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Global climate change is considered to be one of the main threats to organisms.
As poikilothermic animals, amphibians are in particular sensitive because they cannot
adapt to the dramatic climate change through active physiological regulation. Using
104 representative species, the present study conducted an assessment of amphibians
vulnerability to climate change in China through the combination of two approaches.
Specifically, 18 vulnerability criteria belonging to five categories (i.e., thermal tolerance,
individual reproductive, population diffusion and diversity, food and habitat, and climate
conditions) were first selected and scored based on literatures and experts opinions.
Species were then ranked into three levels of climate change vulnerability (i.e., high,
moderate, and low) by calculating vulnerability scores and conducting natural breaks
analyses, as well as performing a principal coordinate analysis (PCoA) and k-means
cluster analyses, respectively. To integrate the two results, a matrix with the ranks from
each result was developed to produce a final integrated list. Our results indicated that
the 104 amphibian species were classified into three types by natural breaks, with 54
low vulnerable species, 41 moderately vulnerable species, and nine highly vulnerable
species. Based on the results of PCoA and k-means cluster analyses, five species were
highly vulnerable, 38 species were moderately vulnerable, and 61 species were low
vulnerable. The combination of the two ranks suggested that 36 species such as Hyla
tsinlingensis and Liangshantriton taliangensis were of low vulnerability, 54 species such
as Echinotriton chinhaiensis and Hynobius chinensis were of moderate vulnerability,
and 14 species such as Ichthyophis kohtaoensis and Zhangixalus prasinatus were of
high vulnerability. Overall, our results indicated that climate change could have strong
potential effects on amphibians in China. And the highly vulnerable species such as
Ichthyophis kohtaoensis, Zhangixalus prasinatus, and Theloderma corticale should be
the priority in future conservation activities.
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INTRODUCTION

Biodiversity and ecosystems have been in the Anthropocene
phase due to the expansion of human population since the
twentieth century (Elmqvist et al., 2013). Accordingly, global
changes (e.g., land use change, habitat fragmentation, biological
invasions, and climate change) induced by human activities
have caused dramatic impacts on the biological attributes of
ecosystems (Gaston et al., 2010; Bellard et al., 2012). This
is considered to be the main reason leading to the changes
of organisms. For instance, previous studies indicated that
global changes induced the distribution of terrestrial organisms
(e.g., birds, mammals, and plants) to be shifted from low to
high elevations/latitudes (Chen I.C. et al., 2011), less diverse
of reef communities (Hoegh-Guldberg et al., 2007), and the
change of birds species composition in tropical forest ecosystems
(Pounds et al., 1999). As poikilothermic animals, amphibians are
considered to be more susceptible to global changes (Carey and
Alexander, 2003; Li et al., 2013). This is because they have a group
of specific life history traits, such as permeable skin, eggs without
shell, and aquatic living larvae but terrestrial living adults (Wake
and Vredenburg, 2008). Indeed, global changes have caused the
decline of one third (32%) of the amphibian populations all over
the world (IUCN, 2016). This is especially true in China, as a
previous study indicated that around 43% of the amphibians were
strongly affected by global changes, including one extinct species,
one regional extinct species, and 176 under threatened species in
China (Jiang et al., 2016).

Climate change is one of the most important facets of global
changes affecting the survival of amphibians (Grimm et al.,
2008; Wang and Feng, 2013). Specifically, the increasing of
global mean temperature can induce the phenological shifts,
and thus affect amphibians life history traits (e.g., breeding
time; Parmesan, 2007, hibernation; Reading, 2007; Sheridan and
Bickford, 2011; Gao et al., 2015). Moreover, the fluctuation of
precipitation can strongly disturb amphibians habitat quality,
tadpoles metamorphosis, as well as adults population dynamics
(Lowe, 2012). In addition, recent works have demonstrated
that amphibians distribution patterns can be also altered by
climate change (e.g., Odorrana hainanensis; Huang et al., 2017,
Andrias davidianus; Zhao et al., 2020). However, these studies
only focused on single species, integrative work is still needed
to evaluate the vulnerability of a group of amphibian species
to climate change at both regional and global scales (but see
Li et al., 2013).

