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Wetlands in estuary deltas functionally protect biodiversity, store water, and regulate
ecological balance. However, wetland monitoring accuracy is low when using only
synthetic aperture radar (SAR) images or optical images. This study proposes a
novel method for extracting ground objects in a wetland using principal component
analysis (PCA) and random forest (RF) classification, which combines the features of
fully polarimetric SAR images and optical images. Firstly, polarization decomposition
features and texture features were extracted based on polarimetric SAR data, and
spectral features were extracted based on optical data. Secondly, the optical image was
registered to SAR image. Then PCA was performed on the nine polarimetric features
of the SAR images and the four spectral features of the optical images to obtain
the first two principal components of each. After combining these components, a RF
classification algorithm was used to extract the objects. The objects in the Yellow River
Delta wetland were successfully extracted using our proposed method with Gaofen-3
fully polarimetric SAR data and Sentinel-2A optical data acquired in November 2018.
The overall accuracy of the proposed method was 86.18%, and the Kappa coefficient
was 0.84. This was an improvement of 18.96% and 0.22, respectively, over the GF-
3 polarimetric features classification, and 11.02% and 0.13, respectively, over the
Sentinel-2A spectral features classification. Compared with the results of the support
vector machine, maximum likelihood, and minimum distance classification algorithms,
the overall accuracy of the RF classification based on joint features was 2.03, 5.69, and
23.36% higher, respectively, and the Kappa coefficient was 0.03, 0.07, and 0.27 higher,
respectively. Therefore, this novel method can increase the accuracy of the extraction of
objects in a wetland, providing a reliable technical means for wetland monitoring.

Keywords: wetland monitoring, Yellow River Delta, principal component analysis, random forest, fully polarimetric
SAR, optical image

Abbreviations: ASM, Angular second moment; CON, Contrast; COR, Correlation; DIS, Dissimilarity; ENT, Entropy; HOM,
Homogeneity; VAR, Variance; MDC, Minimum distance classification; MLC, Maximum likelihood classification; PCA,
Principal component analysis; RF, Random forest; SAR, Synthetic aperture radar; SVM, Support vector machine; UAV,
Unmanned aerial vehicles.
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INTRODUCTION

Wetlands are an important part of the ecosystem in estuary
deltas. They not only have rich biodiversity and extremely high
productivity, but also play an irreplaceable role in purifying
the environment, regulating climate, conserving water sources,
protecting biodiversity, and providing humans with land,
tourism, and natural resources (Delgado and Marín, 2013). In
China, the Yellow River Delta is the second largest estuary delta
after the Yangtze River Delta and the youngest wetland ecosystem
in the warm temperate zone (Kong et al., 2015; Cong et al.,
2019). The Yellow River Delta wetland provides environmental,
cultural, and economic value. However, in recent years, due to the
influence of human activities, industrial development, invasive
species (Spartina alterniflora), and other factors, the wetland
has suffered significant damage and degradation. Therefore, it is
important to monitor and protect the Yellow River Delta wetland.

Recently, many experts and scholars have used multisource
remote sensing images and various classification methods to
monitor wetlands with varying results (Mahdavi et al., 2018).
Among these methods, optical remote sensing has provided an
important data source. Using Landsat data of 20 scenes from
1976 to 2000, Chu et al. (2006) examined the changing pattern
of accretion and erosion of the modern Yellow River subaerial
delta. Feng et al. (2015) utilized the spectral and texture features
of Landsat images to study the cropland dynamics of the Yellow
River Delta during the last three decades. Liu et al. (2016)
proposed a method that combined multiple end-member spectral
mixture analysis and a random forest (RF) to map the land
cover in the Yellow River Delta wetland using Landsat-8 images.
Mao et al. (2016) reconstructed wetland ecosystem patterns
using Landsat and Chinese HJ satellite images and investigated
the dynamics of the spatial characteristics and heterogeneity of
natural and human-made wetlands in Northeast China. Zhang L.
et al. (2019) extracted and selected features based on Sentinel-
2 data, and then extracted wetland information for the Yellow
River Delta using an RF algorithm. Wang et al. (2019) classified
land cover in the Linhong Estuary Wetland in Lianyungang
using Worldview-2 and Landsat-8 images and the RF method.
Geng et al. (2019) used unmanned aerial vehicle (UAV) images
and an object-oriented RF algorithm to achieve high-precision
classification of karst wetland vegetation in Huixian. Jia et al.
(2021) used Sentinel-2 time-series images of the entire coastline
of China to draw more accurate and higher spatial resolution
tidal flat maps based on the GEE platform. Dang et al. (2021)
used Landsat images with the aid of a hybrid classification
approach to determine the long-term dynamics of wetlands in
the south-west coast of the coastal wetlands in the Mekong
Delta and analyze the potential factors driving these dynamics.
Martínez Prentice et al. (2021) used high-resolution images
obtained by multispectral cameras mounted on UAV to capture
the heterogeneity of the environment in images. They compared
the accuracies of two machine learning classifiers using a pixel
and object analysis approach in six coastal wetland sites. It can be
seen from the above literature that many scholars used Landsat
images or Sentinel-2 images in optical data for wetland research.
The resolution of Landsat images is low, and the ability to

recognize specific objects in some wetlands is poor. Using time
series Landsat or Sentinel-2 images can effectively improve the
accuracy of wetland monitoring, but they also have the problem
of large data volume and long calculation time. And because of
the weather, it is difficult to obtain sufficient images. All these
have an impact on monitoring wetland. Some scholars use UAV
data for monitoring wetland, but its endurance is poor and it is
difficult to monitor wetland in a larger area.

