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Automatically detecting the calls of species of interest in audio recordings is a common
but often challenging exercise in ecoacoustics. This challenge is increasingly being
tackled with deep neural networks that generally require a rich set of training data.
Often, the available training data might not be from the same geographical region as
the study area and so may contain important differences. This mismatch in training and
deployment datasets can impact the accuracy at deployment, mainly due to confusing
sounds absent from the training data generating false positives, as well as some variation
in call types. We have developed a multiclass convolutional neural network classifier for
seven target bird species to track presence absence of these species over time in cotton
growing regions. We started with no training data from cotton regions but we did have
an unbalanced library of calls from other locations. Due to the relative scarcity of calls
in recordings from cotton regions, manually scanning and labeling the recordings was
prohibitively time consuming. In this paper we describe our process of overcoming this
data mismatch to develop a recognizer that performs well on the cotton recordings
for most classes. The recognizer was trained on recordings from outside the cotton
regions and then applied to unlabeled cotton recordings. Based on the resulting outputs
a verification set was chosen to be manually tagged and incorporated in the training set.
By iterating this process, we were gradually able to build the training set of cotton audio
examples. Through this process, we were able to increase the average class F1 score
(the harmonic mean of precision and recall) of the recognizer on target recordings from
0.45 in the first iteration to 0.74.

Keywords: bird monitoring, ecoacoustics, deep learning, biodiversity, species recognition, active learning

INTRODUCTION

Surveys of birds belonging to various functional groups over time can give farmers information
about the health of the ecosystems on their farms. It is in the interest of cotton farmers to improve
biodiversity and ecosystem function on their farms: healthy ecosystems may improve productivity
of the farms in the long term through pest suppression (Garcia et al., 2020) and there is an increasing
demand for environmentally sustainable products (Kumar et al., 2021). Monitoring avian diversity
is also valuable in order to document their response to changes in their environment over time,
particularly in regard to weather events and climate change (Both et al., 2010).
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Monitoring the presence of a particular bird species in a
location traditionally requires an ecologist to periodically visit
the location, stay for a period of time to make observations,
often returning repeatedly to account for the intermittent nature
of bird presence (Newell et al., 2013). In recent years audio
recordings have been used to lessen the time burden on
ecologists: rather than multiple trips to the location, a recorder
can be deployed and the data collected periodically, a less
frequent and quicker task than the on-site surveys (Acevedo and
Villanueva-Rivera, 2006; Wimmer et al., 2013). Surveys can be
then done by listening to the audio recordings at a time that
suits the ecologist. While this decreases the total work somewhat,
there is still a large time burden involved with listening to the
audio. Passive acoustic monitoring is increasingly being applied
to monitor Australian birds particularly in conservation contexts
(e.g., Leseberg et al., 2020; Teixeira et al., 2021).

Automated detection of bird species can dramatically speed
up this process. Creating a machine learning model for species
recognition requires access to training examples; how many
training examples depends on the difficulty of the recognition
task. Furthermore, the training examples should be as close
as possible to the audio that will be encountered when the
recognizer is deployed. A mismatch between training data
and the unlabeled inference data encountered at deployment
is an issue encountered in many machine learning scenarios
and is known as dataset shift or domain shift (Dockès et al.,
2021; Kouw and Loog, 2021; Stacke et al., 2021). This can
arise from regional variation in call types, or a difference in
background noise profiles due to vegetation or other local
conditions. It is also likely that the types of confusing signals
found in the deployment location will be different from those
encountered in the training data, such as machinery, traffic
or other anthropogenic sound, or different types of non-target
animal vocalizations.

There are two issues that arise from this: firstly, having a
mismatch between the training data and the deployment location
could cause the recognizer accuracy to suffer when deployed,
and secondly, without examples from the deployment location
in the test set, the accuracy of the recognizer at deployment is
not known, as the only accuracy measurements available are for
the non-deployment location. This is often problematic because
in real world applications, labeled recordings from the study
location may not exist. This can be partly alleviated by sourcing
the training and testing data from a wide variety of locations as
this is likely to increase generalizability of the model, however
it is not a replacement for having labeled recordings from the
deployment location.

