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Environmental change (i.e., urbanization) impacts species in contrasting ways, with
some species experiencing benefits given their way of life (i.e., blood-sucking insects).
How these species respond to such change is not well understood and for species
involved in human diseases, this “how” question is particularly important. Most
Triatominae bug species inhabit tropical and subtropical forests where their vertebrate
hosts’ temporal abundance depends on climate seasonality. However, in human
encroached landscapes, triatomines can benefit from resource stability which may lead
to adaptive phenotypic change to track novel hosts. We tested for an association
between different landscapes and morpho-functional traits linked to sensory, motion,
and feeding functions in Triatoma dimidiata and compared fecundity (i.e., number
of eggs) in each landscape as a proxy of fitness. Using geometric and traditional
morphometric tools, we predicted a morphological simplification in bugs inhabiting
urbanized areas. While wing morphology or proboscis were not influenced by landscape
class, the opposite occurred for thorax morphology and number of sensilla. Wing
and thorax morphology did not covary under modified landscape scenarios, yet we
detected a morpho-functional convergence for thorax size and antennal phenotype in
both sexes, with a simplification trend, from nature to urban settings. Given no fecundity
differences across landscapes, there is no potential reproductive costs. Moreover,
the convergence of thorax size and antennal phenotype suggests differences in
flight/locomotion performance and host/environment perception, as a possible adaptive
response to relaxed selective pressures of the bug’s native habitat. These results imply
that T. dimidiata could be adapting to urbanized areas.

Keywords: Triatoma dimidiata, adaptation, urbanization, domiciliation, phenotypic variation, traditional
morphometric, geometric morphometric
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INTRODUCTION

Urbanization is an important selective driver that has given rise
to phenotypes finely co-adapted to novel environments (Miles
et al., 2021). Urbanized species have taken advantage of human-
provided resources and some examples include arthropod vectors
of diseases which have successfully “tracked” human evolution
by either making use of their phenotypic plasticity (i.e., the
ability of a single genotype to give rise to different phenotypes
after being exposed to distinct environments) and/or evolving
new traits (Beaty et al., 2016; Fouet et al., 2018; Suesdek, 2019).
An example of such plasticity is the overwintering ability of
Aedes albopictus which has allowed it to colonize northern
(and, thus, colder) European areas in less than three decades
(Wilke et al., 2020). However, we are unaware of how much
phenotypic plasticity (i.e., the capacity of species to respond
to environmental variation by producing different phenotypes)
and evolution (i.e., change in the genetic composition of a
population over successive generations) of new traits have
contributed to explain such arthropod vector success in urban
contexts. In any case, since most of this knowledge comes
from work with mosquitoes (e.g., Beaty et al., 2016; Fouet
et al., 2018), it is unclear whether some other vector taxa have
gone through similar evolutionary or microevolutionary (i.e.,
evolution within and among populations) responses. Gathering
vector-wide information is key as zoonotic diseases are on the
rise (Allen et al., 2017; Magouras et al., 2020), and tracking the
evolution of underlying vectors may be just one more angle to
think about the spread of such diseases.

Most species of triatomine (Hemiptera: Reduviidae:
Triatominae) bugs are specialized in hematophagy which
involves multiple adaptations associated with host localization
and blood suction (Weirauch, 2021). These “kissing bugs”
are vectors of the parasite Trypanosoma cruzi, the etiological
agent of Chagas disease (CD) (Noireau et al., 2009). Tropical
and subtropical forest are the primary vectors’ habitat, yet
the continued change of these landscapes by anthropogenic
activities (Ellis et al., 2017) have promoted triatomine transient
and seasonal invasion to human rural dwellings (Dumonteil
et al., 2002, 2007; Nouvellet et al., 2011). Rural infestation
by triatomines is the leading cause of CD epidemiology, which
causes more than 15,000 human deaths and 40,000 new infections
each year (Rassi et al., 2010). However, in the last two decades,
more information is emerging that shows an “urbanization”
scenario for CD for several Latin American countries (Moncayo
and Silveira, 2009; Schmunis and Yadon, 2010; Sosa, 2010).
Related to this, several studies have shown that at least 14
species of kissing bugs have invaded and colonized urban and
peri-urban dwellings, increasing the frequency of vectorial
infections in humans (Levy et al., 2006; Briceño-León, 2009;
Provecho et al., 2014). Furthermore, records of urban infestation
date back to 50 years for several of these countries, suggesting
that it is not an emerging problem but an underestimated one
(Gaspe et al., 2020).