Synthetic aperture radar (SAR), with all-time and all-
weather observation capabilities, also provides effective data
for wetland monitoring. Du et al. (2014) proposed a new
approach: Boosted Multiple-Kernel Extreme Learning Machines,
and applied it to the classification of AIRSAR and EMISAR
data. Experimental results indicate that the proposed technique
achieves the highest classification accuracy values when dealing
with multiple features, such as a combination of polarimetric
coherency and multiscale spatial features. Wang et al. (2016)
chose three study sites (including the Yangtze Estuary, Hangzhou
Bay, and the Leizhou Peninsula) with different environmental
conditions and land cover characteristics and proposed a new
classification scheme for mud and sand flats on intertidal
flats using fully polarimetric (SAR) data. Freeman–Durden and
Cloude–Pottier polarization decomposition components as well
as double bounce eigenvalue relative difference are introduced
into the feature sets. Then classification is carried out using the
RF. Buono et al. (2017) analyzed object types in the Yellow
River Delta wetland based on Freeman–Durden decomposition
and polarization scattering entropy/average scattering angle
(H/α) decomposition using Radarsat-2 fully polarimetric SAR
data. Using multipolarization and multifrequency SAR data,
including X-band TerraSAR-X single-polarized (HH), L-band
ALOS-2 dual-polarized (HH/HV), and C-band RADARSAT-2
fully polarized images, Mahdianpari et al. (2017) proposed a
hierarchical, object-based RF approach for wetland classification
in the northeastern portion of the Avalon Peninsula. Wei et al.
(2019) extracted polarization characteristic parameters from
four Gaofen-3 (GF-3) quad-polarized SAR images and classified
the Longbao Plateau wetland using the maximum likelihood
classification (MLC) method. Hu et al. (2021) utilized annual SAR
composite features to address the seasonal variations and tidal
dynamics in salt marshes, and Sentinel-1 time-series data and
knowledge-based automatic decision tree classifiers to produce a
10 m resolution map of the salt marshes in the coastal zones of
China. Chen et al. (2020) used ALOS-PAL SAR fully polarimetric
SAR data to extract polarimetric scattering characteristics using
various decomposition methods and proposed a new algorithm
combining an RF with sequential forward selection to classify
coastal wetlands in Jiangsu Province. Zhang X. et al. (2021)
obtained SAR features based on GF-3 images, and combined RF
with sequential backward selection to select the best polarization
features for classification in the Yancheng Coastal Wetlands.
Scholars used multipolarization and multifrequency SAR data
for monitoring wetland. Because fully polarimetric data contains
more ground information, when a small amount of SAR data
was used for monitoring, the monitoring effect of the fully
polarimetric data was better than that of the single/double
polarization. However, due to the limitation of data sources,
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it may be difficult to obtain more fully polarimetric data. The
Sentinel-1 dual polarization long time series data were often used
for monitoring ground objects, which can also achieve better
classification accuracy. SAR data provided a large number of
data sources for monitoring wetland without the influence of
weather, but its own noise also affected the accuracy of ground
objects monitoring.

Optical remote sensing data contains abundant spectral
information, including the reflection or emission spectra of
ground objects. SAR data can penetrate ground objects to certain
degrees, and contains information on the surface roughness,
complex permittivity, and body structure of the objects. The
combined use of SAR and optical images utilizes the advantages
of both and improves the monitoring of ground objects. Zhen
et al. (2018) developed a method to improve the classification
of mangrove forests using Radarsat-2 quad-polarized SAR data
and Landsat 8 optical data, by analyzing the spectral and
backscattering signatures of the mangrove forests and using the
support vector machine (SVM) classification method to classify
the land cover in Dongzhaigang National Nature Reserve in
Hainan. Franklin et al. (2018) used quad-polarized SAR data
and Landsat 8 optical data to classify the northern swamps
of Canada with pixel-based MLC and object-oriented machine
learning algorithms. Gao et al. (2018) combined the intensity
vector of GF-3 polarimetric SAR data with Sentinel-2A optical
data, and used the SVM method to classify crops in the Dongting
Lake basin. Mahdianpari et al. (2019) used multiyear summer
SAR Sentinel-1 and optical Sentinel-2 data composites to identify
the spatial distribution of five wetland and three non-wetland
classes on the Island of Newfoundland. The classification results
were evaluated using both pixel-based and object-based RF
classifications implemented on the GEE platform. Li et al. (2019)
used GF-3 SAR data and Sentinel-2B multispectral data to analyze
the spectral, index, polarization scatter, and texture feature
information of seven types of objects in the Yellow River Delta
wetland, and chose the MLC, decision tree, and SVM classifier
methods, which are all supervised classification methods for
monitoring wetland. The results of three classification methods
showed that the overall accuracy of the joint classification can
reach 90.4, 95.4, and 95.7%, significantly higher than that of the
individual classifications, showing the promising potential of GF-
3 SAR and Sentinel-2B multispectral images in joint wetland
classification. Taking the Yellow River Delta region as an example,
Feng et al. (2019) proposed a multibranch convolutional neural
network for the fusion of multitemporal and multisensor Sentinel
data to improve classification accuracy for coastal land cover.
Experimental results indicated that the proposed method showed
good performance, with an overall accuracy of 93.78% and a
Kappa coefficient of 0.9297. Slagter et al. (2020) used dense
Sentinel-1 and Sentinel-2 data for wetland mapping in multiple
levels of characterization by RF. The results for the St. Lucia
wetlands in South Africa showed that combining Sentinel-1 and
Sentinel-2 led to significantly higher classification accuracies
than for using the systems separately. Ferrentino et al. (2020)
discussed methods of coastline extraction of a wetland in the
Solway Firth based on RadarSAT-2 and Sentinel-1 data. They
proved that the joint combination of nonlocal speckle filters

and dual-polarimetric information provided the best accuracy.
In addition, larger incidence angles resulted in the best accuracy
when the dual-polarization metric, augmented by a nonlocal
filtering, was used. Zhang et al. (2020) studied the karst mountain
in Chongqing using features of the spectrum, texture, and space
from optical and SAR images, supplemented by the normalized
difference vegetation index, elevation, slope, and other relevant
information. Furthermore, they proposed a new feature fusion
framework to conduct land cover classification experiments.
Hosseiny et al. (2021) presented a WetNet model for classifying
wetland areas using time series of Sentinel-1 and Sentinel-2 data.
Experimental results indicate that WetNet outperforms the state-
of-the-art deep models (e.g., InceptionResnetV2, InceptionV3,
and DenseNet121) in terms of both the classification accuracy
and processing time. Granger et al. (2021) used advanced remote
sensing methods including field-collected data, object-based
image analysis of Sentinel-1, Sentinel-2, and digital elevation
model Earth observation data to develop a wetland inventory
of the area in Conne River. Hosseiny et al. (2021) presented a
WetNet model for classifying wetland areas using time series of
Sentinel-1 and Sentinel-2 data. Experimental results indicated
that WetNet outperforms the state-of-the-art deep models (e.g.,
InceptionResnetV2, InceptionV3, and DenseNet121) in terms
of both the classification accuracy and processing time. Fu
et al. (2021) combined 18 multidimensional data sets based on
sentinel-1 and Sentinel-2 data. The recursive feature elimination
variable selection algorithm was used for variable selection and
an object-based RF model was constructed to explore the impact
of multitemporal active and passive data source integration on
marsh vegetation classification.

Based on the above research, optical images can reflect the rich
spectral information of objects. SAR is capable of imaging under
all-weather conditions, such as clouds and rain; moreover, it is
sensitive to soil moisture and can detect hydrological vegetation
characteristics. Combining polarimetric and optical data for
wetland classification fully utilizes the spectral and backscattering
information of the wetland objects. Additionally, it increases
the separability between the wetland objects and reduces the
influence of speckle noise, making it an effective monitoring
method. However, combining the two types of data results in
greater redundancy, because of the large amount of data. Thus,
both spectral and polarization features must be selected to reduce
data redundancy and improve wetland monitoring efficiency in
the Yellow River Delta. Therefore, in this paper, we proposed
a new method of combining GF-3 polarimetric features and
Sentinel-2A spectral features; after using principal component
analysis (PCA) to select the features, an RF classification method
was applied for monitoring the wetland.