In this paper, we describe our approach to training a deep
learning convolutional neural network (CNN) detector of seven
species of interest in Australian cotton farms, referred to as
the target species: Australasian Pipit (Anthus novaeseelandiae);
Golden-headed Cisticola (Cisticola exilis): Mistletoebird
(Dicaeum hirundinaceum); Rufous Whistler (Pachycephala
rufiventris); Australian Boobook (Ninox boobook); Striated
Pardalote (Pardalotus striatus); and Striped Honeyeater
(Plectorhyncha lanceolata). Figure 1 shows spectrograms of
example vocalizations from each of these species.

These species were chosen based on several criteria. Firstly,
they cover multiple functional groups of interest—insectivores,
frugivores, nectarivores, and predators. Secondly, they are known
to occur across multiple cotton growing regions within Australia
(Smith et al., 2019). They are expected to be present in
numbers where changes in the frequency of their presence
will be detectable: i.e., not so common that they are always
present no matter if the health of the ecosystem deteriorates or
improves, but and not so rare that they never occur. Finally,
they have reasonably distinguishable calls, compared to some
other candidates.

The challenge was that we started with no labeled examples of
these species in recordings from cotton regions. Using recordings
from other regions we built a recognizer that was able to find
enough of the target species that it could be used to optimize
the process of manually labeling cotton recordings to build the
training dataset. This process was iterated, with each iteration
adding more examples from cotton regions.

Related Research
For the last decade or more, interest in using acoustics for
ecological monitoring has been steadily increasing, bolstered by
a drop in the price for recording hardware and storage (Roe et al.,
2021) and more recently by advances in automated analysis (Xie
et al., 2019). For a number of years, deep learning techniques
have dominated these automated analysis approaches (Gupta
et al., 2021). In the 2018 Bird Audio Detection challenge a
competition for classifying 10-s audio clips as containing a bird
or not, the highest performing entries were all convolutional
neural networks, with the most accurate results achieved using a
transfer learning setup, with both resnet50 and inception models
(Lasseck, 2018).

Deep learning models, and machine learning models in
general, are trained on one set of examples, and tested on a
different set, referred to as the test set. Much published research
uses datasets where the training data and test data are drawn from
the same datasets (Narasimhan et al., 2017; Xu et al., 2020). While
this is valuable and interesting for exploring different algorithms,
in many real-world ecological applications the model will be
deployed in new environments. Other research tests models on
datasets not used in training (Stowell et al., 2019), which is a much
more challenging test of generalizability of the models.

This paper describes challenges related to this ability for the
model to generalize from one dataset to another. Most of the
literature presents an academic exercise in increasing accuracy on
an available test dataset. There is little research published on how
to approach the situation where the species recognizer is to be
deployed for a real-world ecological purpose but data from that
deployment location does not exist.

The main approach we took is an active learning approach.
Generally speaking, active learning involves the model
making predictions on unlabeled examples, selecting the
most informative of these for labeling based on a query strategy,
querying an oracle for the label, and then updating its weights
based on this new training example (Cohn et al., 1994; Wang
et al., 2019). This technique has been proposed in a number of
ecoacoustics studies: Kholghi et al. (2018) adopted this approach
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FIGURE 1 | Target species and their vocalizations. Australiasian Pipit, photo credit: https://commons.wikimedia.org/wiki/User:Summerdrought; https://creative
commons.org/licenses/by-sa/4.0/; Golden-headed Cisticola, Mistletoebird, Rufous Whistler, Australian Boobook, photo credit: https://commons.wikimedia.org
/wiki/User:JJ_Harrison; https://creativecommons.org/licenses/by-sa/4.0/legalcode. Striated Pardalote, photo credit: https://en.wikipedia.org/wiki/User:Fir0002;
https://creativecommons.org/licenses/by-nc/3.0/legalcode. Striped Honeyeater, photo credit: https://commons.wikimedia.org/wiki/User:Aviceda; https://creative
commons.org/licenses/by-sa/3.0/legalcode.

to speed up labeling audio for soundscape classification. Qian
et al. (2017) assessed the performance of active learning for
classifying a library of bird calls. These studies, however, are
made on constrained artificial tasks, and tend to focus on the
mathematics of the query strategy for selecting new samples.

This paper describes our experience in applying an active
learning approach to developing species recognizers for our
biodiversity monitoring project, using a mismatched initial
labeled dataset. As well as describing the network architecture
and active learning query strategy, we describe the progression
of how the dataset grew, and how the accuracy metrics for each
target species changed accordingly.