The vulnerability of a species to climate change is the extent to
which is threatened or extinct owing to climate change (Dawson
et al., 2011). Therefore, it is typically assessed by selecting criteria
related to species exposure, sensitivity, and adaptive capacity
to climate change (Williams et al., 2008; Foden et al., 2013).
Specifically, exposure is the degree of climate change likely
to be experienced by species. It is usually assessed based on
scenario projections from general circulation models (GCMs),
and is strongly depended on external factors such as temperature
change, precipitation fluctuation, severe weather events, and
sea level rise (Dawson et al., 2011; Rowland et al., 2011).
Sensitivity refers to the degree of change of species survival,

physiology, behavior, population dynamics, or life history when
facing the stress of climate change. It can be assessed by empirical,
model, and observational studies (Dawson et al., 2011; Rowland
et al., 2011). Adaptive capacity is the ability of species to
adapt to climate change through persistence, migration, dispersal
colonization, and evolutionary responses. Similar to sensitivity,
it can be also assessed by empirical, model, and observational
studies (Nicotra et al., 2015; Beever et al., 2016).

In the present study, we selected representative amphibian
species to assess the vulnerability of this taxa to climate change
in China. We hope our results can provide useful information
to determine the prior protection levels of amphibians, and
provide information related to the extinction risks of different
species caused by climate change to policy makers and animal
protection departments.

MATERIALS AND METHODS

Representative Species
According to Fei et al. (2009), Fei et al. (2012), and the new
species published in recent years, there are 585 amphibian species
in China by the end of November, 2021.1 However, not all the
species have large populations in the wild. In ecological studies,
species with high abundance in the field are usually selected
as representative species to assess the effects of human/natural
disturbance on animal communities (Park et al., 2006). Based
on this criterion, and also considering some narrow distributed
endemic amphibians on mountains, a total of 104 representative
species were selected. Specifically, at least one species was selected
from each genus, and two to three species were selected from
genera that contained more than six species in China (e.g.,
Scutiger, Rana, and Zhangixalus; Supplementary Table 1).

Vulnerable Factors
Based on the report of IPCC in 2001, previous studies usually
selected factors related to species exposure (e.g., temperature,
rainfall changes, and migration barriers), sensitivity (e.g., habitat
specificity, interspecific relationship, migration ability, and food
diversity), and adaptability (e.g., environmental pollution, human
disturbance, future adaptation to habitat change, adaptability
to habitat availability, and food availability) to assess the
vulnerability of species to climate change (e.g., Bagne et al.,
2011; Rowland et al., 2011; Foden et al., 2013; Li et al., 2017).
However, recent studies suggested that only considering these
criteria cannot completely reflect the vulnerability of organisms
to climate change (Fortini and Schubert, 2017). It is also necessary
to incorporate factors related to species migration, habitat
adaptation, thermal tolerance, and evolution, which reflect the
life history response of species to climate change (Foden et al.,
2013; Fortini and Schubert, 2017). Following these suggestions,
a total of 18 vulnerable factors belonging to five categories (i.e.,
thermal tolerance, individual reproductive, population diffusion
and diversity, food and habitat, and habitat climate conditions)
were selected in the present study (Supplementary Table 2).