The main sections of this paper are organized as follows: In
section “Materials and Methods,” the study area and experimental
data are introduced, including the fully polarimetric SAR data
and optical remote sensing data. Additionally, it describes
the novel method proposed in this paper, which is based on
polarimetric SAR features extraction, spectral features extraction,
PCA, and RF classification. Section “Results” presents the results
of the polarization decomposition, texture features selection,
PCA, and final classification maps. Section “Discussion” presents
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our analysis and discussion. To illustrate the effectiveness of this
method in monitoring the wetland, the results of the proposed
method are compared with the results from single-featured
RF classification and other classification methods using joint
features. Finally, some important conclusions drawn from this
study are presented in Section “Conclusion.”

MATERIALS AND METHODS

Study Area
The Yellow River Delta is located on the south coast of Bohai Bay
and on the west coast of Laizhou Bay in China. Its geographical
coordinates are 36◦55′–38◦16′N, 117◦31′–119◦18′E, which is
mainly in Dongying City, Shandong Province. The Yellow River
Delta is in the eastern portion of the warm temperate zone of
Eurasia, where the differing thermal properties between the land
and sea form a temperate monsoon climate with four distinct
seasons. The summer is hot and rainy, and the winter is cold
and dry (Gao et al., 2021). The Yellow River Delta is divided into
two parts: the estuary of the old Yellow River and the estuary
of the current Yellow River. This study considers the current
Yellow River estuary in the south as the study area, as shown in
the red box in Figure 1. Combining literature (Ma et al., 2019;
Li et al., 2021; Zhang C. et al., 2021) and data query, this study
classified objects in the delta wetland into nine types as follows:
the river channel, sea water, pit ponds, culture ponds, tidal flats,
S. alterniflora, Phragmites australis, farmland, and buildings. In
order to better determine the types of wetland objects, we carried
out field investigation and obtained real images of ground objects.
The real images of various wetland objects and corresponding

Sentinel-2A optical and GF-3 polarimetric images are shown in
Table 1.

Data
The fully polarimetric SAR data used in the experimental study
were from GF-3, the first Chinese civilian C-band SAR, which was
launched on August 10, 2016. The radar operates in 12 imaging
modes with a resolution of up to 1 m. The imaging modes of GF-3
images are listed in Table 2. Its high-resolution satellite imaging
modes include traditional striping and scanning imaging modes,
as well as a wave imaging mode and global observation imaging
mode for marine applications (Yin et al., 2017). GF-3 images
from October 12, 2017 and November 5, 2018 were used in this
study. The imaging mode is quad-polarized strip I. Each GF-
3 image contains four polarization channels, HH, HV, VH, and
VV, with a resolution of 8 m. Three of the polarization channels,
VH, HV, and VV, were assigned the colors red, green, and blue,
respectively, to compose color images. The results of this color
synthesis are shown in Figure 2. The coverage area of GF-3 image
acquired on October 12, 2017 is 619.31 square kilometers, and the
incident angle ranges from 36.89◦ to 38.17◦. The coverage area
of GF-3 image on acquired November 5, 2018 is 1249.14 square
kilometers, and the incident angle is 32.46◦–34.52◦. The swath
width of both SAR images is 30 km.

The optical remote sensing data used in this study were from
the Sentinel-2 satellites, which are the second satellite of the
“Global Environment and Safety Monitoring” program. Sentinel-
2A was launched on June 23, 2015 and Sentinel-2B was launched
on March 07, 2017. Sentinel-2 carry a multispectral imager that
covers 13 spectral bands and has a width of 290 km. The highest
spatial resolution of Sentinel-2 is 10 m, and the revisit period

FIGURE 1 | Location of the study area, as indicated by the red square. (A) Asia with the study area location. The light blue represents parts of Asia. Red is China and
the bright green part represents Shandong province in China. (B) The specific location of the study area in China.
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TABLE 1 | The remote sensing interpretation key of main wetland objects
in the study area.

Wetland objects Field images Sentinel-2A images GF-3 images

River channel

Sea water

Pit ponds

Culture ponds

Tidal flats

Spartina alterniflora

Phragmites australis

Farmland

Buildings

for each Sentinel-2 satellite is 10 days (Zarco-Tejada et al., 2019).
A Sentinel-2 multispectral image with a cloud cover of less than
10% and a spatial resolution of 10 m, captured on October
12, 2017 and November 3, 2018, the same period as the GF-
3 data, were used to analyze the Yellow River Delta wetland.
The Sentinel-2A data were given red, green, and blue primary

colors for bands 4, 3, and 2, respectively, to generate true color
images. The results of this color synthesis are shown in Figure 3.
Based on GF-3 and Sentinel-2A images from November 2018,
we combined polarimetric features and spectral features for
wetland monitoring in the Yellow River Delta, and a validation
experiment was carried out using GF-3 and Sentinel-2B data
from October 2017.

Methods
In this study, a novel method for extracting wetland object
types was established using PCA and the RF classification
method, which combined the polarimetric features of fully
polarimetric SAR images and the spectral features of optical
images. The polarimetric features, which contained polarization
decomposition features and texture features, were obtained from
a fully polarimetric SAR image. The spectral features of the
optical image were also extracted, and then the PCA method
was used to select features to reduce data redundancy. Then,
the selected features were combined to classify the objects and
monitor the wetland using an RF classifier.

Feature Extraction
The basic principle of polarization target decomposition is to
decompose the polarimetric SAR Mueller matrix into a sum of
several scattering mechanisms with certain physical significance
(Huynen, 1978; Nunziata et al., 2012). According to the scattering
characteristics of the target, the target decomposition is divided
into two categories, including coherent target decomposition
and incoherent target decomposition (Cloude and Pottier, 1996).
In this paper, Pauli decomposition (Migliaccio and Nunziata,
2014; Rosa et al., 2016; Zhang X. et al., 2019) in coherent
polarization target decomposition and H/α/A (where A is
polarization anisotropy) decomposition (Cloude and Pottier,
1997) in incoherent target decomposition were used to obtain
polarization decomposition features of wetland objects.

We extracted polarimetric texture features based on
polarimetric total power images. Haralick et al. (1973) calculated
14 types of eigenvalues using a gray level cooccurrence matrix

TABLE 2 | Imaging modes of GF-3.

Image mode Incidence
angle (◦)

Resolution
(m)

Swath
(km)

Spotlight 20–50 1 10 × 10

Ultra-fine strip 20–50 3 130

Fine strip 19–50 5 300

Wide fine strip 19–50 10 500

Standard strip 17–50 25 650

Narrow ScanSAR 17–50 50 30

Wide ScanSAR 17–50 100 40

Global observation 17–53 500 650

Quad-polarized strip I 20–41 8 30

Quad-polarized strip II 20–38 25 40

Wave 20–41 10 5 × 5

Expended incidence angle 10–60 25 130

50–60 25 80
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FIGURE 2 | Result of the color synthesis of the GF-3 polarization channels. The darker areas in the image are mainly water or tidal flat, and the brighter coastal areas
are vegetation, mainly S. alterniflora and P. australis. (A) Image obtained on October 12, 2017; (B) Image obtained on November 05, 2018.