Triatomines’ sources of blood have changed along with
landscape modifications: a reduction of many blood-source
vertebrates’ species from original forests (Cavada et al., 2019)
and an increase of domestic hosts all-year-round from anthropic

landscapes, including rural and urban settings (Ordóñez-
Krasnowski et al., 2020). A shift in hosts would select for distinct
functional and performance traits related to dispersal, foraging,
and colonization in triatomines. Despite the shortage of studies
on the effect of land-use change and urbanization on triatomine
function and performance, these anthropogenic phenomena are
repeatedly claimed as selective forces propelling the evolution of
intraspecific morphological variation in triatomines (Bustamante
et al., 2004; Dorn et al., 2007; Aldana et al., 2011).

The ability to detect and feed on vertebrate hosts by
triatomines is mediated by their morphological traits (Dujardin
et al., 2009). One first set of traits related to host detection is
flight as this is largely involved in the infestation or reinfestation
patterns in Triatominae (Ceballos et al., 2005). Some bionomic
markers of this function are wing size, shape, and thorax
(Dujardin et al., 2007; Gaspe et al., 2012; Hernández et al.,
2015). Antennal sensilla are one second set of traits also under
current selection (Dujardin et al., 1999; Schofield et al., 1999;
Carbajal de la Fuente and Catalá, 2002), as they are related to
dispersion and invasion ability to new habitats, as a signature
of biotope-related selection (Catalá et al., 2005; Arroyo et al.,
2007; Hernández et al., 2011). Finally, proboscis length is another
functional trait that seems to have evolved in response to a
wild-urban environmental gradient (Eggenberger et al., 2019).
These flight- and feeding-related traits have led triatomine
researchers to speculate about their covariation with habitat
types (Dujardin et al., 1999; Schofield et al., 1999). Furthermore,
wing morphology, antennal phenotypes, or the combination of
both trait groups have been used to provide evidence related
to “domiciliation” in triatomine bugs (Borges et al., 2005;
Schachter-Broide et al., 2009; Hernández et al., 2011; Gaspe
et al., 2012; Villacís et al., 2014). However, no studies have
been carried out to understand how these and other functional
traits have responded simultaneously to different landscapes,
which has remained as one major question in the study of
evolution of triatomine domiciliation (Flores-Ferrer et al., 2018).
Given this, we have asked whether there is an association
between the morpho-functional traits that underlie flight- and
feeding-related traits and landscape type in triatomines. Having
Triatoma dimidiata s. l as a study species and using geometric
and traditional morphometric approaches, we hypothesized
that morpho-functional traits associated with dispersal capacity
and foraging behavior would reflect evolutionary responses to
different landscapes in a nature-urban gradient. Furthermore, if
such phenotypic change has an adaptative basis, we predicted
similar fitness outcomes in different landscapes. According to
this, we predict that: (a) the morphology related to flight and
feeding will show patterns of simplification in urban habitats
compared to non-urban habitats; and, (b) equal fitness payoffs
across different nature-urban settings.

MATERIALS AND METHODS

Study Area
The study was conducted in the Yucatan state, located at the
north of the Yucatan Peninsula (Figure 1). T. dimidiata were
collected from eight sites corresponding to the northeast (Mérida

Frontiers in Ecology and Evolution | www.frontiersin.org 2 March 2022 | Volume 10 | Article 805040

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-805040 March 24, 2022 Time: 10:54 # 3

Montes de Oca-Aguilar et al. Simplified Morphs in Urban’s Disease-Vectors

FIGURE 1 | Study area in Mexico and Yucatan State Collection sites are indicated: Urban, Mérida City (Me); Homegarden (“Solares Mayas”: Emiliano Zapata (EZ) and
Xul (Xu); Median subdeciduous tropical forest: Kaxil Kiuic (KK) and Yaxhachén (Ya); Secondary vegetation: X’kobenhaltun (XK), Bombahaltún (Bo), and Potoit (Po).