MATERIALS AND METHODS

Dataset Building Through Verification of
Results
Data Sources
Original Dataset

Ecosounds1 is a website built using the QUT Ecoacoustics
Workbench (Truskinger and Cottman-Fields, 2017) and serves

1www.ecosounds.org

as a repository for annotated ecological audio recordings. It
contains several datasets for which we had permission to use,
and which served as a starting point. These recordings were
from a variety of locations in eastern Australia, but none of
which were cotton regions. This dataset consisted of recordings
with vocalizations annotated with time and frequency bounds of
variable length. The numbers of examples for each species from
this dataset is shown in Table 1.

In addition to examples of the target species, a varied selection
of negative examples was also included in the training data.

TABLE 1 | Number of initial recordings from other regions.

Label Count

Australasian Pipit 1

Golden-Headed Cisticola 9

Mistletoebird 383

Nothing 174

Other 503

Rufous Whistler 5,000

Australian Boobook 464

Striated Pardalote 2,380

Striped Honeyeater 144
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Examples from every non-target species available to us was
included. The class containing non-target species events is
referred to as “other.”

Cotton Recordings
We deployed Song Meter SM3 recorders (Wildlife Acoustics)
on Australian cotton farms in the Narrabri region of northern
New South Wales in early 2020, and the St George, Miles
and Dalby regions of southern Queensland in late 2020 and
early 2021, shown in Figure 2 and Table 2. The recorders
were programmed to record for 2 h starting just before
dawn and 1 h during dusk at 24 kHz and default gain
settings. Ecosounds was used to store and later annotate these
cotton recordings.

Convolutional Neural Network Verification Workflow
Figure 3 illustrates the workflow to build the dataset so that it
contains examples from the cotton recordings.

Initial Labeling of Cotton Recording
Two species were under-represented in the non-cotton dataset:
Australasian Pipit and the Golden-headed Cisticola. Recognizers
were built for these species, using the QUT Ecoacoustic Analysis
Programs software (Towsey et al., 2020). These do not use learned
features or machine learning but rather use human-designed
features with thresholds manually set based on human knowledge
about the call structure. The results of these recognizers were
used to filter the cotton recordings. Combined with some random

FIGURE 2 | Cotton regions where recordings were taken. Imagery (C)2021
Landsat/Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Imagery
(C)2021 TerraMetrics, Map data (C)2021 Google.

TABLE 2 | Recording period for training data.

Region Number of Sites Period Total hours

Narrabri 12 March 2020 249

St George 2 December 2020–March 2021 331

Miles 2 December 2020–March 2021 317

manual sampling, this provided sufficient examples to initiate
training of the CNN, however, due to the high number of false
positives and scarcity of the target species, it was a slow and
inefficient exercise. A recognizer was also built for Australian
Boobook as this was an easier task due to the simple call structure
and quieter time (night) when they are active. Through this
process, a variety of examples for the negative classes as well as
a handful of examples for other target species were found. The
numbers for each species are show in column T1 of Table 3.

Training and Verification
Using a dataset comprised of both these initial cotton annotations
and the non-cotton annotations, the CNN was trained. Then the
following steps were performed repeatedly.

• The long unlabeled recordings were segmented into non-
overlapping 4 s segments which were each then classified
as belonging to one of the seven positive classes or on of
the two negative classes. As well as the predicted class, the
network also provides the probability for every class.

• These predictions and probabilities were then used to
select the subset that was most likely to contain examples
of the target species. Links to find these segments on
ecosounds were generated.

• An expert avian ecologist then correctly annotated the
selected segments.

• The dataset was recreated from all available annotations,
including these new additions.

This kind of iterative process is known as active learning. New
examples are added to the training set by selecting them based on
the estimated new information they will add to the classifier.

Query Strategy for Selection of Segments for
Verification
For the initial iterations, there were low numbers of detections for
the positive classes. For many of the classes none of the segments
were classified as that class. As these were unlabeled segments,
it was not possible to know whether this was because there were
few individuals of those species present in those recordings or the
recall for those species was very low.

A protocol for selection of the subset for human verification
was designed with the goals of (a) increasing the number of
examples of each of the target species (b) correctly labeling the
segments that the classifier was least sure about.