FIGURE 3 | Sentinel-2A color synthesis result. The yellow ribbon-like object in the figure is the Yellow River, and the P. australis is beside it. The light blue in the upper
right is sea water. (A) Image obtained on October 12, 2017; (B) Image obtained on November 05, 2018.

to quantitatively describe the texture information of an image,
among which eight texture eigenvalues, specifically the mean
(MEAN), variance (VAR), homogeneity (HOM), contrast
(CON), dissimilarity (DIS), entropy (ENT), angular second

moment (ASM), and correlation (COR), are often used to
express the texture of remote sensing images. This method is
robust and widely used to extract texture information from SAR
images. Therefore, Therefore, in this paper, we used the gray
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FIGURE 4 | Flow chart of the method for extracting the wetland objects.

level cooccurrence matrix to obtain the texture features from the
polarimetric total power of SAR.

Spectral features were obtained from Sentinel-2 images. We
used the Sen2Cor (Main-Knorn et al., 2017) plug-in provided by
the European Space Agency to achieve radiometric calibration
and atmospheric correction for the Sentinel-2 data, and then
extracted four bands with a spatial resolution of 10 m (bands 2, 3,
4, and 8, corresponding to the blue, green, red, and near-infrared
bands). We then registered the Sentinel-2 spectral data based on
GF-3 SAR data to facilitate the combination of the polarimetric
and spectral features for our classification algorithms.

In order to eliminate the influence of different dimensions
between different features, the data need to be normalized.
We normalized the obtained polarimetric features (including
polarization decomposition features and texture features) and
spectral features. The standardized calculation formula is as
follows:

Xnormalization =
Xi − Xmin

Xmax − Xmin
(1)

Where, Xnormalization is the standardized value, Xi is the
original value, Xmin is the minimum value, and Xmax is the
maximum value.

Principal Component Analysis
Principal Component Analysis transforms a group of potentially
correlated variables into a group of linearly uncorrelated variables
through orthogonal transformation, which can be used to
output irrelevant image bands, separate noise components,
and reduce the dimensionality of data sets in remote sensing
(Eklundh and Singh, 1993).

Random Forest Classification
The RF algorithm is an ensemble algorithm based on the
decision tree proposed by Breiman (2001) in 2001. It extracts
and generates a subset of training samples from a set of original
training samples and generates a decision tree from a subset
of the training samples. The set composed of these decision
trees constitutes an RF. Finally, the average prediction value
of all decision trees is taken as the final prediction result. An
RF classifier can reduce the risk of overfitting and deal with
high-dimensional data through an average decision tree.

We combined polarimetric features and spectral features to
form joint feature for RF classification. At the same time, we
used only polarimetric features, only spectral features for RF
classification. Based on the joint features, we used the SVM,
MLC, and MDC to compare with the RF classification. All
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TABLE 3 | Principal component analysis results.

The data of October 2017 The data of November 2018

PC Cumulative
percentage of

spectral
features (%)

Cumulative
percentage of
polarimetric
features (%)

Cumulative
percentage of

spectral
features (%)

Cumulative
percentage of
polarimetric
features (%)

1 85.82% 65.40% 79.88% 77.06%

2 99.08% 99.37% 99.19% 99.27%

3 99.85% 99.76% 99.95% 99.84%

4 100.00% 99.98% 100.00% 99.99%

classification experiments were performed on a computer with
i5-6200 GPU and 8 GB RAM.

According to Sentinel-2 images data and field survey data,
we select training samples and verification samples. For data in
October 2017, 385 samples were randomly selected, including
185 training samples and 200 validation samples. For data
in November 2018, 650 samples were selected, including 350
training samples, and 300 validation samples.

Wetland Object Extraction Method Based on a
Random Forest
The RF classification algorithm was used to classify the ground
objects in the Yellow River Delta wetland by combining the
polarimetric features of the GF-3 data and spectral features of the
Sentinel-2 data. A flow chart of the method for extracting specific
wetland object types is shown in Figure 4 and the list below.

(1) The GF-3 data were preprocessed by radiation calibration
and polarization matrix conversion to obtain the
polarization matrix T3. Multilook processing and refined
Lee filter (Lee et al., 1999) processing were performed to
reduce speckle noise. The azimuth and range window for
multilook processing was set to 3 × 3, and the filtering
window was 3× 3.

(2) Polarization target decomposition of T3 was carried
out. Based on the Pauli decomposition and H/α/A
decomposition, six polarimetric parameters were
extracted: odd scattering, 0◦ dihedral angle scattering, 45◦
dihedral angle scattering, scattering entropy, anisotropy,
and average scattering angle.

(3) The texture characteristics of the total polarization power
of GF-3 were extracted and screened to obtain the
three texture parameters: mean, variance, and contrast.
The polarization decomposition features and texture
features extracted from GF-3 are collectively referred to as
polarimetric features.

(4) Geocoding transferred the characteristic parameters of
the fully polarimetric SAR data from the slant-range
coordinate system to the geographic coordinate system,
which facilitates the interpretation of the objects in
the wetland. After preprocessing, the cubic convolution
method was used to resample the GF-3 images, and the
final resolution were 10 m.

(5) The Sentinel-2 L1C data were processed by radiometric
calibration and atmospheric correction to obtain the L2A
data. Four bands (2, 3, 4, and 8, corresponding to blue,
green, red, and near-infrared bands) with a 10 m resolution
were extracted as spectral features for classification.

(6) A deviation existed between the geometric position of the
geocoded GF-3 image and the Sentinel-2A image. Based on
the GF-3 data, Sentinel-2 spectral data were registered by
selecting control points.

(7) To reduce data redundancy, PCA was carried out on the
polarimetric and spectral features. The first two principal
components of each were obtained. Then, these four
principal components were combined as joint features
for classification.

(8) The number of classified ground objects was determined.
Training samples were selected and the RF classifier was
trained. Then, using the joint features as the input, the
trained RF classifier was applied to extract the object types
in the Yellow River Delta wetland.

(9) Using the Sentinel-2 image and field images, verification
samples were selected through visual interpretation, and
the accuracy of the extracted wetland objects was analyzed.

RESULTS

In this study, the polarimetric features were extracted based
on GF-3 polarimetric SAR data, including the following: odd
scattering power, double scattering power, and volume scattering
power, which were obtained by Pauli decomposition; H, α,
and A, which were obtained by H/α/A decomposition; the
polarization texture features of MEAN, VAR, and CON; and
a total of nine polarization feature parameters. After PCA of
the nine polarization feature parameters, the first two principal
components were selected as polarimetric features. Based on
Sentinel-2 data, four bands with 10 m resolution were extracted,
and the first two principal components were selected as spectral
features after PCA. The two types of features were combined to
form joint feature for wetland classification.