1http://www.amphibiachina.org/
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Data Acquisition
All the vulnerable factors were categorical variables. The data
of species thermal tolerance, individual reproductive, population
diffusion and diversity, food and habitat evaluation were acquired
from Fei et al. (2006, 2009, 2012), the published literatures (e.g.,
Hou et al., 2014; Sung et al., 2016; Wang et al., 2017; Zeng et al.,
2017), as well as the experts opinions. Data of habitat climate
conditions was extracted from Worldclim database (Version
1.4).2 Then, we divided the species vulnerability to each factor
into three levels (1: Low vulnerability; 2: Moderate vulnerability;
3: High vulnerability), and the definition of each level related
to each vulnerable factor was obtained following the criteria of
World Wide Fund for Nature (WWF).3 Details of the vulnerable
factors and their definitions are as follows (Supplementary
Table 2):

Thermal Tolerance
Thermal Tolerance
Amphibians have their own thermal tolerance ranges (Khatiwada
et al., 2020), which reflect their resilience to temperature change
(Bernardo and Spotila, 2006). We scored this factor as:

1—High thermal tolerance (Low vulnerability).
2—Moderate thermal tolerance (Moderate vulnerability).
3—Low thermal tolerance (High vulnerability).

Published information on the thermal tolerance of amphibians
in China is very limited. Therefore, our uncertainty scores
were determined according to the experts opinions rather than
empirical evidences.

Breeding
Spawning Sites and Clutch Size
Amphibians can spawn in different sites such as trees, streams,
and ponds (Duellman, 1992). Amphibians can also have varied
clutch size, from a few to thousands (Fei et al., 2012). Moreover,
these species with distinct spawning sites and diverse clutch
size can exhibit a gradient of sensitivity to climate change
(Carr et al., 2013; Foden et al., 2013). For instance, the pool-
breeding amphibians are highly vulnerable to climate change
(Scheele et al., 2012), and species with larger clutch size are of
low vulnerability (Combes et al., 2018). Therefore, we defined
breeding associated with spawning sites and clutch size as:

1—Site type of oviposition is land/clutch size is ≥ 1,000
(Low vulnerability).
2—Site type of oviposition is lotic water and trees/clutch
size is between 100 and 1,000 (Moderate vulnerability).
3—Site type of oviposition is lentic water/clutch size
is ≤ 100 (High vulnerability).

Metamorphosis Period
Rapidly metamorphic amphibians are less affected by climate
change (Semlitsch, 1987; Rowe and Dunson, 1995; Ultsch
et al., 1999; Carey and Alexander, 2003; Corn, 2005). This is
because species with rapid metamorphosis can avoid death in

2http://www.worldclim.org/
3https://www.worldwildlife.org/initiatives/adapting-to-climate-change

a prolonged drought. Therefore, we defined breeding associated
with metamorphosis period as:

1—Completed the metamorphosis ≤ 3 months
(Low vulnerability).
2—Completed the metamorphosis between 3 and 12
months (Moderate vulnerability).
3—Completed the metamorphosis ≥ 12 months
(High vulnerability).

Maturation Age
Species with fast sexual maturity are lowly vulnerable. This
is because delayed reproduction may increase vulnerability to
compete for limited resources when facing extreme conditions.
Moreover, recruitment of long maturated species is more relied
on long term of suitable conditions to allow their offspring
to reach size-based resistance to extreme conditions (Luhring
and Holdo, 2015). Hence, we defined breeding associated with
maturation age as:

1—The sexual maturity time is ≤ 1 year
(Low vulnerability).
2—The sexual maturity time is between 1 and 3 years
(Moderate vulnerability).
3—The sexual maturity time is ≥ 3 years
(High vulnerability).

Food and Habitat
Feeding
Temperature rise will increase amphibians metabolic rates, which
may subsequently increase their food demands (Li et al., 2013).
Therefore, feeding generalists can quickly obtain sufficient food,
which will be less affected. However, feeding specialists may be
more affected as they strongly relied on specific food items, which
may be not easily acquired in the field. According, we defined
feeding as:

1—Feeding generalists (Low vulnerability).
2—Between feeding specialists and generalists (Moderate
vulnerability).
3—Feeding specialists (High vulnerability).

Abundance of Potential Food Resources
Climate change could indirectly affect amphibians survival
rate and reproductive success via changing the abundance of
food resources (Gouveia et al., 2013). Therefore, this item was
considered as:

1—Wide range of food resources (Low vulnerability).
2—Moderate range of food resources (Moderate
vulnerability).
3—Limited food resources (High vulnerability).