Firstly, for each species we included the 20 examples with
the highest probability for that class. In cases where there were
fewer than 20 segments classified as that class, we still selected
the top 20 examples using the probabilities output by the CNN.
That is, a particular segment might be the highest scoring for
one species even if that probability is lower than the probability
for another species. An example with a very high probability
that is verified to be correct may only marginally improve
the recognizer performance. This is because, for the particular
variations of the vocalization that is added to the training set,
the network is already performing well. However, if it turns out
that these high probability predictions were incorrect, then it
is very valuable to include them as training examples to rectify
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FIGURE 3 | Iterative workflow for verifying classification results.

these mistakes in subsequent iterations. Furthermore, an example
that the recognizer correctly identifies is often the case that other
examples are present nearby in the recording that may not have
been detected. These can be easily manually scanned for and
added by navigating in the Ecosounds interface.

Secondly, for each species, we included for verification the
10 examples that were classified as that class (or fewer if there
were fewer than 10 detections) but had the lowest probability of
belonging to that class—those that the CNN was least sure about.
These are likely to contain interesting and unique confusing
sounds, and are therefore valuable to include in the dataset.

Thirdly, for each species we included a random selection of 10
segments that were classified as belonging to that class (or fewer
if there were fewer than 10 detections). This can be used to get an
idea of the precision for each class.

TABLE 3 | Number of examples from cotton region recordings for each class at
each iteration T1 to T8.

Label T1 T2 T3 T4 T5 T6 T7 T8

Australasian Pipit 59 59 59 59 60 62 85 101

Golden-Headed Cisticola 156 156 156 156 268 294 399 426

Mistletoebird 2 2 2 7 24 34 57 68

Nothing 8 91 91 224 344 404 447 500

Other 990 1,207 1,291 1,329 1,692 1,847 1,893 1,923

Rufous Whistler 12 12 12 12 51 82 84 89

Australian Boobook 534 536 536 547 557 564 564 568

Striated Pardalote 3 3 3 5 5 15 15 15

Striped Honeyeater 3 3 3 9 48 75 102 108

For the “other” and “nothing” classes, we did the same, but
with only five examples between them. The reason for this lower
number, is that examples of these classes are very easy to find
and are likely to be included through false positive detections of
the bird species.

This resulted in a maximum of 300, 4-s segments to verify
on each iteration. However, the actual number may be fewer, as
the same segments can be included in more than one selection,
especially where there were few or no detections for some species.

Incorporation of Verified Samples Into the Dataset
For each of these, links were generated to view and listen to the
segments on the Ecosounds website, with some padding to give
more context. These verified segments now have annotations that
are then incorporated into the training/testing.

To ensure that the accuracies for the model trained on
different stages of the dataset were comparable with each other,
the model is retrained from scratch (i.e., transfer learning from
the initial weights provided by the model, described in the next
section), rather than fine tuning the previously trained model.

We repeated this process a total of eight times. Table 3 shows
the number of examples from cotton regions after each iteration.

Convolutional Neural Network
Architecture and Data Preprocessing
Convolutional Neural Network Architecture
The CNN architecture that was chosen is Resnet34 (He et al.,
2015). It is a deep convolutional neural network designed for
image classification, but which has been shown to perform
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well when trained on ecological audio (Lasseck, 2018). It is a
model that has been tested in many applications and the model
parameters pre-trained on a large image dataset are available to
allow transfer learning. The input to this architecture is a square
image of size 224 × 224 pixels. The network was implemented
and trained using the FastAI python library (Howard and
Gugger, 2018), built on Pytorch.

The output of the final fully connected layer is passed through
a softmax function to give a probability for each class. In
addition to a class for each of the seven target species, there
is one for events that were not vocalizations from the target
species labeled as “other,” and one for segments that only contain
background noise, labeled as “nothing.” Collectively these two
classes will be referred to as “negative examples.” The decision
to separate the negative class into “other” and “nothing” was
made due to the likely ease of determining the difference of
discriminating between these two and the potential usefulness of
being able to filter silent segments for applications like random
sampling in the future.

The CNN does not localize the vocalization to a region within
the input segment, but simply selects which of the classes the
segment belongs to. We chose to use a single class architecture,
meaning that it assumes that only one of the target species will be
present, with the probabilities for all the classes adding to one.
While this assumption may not necessarily always be true, we
did not come across any examples in cotton recordings where
this was the case. In the event that it does occur the pipeline
for extracting training examples from our library is set such
that it would include separate overlapping examples for the two
species. While this would necessarily cause the accuracy on one
of the two species to suffer slightly, it happened so infrequently
that it was deemed to be worth the benefit of the simplified
architecture as well as the dataset curation that a single class
classifier brings.