Polarization Decomposition Features
After obtaining and processing the T3 coherence matrix,
polarization decomposition of this filtered matrix was carried
out, using Pauli and H/α/A decomposition. The window size
for both Pauli decomposition and H/α/A decomposition is
set to 3 × 3. The color synthesis results of polarization
decomposition are shown in Figure 5. Figures 5A,C are the Pauli
decomposition figures for October 2017 and November 2018,
respectively. The double scattering power, volume scattering
power, and odd scattering power of Pauli decomposition
are assigned red, green and blue channel to compose color
images, respectively. Figures 5B,D are the H/α/A decomposition
results for October 2017 and November 2018, respectively.
The scattering angle, anisotropy, and entropy of H/α/A
decomposition are assigned to red, green, and blue channel to
compose color images, respectively.
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FIGURE 5 | Results of polarization decomposition. (A,C) Are the Pauli decomposition figures for October 2017 and November 2018, respectively. (B,D) Are the
H/α/A decomposition figures for October 2017 and November 2018, respectively.

Texture Feature Selection
The polarimetric total power (SPAN) was obtained by the
superposition of the intensities of the four polarization channels:
HH, HV, VH, and VV. After superposition, some of the positive
and negative noise interference was eliminated or weakened,

which increased the separability among the objects in the
wetland. The polarimetric total power of GF-3 are shown in
Figure 6. The calculation formula of SPAN is as follows:

SPAN = σhh + σhv + σvh + σvv (2)
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FIGURE 6 | The polarimetric total power of GF-3. The dark area is water body, and the brighter area is various vegetations in the figure. (A) Is the data of October
2017, (B) is the data of November 2018.

Where, σhh, σhv, σvh, and σvv represent polarization channel
backscattering intensities of HH, HV, VH, and VV, respectively.

A combination of different texture features can improve the
classification accuracy for ground objects; therefore, a gray level
co-occurrence texture matrix was used to extract polarimetric
texture features from the polarimetric total power images. Seven
window sizes were tested, specifically 3 × 3, 5 × 5, 7 × 7,
9 × 9, 11 × 11, 13 × 13, and 15 × 15. Through experimental
verification, the best window size for extracting the texture
features was 5 × 5. Eight texture feature parameters, specifically
the MEAN, VAR, HOM, CON, DIS, ENT, ASM, and COR, were
extracted based on this window size. To reduce accidental errors,
the mean value of the texture feature parameters for each wetland
object type was calculated and analyzed. The statistical results are
shown in Figure 7.

Figure 7 shows that among the eight texture feature
parameters, the object types are significantly different among
MEAN, VAR, and CON. Therefore, these three texture features
were selected for subsequent classification processing. When
considering the details, discrimination, and operation time for
the ground objects, the direction was 45◦, and the gray level
was 32.

Principal Component Analysis Results
Because the four spectral features and the nine polarimetric
features had data redundancy, PCA was performed on the two
kinds of data separately. Afterward, the main feature information
was obtained to extract the wetland objects. According to the
statistical information for each component obtained by this
process, the cumulative eigenvalue percent of the first four

principal components of both the spectral and polarimetric
features were close to 100%. The cumulative percentages of these
eigenvalues are shown in Table 3.

According to the cumulative eigenvalue percent for each
type in Table 3, the first two principal components of both
the spectral and polarimetric features contain almost all the
information. Therefore, the first two principal components of
both the polarimetric and spectral features were combined to
constitute the joint features.

The Classification Results
To verify the effectiveness of our proposed method, RF
classification based on only the GF-3 polarimetric features or
the Sentinel-2A spectral features were also used. These were
compared with the RF classification based on the joint features.
The results are shown in Figure 8.

Comparative Analysis of Different Features
Based on the RF classification of different features (only
polarimetric features, only spectral features, and joint features),
the producer accuracies, user accuracies, overall accuracies, and
Kappa coefficients for wetland objects were statistically analyzed;
the results are shown in Table 4.

As shown in Table 4, the RF classification based on joint
features had the highest accuracy, with the overall accuracy of
86.18% and Kappa coefficient of 0.84. These values are 18.96%
and 0.22 higher than those using only polarimetric features.
Additionally, the overall accuracy and Kappa coefficient of
the RF classification with joint features was 11.02% and 0.13
higher, respectively, than those of the classification using only
Sentinel-2A spectral features. For specific wetland objects, the
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FIGURE 7 | Statistics of the texture feature parameters. (A) Is the data of October 2017, (B) is the data of November 2018.

classification accuracy of the joint features was the highest.
Among all the wetland object types, the producer accuracies for
sea water, the river channel, and S. alterniflora were higher than
90%. The producer accuracy for the culture ponds by the joint
features was 28.08% and 14.11% higher than that of only using
polarimetric and only using spectral features, respectively. The
producer accuracy of P. australis by the joint features was 84.42%,
which was 51.59 and 22.11% higher than that of using only
polarimetric and using only spectral features, respectively. When
P. australis was extracted by polarimetric features only, most of it
was mistakenly classified as a building, so the producer accuracy
for polarimetric features was only 32.83%. The producer accuracy
for P. australis with spectral features was 62.31%, which was
29.48% higher than that of the using only polarimetric features,
because the confusion between buildings and P. australis was
reduced to a certain extent; however, there was still confusion
between farmland and S. alterniflora. The user accuracy of
buildings based on the joint features was only 35.35%, which

was due to the confusion between P. australis and buildings.
In addition, some edges of bare land and culture ponds were
classified as buildings. The producer accuracy of the joint features
for buildings was 79.97%, which was 20.24% and 9.52% higher
than that of using only polarimetric and using only spectral
features, respectively. The producer accuracy for the tidal flats
was 8.75% and 13.58% higher than that of only using polarimetric
and only using spectral features, respectively, which was a 4.83%
difference between the latter two. The producer accuracy of the
joint features extraction for farmland was 78.62%, which was
25.94% and 13.64% higher than that of only using polarimetric
and spectral features, respectively.

Comparing the results of RF classification using the
different features, the overall classification accuracy and Kappa
coefficient of the RF classification with the joint features
was the highest. For all wetland object types, compared with
only using polarimetric and only using spectral features, its
producer accuracies were also the highest; therefore, the method
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FIGURE 8 | RF classification results based on different features using November 2018 data: (A) The RF with polarimetric features; (B) The RF with spectral features;
and (C) The RF with joint features.

proposed in this paper can accurately extract object types to
achieve accurate monitoring of wetland objects in the Yellow
River Delta.