city) and southwest of Yucatan State (Figure 1 and Table 1). All
sites are located at an elevation of <96 m. The collection sites
were grouped into four landscape types: Urban, Homegarden
in rural communities (“Solares Mayas”), continuous tropical
forest, and secondary forest. The Urban (U) class is represented
by Merida City, a large commercial hub for southern and
southeastern Mexico (Biles and Lemberg, 2020). Until 2010, the
city had grown to occupy an area from 15,944 to 27,027 ha
(Secretaría de Desarrollo Urbano y Medio Ambiente [SEDUMA],
2018) and currently concentrates 43% of the Yucatan state’s
population (García-Gil et al., 2010). It is estimated that between
1980 and 2015, population increased from 400.142 to 832.651
(Biles and Lemberg, 2020). T. dimidiata is the only Triatominae
species in this region, with values of city infestation (percentage
of houses with vector presence) and infection with T. cruzi of 38
and 48%, respectively (Guzmán-Tapia et al., 2007). According to
data from the Secretaria de Salud de Yucatan (SSY, period 2012–
2105), the presence of T. dimidiata nymphs has been documented
in human housing all over the state, including Mérida city
(González-Martínez, 2018). Mérida is organized in eight districts,
and our collections were carried out in four of them: west,
northwest, east, and south. The last one is a zone with active and
significant circulation of T. cruzi, with evidence of seroprevalence
in people, domestic dogs (Jiménez-Coello et al., 2010, 2015),
marsupials and synanthropic rodents (Panti-May et al., 2017;
Ucan-Euan et al., 2019).

All collections of Triatomine from southwest of Yucatan state
were carried out in a region with a long history of ancient
Mayan settlements (McAnany, 2016). This region is the central
agricultural zone of the state after transformation from tropical
dry forests (Klepeis and Vance, 2003; Manson and Evans, 2007;
Hernández-Stefanoni et al., 2014).

The “Solares” (S) are essential in the cultural traditions and
family economy of contemporary Mayan populations. They are
environmental units that includes the house-room and spaces
destined for agricultural production to subsistence. Blood sources
in the Solares are humans, domestic vertebrates (pigs, cow,
turkey, chicken, and dogs), and opportunistic vertebrates such
as mice, marsupials, and birds that benefit from the presence of
fruit trees [e.g., Mangifera indica, Manilkara zapota (L.) P. Royen,
Guabana, Anona, Saramuyo], trees for local use [Brosimum
alicastrum Swartz, Bursera simaruba (L.) Sarg, Ceiba pentandra
(L.) Gaertn.] Hylocereus undatus [(Haw.) Britton and Rose] and
other plants (Ordóñez-Díaz, 2018). Therefore, these systems offer
good conditions for the infestation by T. dimidiata. We included
two sites within this category: Emiliano Zapata and Xul, which
are separated by 13.55 km (Figure 1 and Table 1).

Kaxil Kiuic biocultural reserve (KKBR) and forest fragments
around Yaxhachén (separated by 4.03 km) are the two localities
with continuous forest and fragments of Median sub deciduous
tropical forest (Msb), respectively (Figure 1 and Table 1).
KKBR has an area of 1,642 ha of Msd that has existed for
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TABLE 1 | Number of specimens of Triatoma dimidiata according to measured traits per landscape class.

Landscape class Altitude Longitude Latitude Thorax Wing Sensilla Proboscis

♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂

Urban (U)

Mérida 34 ± 3 –89.62305 20.96583 31 31 59 31 24 18 32 28

Homegarden “Solares Mayas” (Hg)

Emiliano Zapata, Oxkutzcab 58 –89.46663 20.22391 16 28 23 29 7 6 16 20

Xul, Oxkutzcab 50 –89.46426 2010191 2 1 1 2 2 – 2 1

Median subdeciduous tropical forest (Msd)

Kaxil Kiuic, Oxkutzcab 96 –89.55111 20.08958 26 27 99 50 34 27 24 27

Yaxhachen Oxkutzcab 93 –89.52037 20.06158 14 13 2 12 2 1 16 15

Secondary vegetation (Sf)