Audio Preprocessing
The annotations from which the training set was generated
were of variable length, due to the variable length nature of
the vocalizations. The CNN network requires a fixed size input.
While this could be achieved through simply squashing the image
down, as is common in standard image recognition, the nature of
spectrograms means this is unlikely to be appropriate. Instead,
a fixed duration segment of the variable length segment was
cropped at random from the longer variable length segment as
the input to the network. A different random crop was taken each
time the image was fed into the network. To allow for this random
cropping, for each annotation, a 1 s padding was added before
and after the full second marks that enclose the annotation, or
if the annotation was less than 4 s, the annotation was centered
in a 6 s clip with the boundaries on the nearest whole second.
For these short events, when cropped randomly, the resulting
4 s segment contains the entire vocalization. This is illustrated
in Figure 4.

The call library contains recordings at a variety of different
sample rates. For the resulting spectrogram images to be
comparable with each other, the inputs to the CNN should
all be at the same sample rate. For this reason, all recordings

were resampled to 16,000 Hz. Below are some considerations in
choosing the frequency to resample to.

Because the number of rows of the spectrogram is fixed,
lowering the top frequency gives a higher frequency resolution.
However, it may not be desirable to down-sample too far.
By including at least some of the frequency band above
the top frequency of the target calls, more information is
available to the CNN. For example, it may be that some
acoustic event resembles the target species vocalization within
the low frequency band, but also extends into the high
frequencies, and this is the information that can be used to
successfully discriminate.

Up-sampling is likely to be detrimental, and so the common
frequency to resample to must be equal to or lower than the
lowest frequency of the testing/training sets. Up-sampling will
introduce artificial blank space at the top of the spectrogram,
which could bias the network if certain classes are more likely
to occur in those recordings. That is, the network might make an
association between up-sampled audio and a given class.

Spectrogram Generation
For each variable length audio segment, a mel-scale spectrogram
was generated. With 16 kHz audio, a short time Fourier transform
(STFT) hop length is 286 samples to fit the desired 224-pixel
width of 4 s of spectrogram. We found this works well with
a window size of 512 samples with overlap of 226 samples
(44%). A high pass of 100 Hz was applied to remove very
low background noise. The python librosa package was used
to produce a mel-scale spectrogram. The mel-scale increases
the frequency resolution for low frequencies and reduces it for
high frequencies.

The amplitude was converted to a log scale, a common practice
for audio processing, and more closely represents the way that
the ear processes sound. That is, a certain difference in amplitude
between two low amplitude sounds will be more noticeable than
the difference in amplitude between two high amplitude sounds.
These log amplitude values were then normalized between 0
and 255 to produce the pixel color. Normalizing over very short
duration audio can have drawbacks. If the segment is very quiet
or contains only background noise, this background noise is
unnaturally amplified. However, this does not seem to cause the
performance of the network to suffer and is a simple way to scale
to pixel values.

Resnet was originally designed for red-green-blue (RGB) color
images, with the input a 224 × 224 × 3 tensor. The spectrogram
is a two-dimensional grid of log amplitude values. These values
of the pixels can be mapped to a three-dimensional array using a
number of different color mapping schemes, for example red for
high values and blue for low values. This kind of color mapping
is often used when visualizing spectrograms for human viewers
as it can be aesthetic, since loud events stand out from the
background as a different color. We opted for a simpler grayscale
mapping where the spectrogram is duplicated to each of the
three color channels, as it is easier to implement, and there does
not appear to be any evidence in the literature that grayscale is
worse. The computational overhead for redundant layers on the
input is negligible.
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FIGURE 4 | Segmentation of variable length audio, for both short (left) and long (right) annotations showing green bounding box of the time and frequency limits of
the annotation.

Spectrograms were pre-generated rather than generated on the
fly as part of the pipeline. This accelerates the training process as
spectrograms can be generated once rather than every epoch.

Data Augmentation
Training was performed on spectrograms of 4-s clips. Four
seconds was chosen for a number of reasons. Vocalizations
of the target species can be longer than 4 s, and the audio
segment needs to be long enough that it captures enough of
the vocalization to distinguish the class. However, it cannot be
too long as this will increase the likelihood that other sounds
will be included, and very short vocalizations would comprise
a very small proportion of the overall size of the spectrogram
image. The duration also needs to be reasonable to fit a square
spectrogram image.

