Qinghai Lake was separated from
the Yellow River and became a closed inland lake (Chen et al.,
1964; Li et al., 1996). The Qinghai Lake provided opportunities
for the lineage diversification of G. przewalskii (Zhao et al.,
2006). Although the lake area has increased in recent years,
this established geographic barrier combined with the continued
decline in water level, increased mineralization of the water, and
shrinking of the water column in early years has led to a reduction
in the size of spawning areas, a decrease in the numbers of
the spawning population, a single genetic structure, low genetic
diversity, and even the risk of inbreeding (Zhao et al., 2005; Liu
et al., 2019). A large number of seedlings are put into the Qinghai
Lake every year to replenish the stock and expand the size of
the population. Fishery stocking has restored the naked carp
resources in the Qinghai Lake to some extent. However, if the
parents from the same place or same batch are used for breeding
for many years, negative genetic effects such as genetic drift are
likely to occur (Araki and Schmid, 2010).

There is a definite need for preventing inbreeding and
maintaining population heritability. A reasonable approach to
tackle this issue could be to rationally introduce multi-water
parents and regularly expand and replace the parental population
during artificial breeding and release. More specifically, parents
can be Qinghai Lake naked carp from different geographic
regions, such as the Lake Crooke and the seven geographical
regions mentioned in this study. It also may be different
subspecies of G. przewalskii, such as G. przewalskii ganzilronensis,
and even other Gymnocypris fishes, such as G. herzensten.
On the other hand, translocation is a usual measure for the
effective conservation of imperiled species (Schäfer et al., 2020).
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Studies on the adaptation of introduced G. przewalskii in other
semi-saline lakes in the Qinghai Province are conducive to
successfully protecting genetic diversity by creating various
evolutionary units.

In conclusion, both markers indicated high haplotypic
diversity, low nucleotide diversity, and low differentiation of
G. przewalskii. With the launch of the "10-year fishing ban" and
the sixth embargo fishing of the Qinghai Lake in 2020, it will
play a considerable role in the conservation and restoration of
the germplasm resources of G. przewalskii. Therefore, scientific
management must be achieved in stock enhancement to avoid
damaging the natural genetic structure of G. przewalskii.
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