Primary Habitat
Arboreal type species can better adapt to drier conditions through
the variation of body shape (Castro et al., 2021). However,
increasing temperature may easily impact body condition and
decrease the survival of terrestrial/water type species, such as
Bufo bufo (Reading, 2007), Xenopus laevis (Ruthsatz et al., 2018),
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and Rana cascadae (Kissel et al., 2019). Accordingly, we defined
primary habitat as:

1—Arboreal type species (Low vulnerability).
2—Terrestrial type species (Moderate vulnerability).
3—Water type species (High vulnerability).

Habitat Type Diversity
Climate change induced habitat loss leading to the decline of
amphibian populations (Li et al., 2013). Amphibians with more
habitat types may be less effected by climate change. Therefore,
we defined habitat type diversity as:

1—High diversity of habitat types (Low vulnerability).
2—Moderate diversity of habitat types (Moderate
vulnerability).
3—Low diversity of habitat types (High vulnerability).

Population Status
Population Size
Amphibians with small populations are greatly affected by
climate change. This is because populations of these species can
be hardly restored once they declined due to climate change.
Hence, we defined population size as:

1—Large population size (Low vulnerability).
2—Moderate population size (Moderate vulnerability).
3—Small population size (High vulnerability).

Population Distribution
Species with larger distribution range usually exhibit stronger
environmental tolerance (Khatiwada et al., 2020), which can
be considered as low vulnerability. Therefore, we defined
populations distribution as:

1—Large distribution range (Low vulnerability).
2—Moderate distribution range (Moderate vulnerability).
3—Small distribution range (High vulnerability).

Primary Movement Methods
Movement methods are related to amphibians migration ability,
with swimming species exhibiting the lowest migration ability.
And they are more easily affected by climate change (Corn, 2005;
Lawler et al., 2009; Warren et al., 2013). Hence, we defined
primary movement methods as:

1—Jumping species (Low vulnerability).
2—Climbing and walking species (Moderate vulnerability).
3—Swimming species (High vulnerability).

Genetic Diversity
Species with low genetic diversity have fewer new characteristics
that can adapt to new climatic conditions (Foden and Young,
2016). Therefore, we defined genetic diversity as:

1—High genetic diversity of species (Low vulnerability).
2—Moderate genetic diversity of species (Moderate
vulnerability).
3—Low genetic diversity of species (High vulnerability).

Breeding Migration
Some amphibian species in temperate regions migrate
from terrestrial habitats to aquatic habitats for short-term
reproduction (Duellman and Trueb, 1985). Since rainfall plays
a crucial role in determining amphibians breeding migrations
(Greenberg and Tanner, 2004; Arnfield et al., 2012), climate
change may cause stronger effects on these species. Thus, we
defined breeding migration as:

1—Species without migration behavior
(Low vulnerability).
3—Species with migration behavior in the breeding period
(High vulnerability).

Habitat Climate Conditions
Extent to Which Species Is Currently Exposed to Climate
Variability
Species distributed in areas that have been strongly affected by
climate change (e.g., Qinghai-Tibet Plateau) could be more easily
affected (Zhou et al., 2014). Therefore, we defined the extent to
which species is currently exposed to climate variability as:

1—Low levels of the extent to which species is currently
exposed to climate variability (Low vulnerability).
2—Moderate levels of the extent to which species
is currently exposed to climate variability (Moderate
vulnerability).
3—High levels of the extent to which species is currently
exposed to climate variability (High vulnerability).