The training examples were of variable length depending on
the duration of the example vocalization. On each epoch of
training, a random 4 s segment was taken from the variable length
segment. This trains the network to discriminate calls no matter
which point of time they appear in the 4 s segment, that is the
recognizer is time invariant.

Training examples were also blended with negative examples
taken from cotton regions from the training set. Negative
examples were selected, multiplied by between 0.1 and 0.3
randomly then added to the augmented training example before
normalization, which has the effect of audio-mixing on the
spectrogram images. This effectively synthesizes new training
examples with not only more variety of background sounds, but
background sounds that appear in the soundscape where the
recognizer will be eventually deployed.

All data augmentation was performed on the fly for each batch
of forward propagation on the training set, and the number of
training examples mentioned in this paper does not include the
contribution of augmentation.

Training
Examples were randomly allocated as either training (85%) or
testing (15%). This was done deterministically for each file by
taking a cryptographic hash of the id for the annotation mod
100 and splitting it according to the resulting value. This has
the advantage of easily ensuring that a particular example would
always belong to the same part of the split, which potentially
allows for finetuning of the model produced by the previous
iteration of the verification loop (although we chose not to
do this so that the results could be compared between each
iteration) without cross contamination between training and test
sets. The drawback is that for classes with very few examples, the
proportion of training examples can end up being greater or less
than 85%. Often in machine learning there is a third dataset split,
the validation set, which is used to calculate metrics to inform
hyperparameter tuning during the course of training, however,
this was not applicable to our design.

To prevent the massive class imbalance in the dataset from
biasing the CNN, care was taken in training so that on each
epoch the network used the same number of examples from each
class. This was achieved by repeating examples from classes that
had few examples. Thus, the only class that had its examples
fed into the network exactly once per epoch was the class with
the most examples (Rufous Whistler). Training continued for
four epochs, as this was when the test set error rate stopped
showing improvement.

RESULTS

After each iteration of training, metrics were calculated on the test
set. For each class the precision (the fraction items predicted to
belong to the class which were correct), and recall (the fraction of
items that belong to the class which were predicted as belonging
to that class) were calculated, as well as the F1 score, the harmonic
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TABLE 4 | Metrics for classification on test set for iteration 1, 5, and 8.