Xkobehaltun, Oxkutzcab 91 –89.52462 20.08072 26 31 49 26 7 11 26 30

Potoi, Oxkutzcab 68 –89.4864 20.23498 1 1 – 1 6 4 1 1

Bombahaltun, Oxkutzcab 87 –89.42347 20.05857 5 3 4 5 1 – 4 3

Total 121 135 237 156 83 67 121 126

more than 100 years (Essens and Hernández-Stefanoni, 2013).
Trees reach a height of 13–20 m (Dupuy et al., 2012) in both
localities, dominating the arboreal and shrubby elements, with
scarce climbing plants and epiphytes. Vertebrate communities
of potential vector hosts at KKBR are composed by birds
(151 species), mammals (40 species), and reptiles (36 species)
(Callaghan and Pasos, 2010). Several mammal species present in
this region have been implied in the in enzootic cycle of T. cruzi
(Dumonteil et al., 2018; Moo-Millan et al., 2019; Torres-Castro
et al., 2021).

Finally, secondary vegetation (Sv) is represented by three sites
(X’kobehaltun, Potoi, and Bombahaltún) with different ages of
abandonment after use of traditional agriculture with the method
of roza-tumba-quema (Table 1). Among the most abundant
tree species are Neomillspaughia emarginata (Grooss) Blake,
Gymnopodium floribundum Rolfe, Bursera simaruba (L.) Sarg,
and Piscidia piscipula (L.) Sarg (Rico-Gray and García-Franco,
1992). Vertebrate community and potential reservoirs of T. cruzi
at these sites are species that tolerate agricultural land-use such
as Peromyscus yucatanicus, Oryzomys couesi, Sigmodon hispidus
rodents, Artibeus jamaicensis, Desmodus rotundus bats, and
Dasypus spp., Didelphis virginiana, and Nasua narica mammals
(Panti-May et al., 2021).

Insect Collections
Triatomine bug adults were collected from April 2014 to June
2019. We conducted sampling for 3 h (20:00–23:00 h) using
3 × 3 m, white blankets and led lamps (Light traps) with
standardized light intensity (2000 lumens). We also searched
for insects (e.g., under fallen leaves, rocks, trunks, houses) at
a radius of five meters from the light traps. Collected bugs
were preserved in ethanol (90%). Insects from the city were
reported and delivered alive at inhabitants’ homes the same or
following day of report.

Measurement of Fitness Proxy and
Feeding Information
Both males and females were dissected to extract the intestine,
visually register the feeding status (i.e., blood presence), and

calculate the proportion of feed insects. We quantified egg
production as a fitness proxy registering the number of eggs
per female in each landscape and year. For dissections, bugs
were placed in a ventral view in Petri dishes sterilized with
96% alcohol. For each specimen, we used sterilized scalpels and
made two lateral cuts in the ventral region of the abdomen from
the anterior part to the anal section. Both dissections made it
possible to remove the ventral area of the abdomen as a lid.
The digestive tract was removed using sterilized entomological
forceps. Dissections and egg number counting were performed
by a single person to minimize sources of error.

Flight Morphology Data
The right wing and thorax for females (wings n = 248 and thorax
n = 131) and males (wings n = 162 and thorax n = 134) were
used to characterize flight morphology among the four landscape
classes (Table 1). We obtained wing and thorax images with
an integrated photo-macroscope model Leica Z16APOA (Leica
Microsystems AG, Wetzlar, Germany). Images were processed in
MakeFan8 (Sheets, 2003) to draw templates that allowed us to
register the contours. For wings, we outlined three templates by
registering 37 semi-landmarks. For thorax images, we removed
four templates by registering 19 semi-landmarks (black dots,
Figures 2A,B).

Landmarks type I were also recorded for wing venation
origins and intersections (white dots, Figure 2), while for
the thorax, we selected four landmarks type II (Bookstein,
1991). We employed TPSDig (Rohlf, 2007) to register the
Cartesian coordinates of the 48 and 23 points for wings and
thorax, respectively. Landmark configurations were adjusted
with CoordGen8 (Sheets, 2005) using a Generalized Procrustes
analysis based on the sum of the least-squares at each point.
This adjustment allows to minimize the variation associated
with the effects of positioning, orientation, and scale (Bookstein,
1991; Zelditch et al., 2004). A second adjustment was applied
to eliminate variation by sliding the semi-landmarks based
on the alignment distance criteria of the Semiland8 (Sheets,
2002). The superimposed and aligned Procrustes coordinates
were used to calculate shape variables (Partial Warps, PW)
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FIGURE 2 | Landmarks used to capture the configuration of T. dimidiata shape: (A) thorax (Landmarks, LM = 4 and Semilandmarks, SML = 19; right, muscle mass
in thorax); and, (B) wing (Landmarks, LM = 11 and Semilandmarks, SML = 37). White dots are LM, and black dots are SLM.

and centroid size (Cs, as a measure of size) for each
anatomical structure.