Extent to Which Air Temperature Is Expected to Change
Within the Range of Species Distribution
Species distributed in areas with high variability of air
temperature (e.g., tropics and plains) may be more susceptible
(Collins and Storfer, 2003; Toranza and Maneyro, 2014). Thus,
we defined this item as:

1—Low levels of the extent to which air temperature is
expected to change within the range of species distribution
(Low vulnerability).
2—Moderate levels of the extent to which air temperature
is expected to change within the range of species
distribution (Moderate vulnerability).
3—High levels of the extent to which air temperature is
expected to change within the range of species distribution
(High vulnerability).

Extent to Which Precipitation Is Expected to Change Within
the Range of Species Distribution
Species distributed in areas with high levels of precipitation
variability (e.g., eastern China) may be more easily affected (Chen
S. et al., 2011). Hence, we defined it as:

1—Low levels of the extent to which precipitation is
expected to change within the range of species distribution
(Low vulnerability).
2—Moderate levels of the extent to which precipitation is
expected to change within the range of species distribution
(Moderate vulnerability).
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3—High levels of the extent to which precipitation is
expected to change within the range of species distribution
(High vulnerability).

Other Threat Factors
There are many others threats for amphibians, including habitat
loss, habitat alteration, and pollution, etc. (Alford and Richards,
1999; Pimm and Raven, 2000; Collins and Storfer, 2003; Stuart
et al., 2004). Species with less effects of these factors can be
considered as low vulnerability. These were mainly determined
according to the experts opinions as follows:

1—Low levels of other threat factors (Low vulnerability).
2—Moderate levels of other threat factors (Moderate
vulnerability).
3—High levels of other threat factors (High vulnerability).

Statistical Analyses
Two approaches are incorporated to assess the vulnerability of
amphibians to climate change in China. First, the climate change
vulnerability index was calculated for each species based on the
formula as follows:

VI =
k∏

i=1

( n∑
i=1

VFi

)

where VI is the vulnerability index (the larger the value, the
higher the vulnerability), VFi is the criterion of each category,
n is the total number of factors within each category, and k
is the total number of categories. After that, natural breaks
analyses were used to determine the vulnerability of 104 species to
climate change following Gardali et al. (2012). Second, a principal
coordinate analysis (PCoA; Gower, 1966) based on the Bray-
Curtis index of the distance matrix created by Euclidean distance
between species was conducted following Villéger et al. (2008).
PC axes with their eigenvalue ≥ 1 were selected to construct
a multi-dimensional vulnerability space. Then, k-means cluster
analyses were carried out according to the distribution of all
species in the space. Finally, according to the method provided
by Gardali et al. (2012), the two results for each species were
integrated by using the comprehensive list matrix to determine
the vulnerability for each species (Table 1).

RESULTS

According to the International Union for Conservation of
Nature (IUCN) red list, the 104 representative amphibian
species included one Extinct (ET), three Critically Endangered
(CR), eight Endangered (EN), 11 Vulnerable (VU), five
Near Threatened (NT), 54 Least Concern (LC), and 22 No
Evaluated/Data Deficient (NE/DD).

Results Based on Natural Breaks
The results from species vulnerability index and natural
breaks analyses indicated that 54 species belonged to the
low vulnerability type (e.g., F. multistriata, Hoplobatrachus
chinensis, Rhacophorus bipunctatus, Rana omeimontis, and

Oreolalax major), accounting for 51.92% of all the studied
species. 41 species were moderate vulnerability type (e.g.,
A. davidianus, Rana kukunoris, Hynobius chinensis, Amolops
granulosus, and Scutiger glandulatus), accounting for 39.42%
of all the studied species. And nine species were high
vulnerability type (e.g., Glyphoglossus yunnanensis, Cynops
wolterstorffi, Amolops medogensi, Batrachuperus pinchonii,
Glandirana emeljanovi, Hylarana cubitalis, Pachyhynobius
shangchengensis, Odorrana zhaoi, and Onychodactylus
zhangyapingi; Supplementary Table 3), accounting for 8.65% of
all the studied species.