Precision Recall F1 Count Precision Recall F1 Count

T1 cotton T1 all

Australasian Pipit 0.8 0.667 0.727 6 0.667 0.667 0.667 6

Golden-Headed Cisticola 0.529 0.529 0.529 17 0.529 0.529 0.529 17

Mistletoebird 0 0 0 1 0.864 0.844 0.854 45

Nothing 0.333 0.333 0.333 3 0.774 0.923 0.842 26

Other 0.917 0.935 0.926 154 0.806 0.816 0.811 239

Rufous Whistler 0.5 0.667 0.571 3 0.98 0.984 0.982 740

Australian Boobook 1 0.988 0.994 83 0.981 0.963 0.972 162

Striated Pardalote 0 0 0 1 0.95 0.942 0.946 380

Striped Honeyeater 0 0 0 0 1 0.8 0.889 20

Accuracy 0.903 0.903 0.903 268 0.935 0.935 0.935 0.935

Macro average 0.453 0.458 0.453 268 0.839 0.83 0.832 1,635

Weighted average 0.898 0.903 0.9 268 0.935 0.935 0.935 1,635

T5 cotton T5 all

Australasian Pipit 0.8 0.667 0.727 6 0.8 0.667 0.727 6

Golden-Headed Cisticola 0.711 0.75 0.73 36 0.692 0.75 0.72 36

Mistletoebird 0.714 0.625 0.667 8 0.86 0.827 0.843 52

Nothing 0.711 0.771 0.74 35 0.725 0.862 0.787 58

Other 0.909 0.895 0.902 256 0.855 0.827 0.841 341

Rufous Whistler 0.6 0.857 0.706 7 0.979 0.992 0.986 754

Australian Boobook 1 0.988 0.994 85 1 0.945 0.972 164

Striated Pardalote 0 0 0 1 0.953 0.963 0.958 380

Striped Honeyeater 0.4 0.286 0.333 7 0.864 0.704 0.776 27

Accuracy 0.871 0.871 0.871 0.871 0.932 0.932 0.932 0.932

Macro average 0.649 0.649 0.644 441 0.859 0.837 0.845 1,818

Weighted average 0.874 0.871 0.872 441 0.933 0.932 0.932 1,818

T8 cotton T8 all

Australasian Pipit 0.8 0.8 0.8 10 0.8 0.8 0.8 10

Golden-Headed Cisticola 0.824 0.848 0.836 66 0.812 0.848 0.83 66

Mistletoebird 0.8 0.75 0.774 16 0.812 0.867 0.839 60

Nothing 0.772 0.863 0.815 51 0.779 0.905 0.838 74

Other 0.922 0.902 0.912 276 0.856 0.837 0.846 361

Rufous Whistler 0.714 0.909 0.8 11 0.979 0.989 0.984 741

Australian Boobook 0.988 0.988 0.988 85 0.987 0.957 0.972 164

Striated Pardalote 0 0 0 1 0.963 0.947 0.955 380

Striped Honeyeater 0.846 0.688 0.759 16 0.929 0.722 0.813 36

Accuracy 0.891 0.891 0.891 0.891 0.931 0.931 0.931 0.931

Macro average 0.741 0.75 0.743 532 0.88 0.875 0.875 1,892

Weighted average 0.892 0.891 0.891 532 0.932 0.931 0.931 1,892

Metrics are calculated for both all test examples and test examples from cotton.

mean of the precision and recall. We also determined the overall
accuracy, which is the fraction of items that were predicted
correctly, however, since our dataset was so unbalanced, this may
give an over-optimistic picture, as classes that contributed most
to the accuracy because they had a lot of examples also tended
to have higher precision and recall. We prefer to summarize
by averaging precision, recall and F1 across the classes with
each class weighted equally. This macro average of F1 score was
deemed the most important metric for the overall performance
of the recognizer.

Table 4 lists all the metrics for the recognizer after the first and
last iteration of training, as well as the middle iteration to give a
sense of the progress. The macro average F1 score increased from
0.45 to 0.74 between the first iteration (T1) and the final iteration
(T8). Also included are the confusion matrix for T1 and T8 in
Figure 5.

The results differed for each of the classes, depending on the
ease of discriminating species calls, the number of examples in
both cotton and non-cotton, and the abundance of the species in
the unlabeled cotton recordings used to build the dataset.
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FIGURE 5 | Confusion matrix for T1 (left) and T8 (right).

The Rufous Whistler was an interesting example. Initially we
had thousands of examples from non-cotton regions, but only 12
from cotton regions, three of which were included at random in
the test set. The initial precision and recall over the entire test set
was very high (F1 score of 0.98), however this did not generalize
to cotton with 0.5 precision and 0.67 recall, although with such
a small number the recall especially may be heavily influenced
by random variation. For the 5th iteration (T5) we had added
39 new examples and the precision and recall increased to 0.6
and 0.86, respectively. Finally, for the 8th iteration there were a
total of 89 examples, with the precision and recall increasing to
0.71 and 0.91, respectively. This improvement is interesting since,
although the number of examples of Rufous Whistler in cotton
increased more than sevenfold, this still comprised less than 2%
of the examples.

The Australian Boobook and the “other” class showed no
improvement, as they were already performing quite well
with the initial cotton examples that were added through
the verification of non-machine-learning Ecoacoustics Analysis
Programs detections. The Australian Boobook was the least
challenging of the seven target species because it is active at
night when there are fewer confusing sounds. The recall of the
“other” class lowered slightly as the dataset was built. This might
be because the sheer variety of events that belong to the “other”
means that, although we were adding misclassified confusing
events into the training set for “other,” we were also adding
confusing events to the test set that were not necessarily similar
to those added training examples. Regardless, this slight drop in
recall for the negative classes has no impact on the usefulness of
the model as a species detector.

Some species were not found in great numbers using the
verification loop workflow. The Australasian Pipit initially had 59
examples from cotton, which was increased to 101. The reported
recall in cotton for the Australasian Pipit was initially 0.68,
meaning that it should have been able to detect this species in

the unlabeled recordings. It is possible that Australasian Pipits
were not present or not particularly active during the time period
during which the recordings were made. This species was largely
absent from the non-cotton recordings, however, there were
enough found through the early laborious efforts to create some
initial examples.