Comparative Analysis Among Different Classification
Methods
In addition, to verify the classification accuracy of the proposed
method, three other classification methods, namely, SVM, MLC,

and MDC, were used to extract the wetland object types based
on the joint features, and their classification accuracies were
compared with that of the classification algorithm proposed in
this paper. The kernel type of SVM was radial basis function, and
the gamma in kernel function was 0.5. The penalty parameter was
set to 100. The MLC was to calculate the likelihood that a given
pixel belongs to a certain training sample, and the pixel was finally
merged into the category with the greatest likelihood. The MDC
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TABLE 4 | Wetland object type extraction accuracies of November 2018 data for
RF classification using different features.

Accuracies Object types Polarimetric
features

Spectral
features

Joint
features

Producer Sea water 87.02 86.51 92.56

accuracies (%) River channel 51.47 96.76 95.79

Culture ponds 49.12 63.09 77.20

Pit ponds 54.97 69.04 81.93

Phragmites
australis

32.83 62.31 84.42

Tidal flats 78.02 73.19 86.77

Buildings 59.73 70.45 79.97

Spartina
alterniflora

74.83 84.06 91.06

Farmland 52.68 64.98 78.62

User Sea water 95.24 99.23 99.67

accuracies (%) River channel 35.04 93.67 92.36

Culture ponds 52.99 78.56 81.22

Pit ponds 45.61 36.45 59.97

Phragmites
australis

59.92 62.60 75.21

Tidal flats 82.74 91.21 93.86

Buildings 11.05 16.95 35.35

Spartina
alterniflora

69.67 74.15 87.26

Farmland 77.66 83.22 92.26

Overall accuracies (%) 67.22 75.16 86.18

Kappa coefficients 0.62 0.71 0.84

was to use the training sample data to calculate the center position
of the class in the feature space and then calculated the distance
from each pixel in the input image to the center of each type. The
pixel was classified into the closest type. The classification results
of SVM, MLC, and MDC based on joint features are shown in
Figure 9.

Comparing and analyzing the different classification methods
in Figure 9, the MDC was the least accurate. There was confusion
among pit ponds, culture ponds, and sea water, and the extraction
of vegetation was also very poor. The MLC also had large errors
in the extraction of the object types in the wetland study area. The
alluvial fan area in the estuary, formed by sediment accumulation
from the Yellow River, was mistakenly classified as buildings, and
this method confused P. australis, S. alterniflora, and buildings.
The SVM and RF classification methods showed better overall
performance in classifying wetland objects. To compare the
advantages and disadvantages of the four classification methods,
their classification accuracies are shown in Table 5.

As shown in Table 5, the RF classification method proposed
in this paper had the best extraction effect for objects in the
Yellow River Delta wetland, with the overall accuracy and kappa
coefficient of 86.18% and 0.84, respectively. Compared with the
SVM, MLC, and MDC, its overall accuracy was 2.03, 5.69, and
23.36% higher, respectively, and its Kappa coefficient was 0.03,
0.07, and 0.27 higher, respectively. Although the MLC had the
highest producer accuracies for farmland and buildings, and
its producer accuracy for P. australis was 1.48% higher than

that of SVM classification, its producer accuracies for sea water,
culture ponds, tidal flats, and S. alterniflora were lower than
those of SVM and RF classification. The producer accuracies
of the RF classification were slightly lower than those of the
SVM classification for the river channel, pit ponds, tidal flats,
and farmland. However, its producer accuracies for sea water,
culture ponds, P. australis, buildings, and S. alterniflora were
1.13, 11.12, 4.38, 9.44, and 5.86% higher. Furthermore, RF
classification took 27 min, which was less than SVM classification
took 39 min. Therefore, the RF classification algorithm based on
the joint features had the highest extraction accuracies for objects
in the Yellow River Delta wetland, compared to SVM, MLC,
and MDC methods.

Experimental Verification
Using GF-3 and Sentinel-2A data in November 2018, different
features and different classification methods were used to extract
wetland objects. It was proved that RF classification combined
with polarimetric and spectral features can improve the accuracy
of wetland monitoring. In order to further prove the effectiveness
of the proposed method, GF-3 and Sentinel-2B data in October
2017 were selected for experimental verification.

October 2017 data processing method was the same as that
of the November 2018 data. The feature extraction results of
October 2017 and November 2018 data were presented in
the same figure, distinguished by different letters. Due to the
different coverage of GF-3 data, there were different types of
wetland objects in the experimental verification. Comparing
Figures 3A,B, it can be seen that the images in 2017 basically
do not include buildings and farmland. Therefore, the wetland
objects were divided into seven main types: the river channel,
sea water, pit ponds, culture ponds, P. australis, tidal flats and
S. alterniflora.

Furthermore, in order to prove that the selection of texture
features was feasible, we took the polarimetric SAR data in
October 2017 as an example to obtain the values of texture
features of 225 pixels and provided the box-plots. The box-
plots are shown in Figure 10. Compare with Figure 7B, from
Figure 10 we can not only obtain the mean value of texture
features, but also the distribution range, median and outliers of
the texture features. It can be seen from Figure 10 that there
are differences among the four texture features of CON, DIS,
MEAN, and VAR. Combining Figures 7B, 10H, we can find that
there are large differences between CON, MEAN, and VAR. We
used Tukey’s HSD post hoc test for the significance in differences
among mean values and confidence level was set to 0.05. The
statistics of Tukey’s HSD post test results are shown in Table 6.
For convenience of expression, the object types in Table 6 were
represented by Ci. The C1, C2, C3, C4, C5, C6, and C7 represent
seawater, Yellow River, S. alterniflora, pit ponds, P. australis, tidal
flats and culture ponds, respectively. Ci − Cj represents the mean
value of Ci minus the mean value of Cj. We judged whether
the feature can effectively distinguish the wetland objects by
comparing the total number of significant differences (TNSD)
in the mean value of different wetland objects under the same
texture feature. From the value of TNSD in Table 6, it can be
seen that the three polarimetric texture features of CON, MEAN,
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FIGURE 9 | Results of different classification methods based on joint features using November 2018 data: (A) Support vector machine classification; (B) Maximum
likelihood classification; and (C) Minimum distance classification.

and VAR can better distinguish the types of wetland objects.
Therefore, it proved the reliability of Figure 7B by Tukey’s HSD
post hoc test.

Considering the poor accuracy of the MDC based on the
data of November 2018, we only select three classification
methods in the experimental verification: RF, SVM, and MLC.
The classification results of RF with different features were

shown in the Figure 11, and the classification results of different
classification methods were shown in the Figure 12.

We also statistically analyzed the classification accuracies
of various classification methods using October 2017 data.
They included RF classification using spectral features only,
polarimetric features only, and joint features. Also MLC and
SVM classification based on joint features. The statistical results
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FIGURE 10 | Box-plots of polarimetric texture features. (A–G) Represent the eight texture feature box plots of sea water, river channel, S. alterniflora, pit ponds,
P. australis, tidal flats and culture ponds, respectively. (H) Is the box-plot of eight texture features of different objects.

of producer accuracies, user accuracies, overall accuracies and
Kappa coefficients were shown in Table 7.