Results Based on PCoA and k-Means
Cluster Analyses
The first four principal components had their eigenvalue ≥ 1,
which explained 55% of the total inertia (PC1 = 21.13%,
PC2 = 14.40%, PC3 = 10.96%, PC4 = 8.51%). Specifically,
PC1 was mainly positively correlated with spawning sites,
but negatively correlated with clutch size, metamorphosis
period, maturation age, habitat type diversity, population size,
population distribution, and genetic diversity. PC2 was mainly
positively correlated with thermal tolerance, metamorphosis
period, maturation age, extent to which species is currently
exposed to climate variability, extent to which air temperature
is expected to change within the range of species distribution,
and negatively correlated with extent to which precipitation is
expected to change within the range of species distribution.
PC3 was mainly positively correlated with primary movement
methods, but negatively correlated with metamorphosis period.
In addition, the interpretation rate of each factor to PC4 was
relatively small (< 50%; Supplementary Table 4 and Figure 1).

The results of k-means cluster analyses indicated that
61 species (e.g., R. kukunoris, R. omeimontis, Pelophylax
plancyi, Tylototriton kweichowensis, F. multistriata, O. major,
and Hoplobatrachus chinensis) were low vulnerable species,
accounting for 58.65% of all the studied species. 38 species (e.g.,
Hynobius chinensis, A. davidianus, G. minima, A. granulosus,
S. glandulatus, and G. yunnanensis) were moderately vulnerable
species, accounting for 36.54% of the total studied species.
Finally, five species (i.e., Ichthyophis kohtaoensis, K. eiffingeri,
T. corticale, R. bipunctatus, and Zhangixalus prasinatus;
Supplementary Table 3) were highly vulnerable species,
accounting for 4.8% of the total species.

The Integrated Results Based on Two
Approaches
Comprehensive list matrix was created according to the
integrated results from the two approaches. Our results
demonstrated that 36 species were finally classified as low
vulnerability type (e.g., F. multistriata, O. major, R. omeimontis,
and Hoplobatrachus chinensis). 54 species were moderate
vulnerability (e.g., A. davidianus, Hynobius chinensis,
R. kukunoris, G. minima, and A. granulosus). And 14 species
were high vulnerability (i.e., I. kohtaoensis, P. shangchengensis,
B. pinchonii, O. zhangyapingi, C. wolterstorffi, Glandirana
emeljanovi, Hylarana cubitalis, A. medogensi, O. zhaoi,
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FIGURE 1 | Principal coordinate analysis of 104 species and 18 vulnerable factors. (A) Distribution of the 104 species. (B) Contribution of the 18 vulnerable factors.
Codes of species are in Supplementary Table 1. Abbreviation of vulnerable factors are as follows: MP, metamorphosis period; MA, maturation age; CS, clutch size;
HD, habitat type diversity; PM, primary movement methods; PD, population distribution; PS, population size; GD, genetic diversity; AF, abundance of potential food
resources; FE, feeding; EP, extent to which precipitation is expected to change within the range of species distribution; SS, spawning sites; BM, breeding migration;
OT, other threats factors; ET, extent to which air temperature is expected to change within the range of species distribution; EE, extent to which species is currently
exposed to climate variability; PH, primary habitat; TT, thermal tolerance.

K. eiffingeri, T. corticale, R. bipunctatus, Z. prasinatus, and
G. yunnanensis; Supplementary Table 3).

DISCUSSION

The selection of representative species was considered to
be feasible to study the response of animal groups to the
natural/human induced disturbance (Park et al., 2006). In the
present study, 104 representative species were selected from
amphibians in China (at least one for each genus, and two
to three were selected from genera that contained more than
six species; e.g., Scutiger, Rana, and Zhangixalus) to investigate
the vulnerability of this taxa to climate change by using the
combination of two approaches. Our results indicated that
14 species were highly vulnerable to climate change, with
most of them distributing in low latitude areas. For instance,

TABLE 1 | Matrix that integrates the ranks of amphibians vulnerability to climate
change from natural breaks and k-means cluster analyses.