The Striated Pardalote initially only had three examples
from cotton region recordings, with over 2,000 from non-
cotton recordings. The is eventually increased to 15 examples,
however due to the way that training, and test data was split,
only one example was included in the test set. The recall on
non-cotton recordings was quite high at 0.93, and therefore
we would have expected to find more examples in cotton if
they were present.

The Striped Honeyeater was one of the species with the best
improvement. It initially had only three examples from cotton
recordings, none of which ended up in the test data, and so
metrics could not be calculated. At T5 the number of examples
had increased to 48, and the F1 score from the model trained on
this was 0.3. By T8 the number of examples had grown to 108 and
the F1 score increased to 0.76.

The overall macro average F1 of the test set of all recordings
also increased from 0.83 to 0.88. This was initially surprising,
since the overall number of new examples from cotton recordings
added was only a fraction of the total recordings. However,
for some classes, namely Australasian Pipit, other, nothing, and
Striped Honeyeater, the proportion of new examples added
between T1 and T8 was high.

It can be seen that the first few iterations were relatively
unsuccessful in finding new examples across many of the species,
and then the rate of finding new examples started to accelerate.
One explanation for this might be that early on there were many
incorrect detections of target species that were labeled as “other”
on verification. It wasn’t until the after this initial addition to the
training set of confusing sounds present only in the deployment
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location that the model was able to reduce false positive rate
enough for target species to begin to be added.

DISCUSSION

Example of Data Mismatch
A potential cause for mismatch is a systematic bias in the
labeled recordings. For example, our labeled Australian Boobook
recordings, which were made at night, were often accompanied
by cicadas stridulating. Our negative set of recordings of class
“other” was designed to include a wide variety of calls by
sampling from the full range of annotations. However, this did
not happen to contain many annotations of cicadas. This led
to the CNN learning to associate the presence of cicadas with
Australian Boobooks and therefore produced many false positive
Australian Boobook detections where cicadas were present. In
this example, the one iteration of verifications remedied this;
these false positives were added to the training set and the
precision for Australian Boobooks increased.

Bias Introduced Through Feedback
A limitation of using results from a classifier to find more training
examples is that it may be missing a certain variety of call type that
were never included and therefore it continues to miss. While
we can estimate the proportion of detections of each class that
were correct (precision), which gives the false positive rate, it is
not possible to measure the proportion of each class in unlabeled
recordings that were found (recall), as only a small fraction of
the analyzed duration is verified, meaning we can’t know the
false negative rate. We tried to address this as best as we could
by doing some random sampling of segments in close temporal
proximity to any true positive detection. This is because it is likely
that individuals or members of the group will call repeatedly,
and this approach had some success on occasion. However, the
expertise of the ecologist doing the verifications is important
here, as their knowledge of the habits of the different species
at different seasons, times of day and vegetation types informed
their decision to dedicate time to this search.

Acceptable F1 Scores for Drawing
Conclusions
The main purpose of this classifier is to detect differences in
species richness among the target species over long periods of
time, drawing on the aggregations of many individual predictions
of 4-s segments. It is possible to compare the presence of a
particular species between two sets of many recordings even
with a number of errors, as this process of aggregation removes
the impact of the individual errors. In theory, as long as the
errors are made in a consistent way across the two sets of
recordings being compared, any F1 score above that of random
guessing (0.11 for a nine-class classifier) could still be useful if
aggregated across enough data. Of course, in reality, the errors
will not necessarily be random or consistent. For example, there
may be a sound source that causes confusion present in one
of the sets of recordings and not the other. Most of our target
species ended with F1 scores around 0.8–0.9, which should be
enough to compare sets of recordings on aggregate, even with

the potential of these confusing sounds not being spread evenly
across the recordings.

CONCLUSION

Through an iterative process of training, classifying unlabeled
recordings, verifying and retraining, we were able to build a
dataset for the cotton regions of eastern Australia that can be
used to train a convolutional neural network to achieve a macro
average F1 score across seven target species of birds plus two
negative classes of 0.74%. This F1 score would likely continue
to improve with further iterations. In the future, this ecoacoustic
analytical approach will be deployed with the aim of monitoring
changes in the mean proportion of functional guilds of birds in
response to on-farm vegetation management in cotton growing
regions of Australia, providing valuable information to assist the
cotton industry in preserving biodiversity.
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