The wing aspect ratio (WAR) was calculated for each
individual as wing span2/wing area (Females n = 248 and
Males n = 162). Measurements were carried out in ImageJ
v. 1.52p (image processing and analysis in Java, free access1,
Rasband, 1997–2019).

Antennal Phenotype Data
We examined the antennal phenotype (defined by the number
of sensilla) of 150 adult bugs (n = 83 females and n = 67
males) (Table 1). Previously, the antenna was dissected and
processed with sodium hydroxide 4% for 6 h at 60◦C, and then
neutralized with glacial acetic acid (5%) for 2 min. Subsequently,
each antenna was preserved and mounted temporally with
glycerin for identification and counting of sensilla under a Leica
DM300 microscope (Leica Microsystems AG, Wetzlar, Germany)
at 400x. We followed the nomenclature proposed by Catalá
and Schofield (1994) for olfactory sensillum identification. We

1http://rsbweb.nih.gov/ij/

identified and counted the followed sensilla for the ventral region
of Pedicel (P), Flagellomere I (FI), and Flagellomere II (FII):
Basiconic (Ba), bristles (Br), thin-walled trichoid (TH), and thick-
walled trichoid (TK).

Feeding Morphology Data
We measured the proboscis length of 246 adult bugs (n = 121
females and n = 126 males, Table 1) from its basis to distal
region. Measurement (in mm) was taken with a squared sheet
(1 × 1 mm) under a Leica Z4 stereoscope (Leica Microsystems
AG, Wetzlar, Germany).

The person who took all measurements was unaware of the
bug’s collection site to avoid any observer’s bias.

STATISTICAL ANALYSES

Feeding Status and Fitness Proxy
Differences
We carried out a generalized linear model setting a negative
binomial distribution and Tukey post hoc tests to evaluate
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differences in feeding status among landscapes. Also, to evaluate
differences between the number of eggs by females among
landscapes we performed a Kruskal–Wallis test and post hoc test
with Holm correction. The analysis was performed in R v. 3.1.0;
MASS and emmeans packages were used for construction of
generalized linear model and post hoc tests, respectively.

Geometric Morphometric Analysis
Given size-related gender differences in our study species
(Lehmann et al., 2005), we first analyzed shape and size
differences between sexes (dimorphism) in thorax and wings.
Sexual dimorphism in size was tested through two-way analysis
of variance (ANOVA), where shape dimorphism was determined
through a permutation test using Goodall’s F test implemented
in TwoGroup8 with 3,600 bootstrap permutations (Sheets
and Zeldich, 2001). Given the significant differences in both
structures (see section “Results”), the subsequent analyses were
performed by sex (Supplementary Table S1).

Because the two principal structures related to flight
dispersion in Triatominae bugs are the thorax and wings
(Hernández et al., 2015), we analyzed the possible covariation
between these two structures, and also whether such covariation
was affected by landscape type, thus producing different selective
pressures and promote patterns, for example, in favor of
individuals or populations with increased flight performance or
dispersion. Therefore, we performed a partial least square analysis
(PLS) to assess the covariance between the aligned morpho-
anatomical structures (wing and thorax). Covariation analysis
was performed using the function “two.b. pls” as implemented
in the geomorph package v. 3.1.0 in R (Adams et al., 2020).

For each structure, we explored patterns of generalized shape
variance among all individuals using the function “gm.prcomp”
on Procrustes shape as implemented in geomorph package v.
3.1.0 (Adams et al., 2020). We used the function “mshape” to
generate the consensus shape and the function “shape.predictor”
to estimate the predicted shapes along the principal component
axes. These inferred configurations were employed to visualize
the shape differences among individuals along the principal
component axes. Both functions are implemented in the
“geomorph” package.