Integrative rank

K-means cluster rank

Natural breaks rank 1 2 3

1 1 2 3

2 2 2 3

3 3 3 3

1, low vulnerability; 2, moderate vulnerability; 3, high vulnerability.

I. kohtaoensis, H. cubitalis, C. wolterstorffi, T. corticale, and
G. yunnanensis are mainly distributed in Yunnan, Guangxi,
Guangdong, and Hainan, while Z. prasinatus is only distributed
in Taiwan. And A. medogensis and O. zhaoi are distributed in
Moto, Tibet. Therefore, our results supported the claims that
species in low latitude areas were more vulnerable to climate
change (Deutsch et al., 2008). This is because species at lower
latitudes always live at optimum temperature, they thus are more
sensitive to temperature changes (Deutsch et al., 2008). Within
the 14 high vulnerability species, five species (36%) were endemic,
and most of their IUCN categories were above NT. This result
is consistent with Li et al. (2013), suggesting that the endemic
and endangered species were more vulnerable to climate change
because of their narrow distribution and small populations. In
the present study, most of these species are distributed in the
eastern Qinghai-Tibet plateau and Hengduan mountains, which
exhibited specific habitats. For instance, C. wolterstorffi preferred
shallow water bodies around Dianchi Lake, in which had
abundant aquatic plants and plankton (He, 1998). Furthermore,
O. zhaoi can survive and reproduce only under the habitat
conditions of small montane streams and small waterfalls (Fei
et al., 2012). The effects of climate change on these species could
be the reduction of body length (Sheridan and Bickford, 2011),
migration to suitable habitats (Duan et al., 2016), and faster
metamorphosis. At the same time, climate change (e.g., drought,
flood, and high temperature) will also lead to strong changes
in habitat characteristic (McMenamin et al., 2008) and food
sources (Donnelly and Crump, 1998) of other high vulnerability
species such as I. kohtaoensis, P. shangchengensis, B. pinchonii,
and O. zhangyapingi, resulting in a decline in their populations.
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There were 54 moderately vulnerable species, probably
because the life history traits of these species may be able
to cope with the impact of climate change within a certain
range (Naya et al., 2011). This is because some species, such
as Polypedates megacephalus and Bufotes pewzowi, can be in
response to climate change through more evolved reproductive
patterns (e.g., laying eggs on the land/tree; Li and Jiang, 2016,
and larger clutch sizes; Fei et al., 2012). Overall, 68 species (about
65% of the total number of studied species) were assessed as
high and moderate vulnerability to climate change, indicating
that climate change has a strong impact on amphibians in China,
which may be one of the main reasons causing the decline of
amphibian populations (Wu and Li, 2004). More importantly,
the IUCN categories of 20 out of these 68 species were above
VU. Since conservation should be conducted for endemic and/or
endangered species with limited individuals in the field (Myers
et al., 2000; Kier et al., 2009), we suggested that the following
eight species should also be considered in future climate change
studies (i.e., A. davidianus, G. minima, Echinotriton chinhaiensis,
Ranodon sibiricus, H. chinensis, Rana sauteri, Liuixalus ocellatus,
and Parapelophryne scalpta).

Overall, our study investigated that more than 60% of the
amphibians (i.e., high and moderate vulnerability) were strongly
affected by climate change in China. This can be attributed
to these species specific life history traits, population status,
and habitat conditions. According, these species, in particular
highly vulnerable species, should be the priority in future
conservation activities. In recent decades, a growing number
of natural reserves have been established in China to protect
amphibians. However, since the climate condition of habitats
may be no longer suitable for amphibians due to climate
change in the future, more work (e.g., the adjustment of natural
reserves in time) is still needed (Ma and Jiang, 2005). More
importantly, our results also suggested that the vulnerability of
climate change research cannot only focus on large vertebrates
(e.g., Ailuropoda melanoleuca and Panthera uncia), amphibians
should also be considered and better protected in response to
future climate change.
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