It can be seen from Table 7 that among all the classification
methods, the accuracy of the RF classification with joint feature
proposed in this paper was the highest, with the overall accuracy
of 91.14% and the Kappa coefficient of 0.81. The overall

accuracy and Kappa coefficient of the proposed method were
improved by 17.99% and 0.23, respectively, compared with those
of the polarimetric feature classification. Compared with the
classification using only spectral features, the overall accuracy
and Kappa coefficient increased by 6.15% and 0.07, respectively.
For specific types of wetland objects, except that the producer
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FIGURE 11 | RF classification results based on different characteristics using October 2017 data: (A) The RF with polarimetric features; (B) The RF with spectral
features; and (C) The RF with joint features.

accuracy of tidal flat based on joint features was slightly lower
than that of spectral features, the producer accuracy of other
wetland objects based on joint features were higher than that of
using only polarimetric and spectral features.

It can also be seen from Table 7 that the overall accuracy
of RF based on joint features was increased by 4 and
5.82%, respectively, compared with SVM and MLC, and Kappa
coefficients was increased by 0.05 and 0.07, respectively. For

specific wetland types, the three methods have their own
advantages and disadvantages. The producer accuracies of pit
ponds and P. australis were the highest based on MLC, and
the producer accuracies of the river channel and tidal flat
were the highest based on SVM. The producer accuracies of
sea water, S. alterniflora and culture pond extracted by RF
classification were the highest. In addition, RF classification
took about 13 min, SVM classification took about 36 min,
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FIGURE 12 | Results of different classification methods based on joint features using October 2017 data: (A) Support vector machine classification; (B) Maximum
likelihood classification.

MLC took about 8 min under the same conditions. Therefore,
considering time efficiency and overall classification accuracy, RF
classification performed best.

TABLE 5 | Accuracies of the extraction of wetland object types of November 2018
data using different classification algorithms based on the joint features.

Accuracies Object types RF SVM MLC MDC

Producer Sea water 92.56 91.43 83.39 82.48

accuracies (%) River channel 95.79 95.82 95.23 98.70

Culture ponds 77.20 66.08 69.04 26.77

Pit ponds 81.39 85.76 70.49 62.34

Phragmites
australis

84.42 80.04 81.52 83.76

Tidal flats 86.77 90.16 82.11 63.96

Buildings 79.97 70.53 80.43 38.24

Spartina
alterniflora

91.06 85.20 81.16 60.99

Farmland 78.62 79.37 83.12 44.09

User Sea water 99.67 99.06 99.24 90.81

accuracies (%) River channel 92.36 91.14 98.00 37.42

Culture ponds 81.22 71.33 66.71 65.41

Pit ponds 59.97 56.26 47.96 25.11

Phragmites
australis

75.21 70.74 65.65 35.83

Tidal flats 93.86 93.27 95.85 77.03

Buildings 35.35 47.55 26.74 21.28

Spartina
alterniflora

87.26 84.93 88.30 88.32

Farmland 92.26 87.14 87.58 89.23

Overall accuracies (%) 86.18 84.15 80.49 62.82

Kappa coefficients 0.84 0.81 0.77 0.57

In summary, two sets of experiments have proved that
the RF classification method with both the GF-3 polarimetric
features and Sentinel-2A spectral features proposed in this
paper can effectively mine the backscattering information of
fully polarimetric SAR data and the spectral information of
optical remote sensing data. The method proposed in this paper
increases the reparability of wetland objects and improves their
classification accuracies, enabling fine classification of objects in
the Yellow River Delta wetland.

DISCUSSION

In the introduction, we knew that many scholars also used
multisource data to monitor the wetland in the Yellow River
Delta. Compared with Li et al. (2019), we used similar data,
both GF-3 data and Sentinel-2 data. By integrating GF-3 SAR
data and Sentinel-2B multispectral data, they adopted decision
tree, SVM and MLC to realize wetland monitoring. We used
the RF classification, which was jointly determined by multiple
decision trees, reducing the influence of abnormal values and
the possibility of overfitting. In addition, we subdivided the
vegetation and water bodies in the Yellow River Delta. The water
body was divided into four types: sea water, river channel, pit
ponds, and culture ponds. Of course, we also had shortcomings.
We only used the spectral features of the four bands of the
Sentinel-2 data, and did not carry out band operations to obtain
more spectral indexes. Compared with Feng et al. (2019), the high
resolution fully polarimetric GF-3 data we used can obtain more
polarimetric features than they used Sentinel-1 data, which can
improve the classification accuracy to some extent. It is worth
learning that they proposed a multibranch convolutional neural
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TABLE 6 | Statistical table of Tukey’s HSD post hoc tests.

Mean difference

CON COR DIS ENT HOM MEAN ASM VAR

C1–C2 9.7483* −0.1377* 0.7438* 0.0268* −0.0276* 1.9751* −0.0020* 4.6390*

C1–C3 11.1184* −0.0351 0.8311* −0.0083 −0.0317* −0.0825 0.0001 8.2789*

C1–C4 4.9637* −0.0925* 0.5591* 0.0182 −0.0501* 4.4176* −0.0008 3.3591*

C1–C5 10.9961* −0.1566* 0.7653* −0.0039 −0.0124 0.9442 0.0003 4.3509*

C1–C6 18.1701* −0.0191 1.6247* 0.0670* −0.0988* 3.7854* −0.0051* 13.4808*

C1–C7 10.5948* −0.1484* 0.7079* 0.0302* −0.0074 0.1970 −0.0018* 4.6501*

C2–C3 1.3701 0.1026* 0.0873 −0.0351* −0.0041 −2.0576* 0.0021* 3.6399*

C2–C4 −4.7845* 0.0452 −0.1847 −0.0087 −0.0224* 2.4425* 0.0003 −2.2800

C2–C5 1.2478 −0.0189 0.0215 −0.0307* 0.0152 −1.0309* 0.0023* −0.2881

C2–C6 8.4217* 0.1186* 0.8809* 0.0402* −0.0712* 1.8103* −0.0031* 8.8418*

C2–C7 0.8466 −0.0107 −0.0359 0.0034 0.0106 −1.7781* 0.0002 0.0111

C3–C4 −6.1547* −0.0574 −0.2720* 0.0264* −0.0183 4.5001* −0.0018* −5.9198*

C3–C5 −0.1223 −0.1215* −0.0658 0.0044 0.0193* 1.0267* 0.0003 −3.9280*

C3–C6 7.0517* 0.0159 0.7936* 0.0753* −0.06715* 3.8679* −0.0052* 5.2019*

C3–C7 −0.5236 −0.113 −0.1232 0.0385* 0.02431* 0.2795 −0.0019* −3.6288*

C4–C5 6.0324* −0.0641 0.2062 −0.0221 0.0377* −3.4734* 0.0021* 1.9919

C4–C6 13.2064* 0.0734* 1.0656* 0.0488* −0.0488* −0.6322 −0.0034* 11.1218*

C4–C7 5.6311* −0.0559 0.1488 0.0120 0.0427* −4.2206* −0.0001 2.2910

C5–C6 7.1740* 0.1375* 0.8594* 0.0709* −0.0864* 2.8412* −0.0055* 9.1299*

C5–C7 −0.4012 0.0082 −0.0574 0.0341* 0.0050 −0.7472 −0.0022* 0.2992

C6–C7 −7.5753* −0.1293* −0.9168* −0.0368* 0.0914* −3.5884* 0.0033* −8.8307*

TNSD 15 10 12 13 14 15 14 15

* The mean difference is significant at the 0.05 level.

