AUTHOR=Li Ping , Li Dong , Hong Yuling , Chen Mingyang , Zhang Xia , Hu Liu , Liu Chunsheng
TITLE=Combining DNA Mini-Barcoding and Species-Specific Primers PCR Technology for Identification of Heosemys grandis
JOURNAL=Frontiers in Ecology and Evolution
VOLUME=10
YEAR=2022
URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2022.822871
DOI=10.3389/fevo.2022.822871
ISSN=2296-701X
ABSTRACT=
Heosemys grandis, a species of Asian water turtle, that has a wide range of applications in the food and pharmaceutical industries. Since some processed products cannot be identified exclusively by morphological and microscopic identification, a reliable and quick approach to guarantee authenticity is critical. Thus, we fostered an effective and stable molecular identification system to identify Heosemys grandis based on DNA mini-barcoding and species-specific primers PCR technology. A total of 48 turtle samples from 16 different species were collected. To distinguish Heosemys grandis from its counterfeits, DNA mini-barcoding and a pair of species-specific primers were designed and verified by PCR after analyzing the COI sequences of samples. The results showed that only Heosemys grandis samples could generate a single clear band following amplification using species-specific primers. Employing DNA mini-barcoding to amplify samples can verify authenticity by sequence alignment. These findings indicated that species-specific primers PCR technology combined with DNA mini-barcoding could accurately detect the authenticity of Heosemys grandis. This technology broadens the application of molecular biology techniques in the food and pharmaceutical industries. It provides a reliable and convenient method for identifying raw materials to standardize the market and protect customers’ rights and interests.