TABLE 7 | Accuracies of the extraction of wetland object types of October 2017.

Accuracies Object types RF SVM MLC

Polarimetric features Spectral features Joint features Joint features Joint features

Producer accuracies (%) Sea water 83.87 85.65 98.81 91.01 87.29

River channel 37.26 65.23 83.22 89.21 77.32

Culture ponds 59.07 83.76 87.18 61.24 89.62

Pit ponds 59.00 80.71 86.46 75.33 70.65

Phragmites australis 39.92 73.35 79.37 82.49 84.51

Tidal flats 68.29 92.37 92.10 92.46 92.37

Spartina alterniflora 85.59 81.65 87.26 81.53 78.59

User accuracies (%) Sea water 86.85 95.69 98.24 98.07 97.59

River channel 41.72 32.51 82.27 49.96 42.11

Culture ponds 34.04 47.20 67.43 38.11 38.70

Pit ponds 63.36 90.73 90.93 87.13 81.90

Phragmites australis 31.08 49.29 55.79 50.38 48.13

Tidal flats 79.07 97.57 96.97 97.09 97.81

Spartina alterniflora 76.89 90.10 94.18 94.89 95.16

Overall accuracies (%) 73.15 84.99 91.14 87.14 85.32

Kappa coefficients 0.65 0.81 0.88 0.83 0.81

network to fuse multitemporal and multisensor Sentinel data to
improve the accuracy of coastal land cover classification.

In this paper, two sets of experiments have proved the
effectiveness of RF classification based on joint features. The
classification accuracy using only SAR data was also lower than

that of using only spectral features due to the influence of noise.
However, polarimetric features can reduce the misclassification
phenomenon of “foreign body homospectral.” It can be seen from
Figure 3A that the water of the Yellow River flows into the sea,
resulting in the color of the offshore water is yellow. The spectral
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features of sea water are similar to those of the river channel, so
only spectral feature classification can divide part of sea water
into the river channel, as shown in Figure 11B. Because of the
influence of sediment concentration and water color in different
waters, there were certain confusions among sea water, river
channel and tidal flat. For the data of 2018, because the bright
white color of some tidal flats is similar to the color of inland
buildings, the tidal flats were mistakenly divided into buildings,
as shown in Figure 9. For the data of 2017, due to the impact
of coverage, there is no type of buildings, so the phenomenon of
misclassification of tidal flats was reduced.

Some other conditions will also affect the classification results,
such as tides, image acquisition time, filtering methods, etc. The
high or low tide will change the spectral features and polarimetric
features of the tidal flats or vegetation. For example, when the
tide is high, coastal tidal flats and vegetation are covered by sea
water, which are features of sea water in the optical image. In
addition, sea water will also affect the backscattering coefficient
of coastal objects, which also causes misclassification. In this
paper, the wetland objects were only classified in October and
November. At that time, there were fewer Suaeda salsa plants
in the beach area, so it was not classified as a separate type and
instead attributed to the tidal flat. Moreover, a mixed area of
P. australis and S. alterniflora mainly presented the features of
the latter, which influenced the classification results.

In addition, this paper only monitored and analyzed the
wetland in the Yellow River Delta in China, and proved that
the combined polarimetric and spectral features can improve
the classification accuracies of wetland objects. For monitoring
wetland in other regions, it can be determined that the
classification accuracy of the combined feature is higher than
that of a single feature. However, because of the different types
of wetlands in different regions, their polarimetric and spectral
features will be different. Therefore, it is necessary to explore
which polarimetric and spectral features combined will improve
the classification accuracy of different wetlands.

CONCLUSION

In this study, a novel method for extracting wetland objects from
combined polarimetric SAR and optical data was established
using PCA and RF classification. A GF-3 polarimetric SAR image
and Sentinel-2 optical image were used to classify objects in the
Yellow River Delta wetland in China.

Some valuable conclusions can be drawn from this study, as
follows:

(1) The overall classification accuracy of the method proposed
in this paper is higher than that for single features, which
can enable effective recognition of object types in the
Yellow River Delta wetland. For the data of October 2017,
the overall classification accuracy and Kappa coefficient of
the new method were 17.99% and 0.23 higher, respectively,
than those using only polarimetric features, and 6.15% and
0.07 higher, respectively, than those using only spectral
features. For the data of November 2018, the overall

classification accuracy and Kappa coefficient of the new
method were 18.96% and 0.22 higher, respectively, than
those using only polarimetric features, and 11.02% and
0.13 higher, respectively, than those using only spectral
features. This shows that the proposed method is better
for monitoring wetlands than using only polarimetric and
using only spectral features for RF classification.

(2) The new method proposed in this paper has a higher
extraction accuracy of for the objects in the Yellow River
Delta wetland than other classification methods based on
joint features. For the data of October 2017, compared
with the SVM, MLC, the overall classification accuracy
was improved by 4 and 5.82%, respectively, and the Kappa
coefficient was improved by 0.05 and 0.07, respectively.
For the data of November 2018, compared with the SVM,
MLC, and minimum distance classification methods, the
overall classification accuracy was improved by 2.03, 5.69,
and 23.36%, respectively, and the Kappa coefficient was
improved by 0.03, 0.07, and 0.27, respectively. Comparing
these classification accuracies for different methods based
on joint features, it proves that the RF classification has the
highest classification accuracy.

(3) The proposed method can achieve fine classification of
wetland objects. For the data of October 2017, the producer
accuracies for the sea water, pit ponds and S. alterniflora
were the highest, at 98.81, 86.46, and 87.26%, respectively.
For the data of November 2018, the producer accuracies
for the sea water, pit ponds, P. australis, buildings, and
S. alterniflora were the highest, at 92.56, 77.20, 84.42, 79.97,
and 91.06%, respectively. This indicates that this method
can accurately monitor objects in the Yellow River Delta
wetland.

Therefore, the proposed method, which combines GF-3
polarimetric features and Sentinel-2 spectral features, would
be effective for monitoring objects in the Yellow River Delta
wetland. It can improve the monitoring accuracy for nine types
of wetland objects in the Yellow River Delta, specifically the
river channel, sea water, pit ponds, culture ponds, tidal flats,
S. alterniflora, P. australis, farmland, and buildings. Subsequent
experiments will use SAR and optical data in different bands to
further monitor the Yellow River Delta wetland.
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