We conducted a linear mixed model (LMM) to evaluate the
landscape effect on WAR, shape variables, and centroid size of
both structures (wing and thorax). The year of the collection
(period 2014–2018) was considered a random effect while body
size and the interaction among variables were considered in the
model. Additionally, for LMM where wing and thorax shape
were entered as a response variable, we tested the relation
with the WAR to detected patterns of covariation among these
variables related to flight/dispersion. Because the detection of
an allometric effect could influence shape inferences, we also
tested if a significant association between shape and size (as
Log transformed) existed. The LMM was performed according
to a residual randomization permutation procedures (RRPP)
approach with the “rpp.lm” function (with 2,500 permutations)
as implemented in the RRPP package in R v.3.5.0 (Collyer
and Adams, 2020). To assume that landscape type effects are
independent of geographic location, we included a geographical

covariance matrix in the “rpp.lm” function with the argument
“cov”. This allowed driving the non-independence of the error
by geographic location in the estimation of the coefficients
of the landscape effect via GLS (Generalized least square).
We computed geographic covariance matrix with the “cov.sp”
function in SpatialTool package v.1.0.4 (French, 2008).

Antennal Data Analysis
We carried out univariate and multivariate analyses to assess
differences in the number of antennal sensilla among the
four landscape classes. The univariate analysis allowed us to
describe and identify the type of sensilla by segment that
exhibited differences between the triatomines. Sensilla that did
not show significant differences among landscapes classes were
discarded in subsequent analyses. As recommend in antennal
phenotypic analysis of Triatominae bugs (May-Concha et al.,
2016), we performed the univariate analysis at three levels:
sensillum (Ba, Br, TH, TK), segment (P, FI, FII expressed
as Total), and antenna (defined as TOTAL). All univariate
analyses were performed by sex. At the sensillum level, the
mean and standard deviation for each type of sensillum was
calculated by each segment, and differences among landscape
type were evaluated. The mean and standard deviation of the
total abundance by segment were estimated at the segment
level, and differences between landscape classes were calculated.
Finally, we assessed differences in the total abundance (number)
of sensilla considering all segments (antenna level). Significant
differences were evaluated following generalized linear mixed
models (GLMM), considering collection year as a random effect
(period 2015–2019). GLMM was performed using a Poisson
distribution model, and multiple comparisons were estimated
using Tukey’s contrasts. The analysis was performed in R v3.5.0.
“lmer4” and “multcomp” packages which were used to construct
all GLMMs and multiple comparisons, respectively.

We employed the number of sensilla by segment (by each
individual) to perform a principal component analysis (PCA)
to explore patterns of variance among all individuals. We used
the results of corresponding PC’s to reduce the number of
independent variables in the multivariate analyses. We discarded
the PC axes whose contribution to the cumulative variance was
not significant. Then, we conducted a multivariate analysis of
variance with a canonical variate analysis (CVA) using Wilk’s
lambda test. CVA’s was performed with all specimens for the
four landscape class groups. The scores of each canonical variate
were used for the univariate ANOVA according to the Scheffé
test to determine the landscape class discriminated by CVA
axes. The correct classification and CVA performance were
evaluated considering the posterior probabilities of assignation.
The multivariate analysis was implemented in the “MASS” and
“Candisc” package in R v3.5.0.

Feeding Morphology Analyses
We carried out an LMM to evaluate differences in the proboscis
length among landscape classes. The model was constructed
considering sex and body size as independent variables, and
entering collection year (period 2014–2018) as a random effect.
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LMM was performed with 4,000 permutations in the RRPP
package (Collyer and Adams, 2020) in R v3.5.0.

Morphological Disparity Analysis
The general concept of disparity refers to the relative quantity
of variability scaled in a sample of measures. The disparity is
measured from the quantitative description of the morphological
variation and the empirical distribution of samples in some
morpho-space (i.e., PCA, Foote, 1991). We considered that
relative low values of disparities are equivalent to decreased
variance in the phenotype. Our interest was to investigate
whether the levels of morphological disparity in the four
morphological traits were different between landscapes.

For proboscis length we calculated the coefficient of
variation, which is the metric of variability in the univariate
case (Van Valen, 2005). We evaluated differences in coefficient
of variation with the “asymptotic test” function implemented in
the “cvequality” package in R (Marwick and Krishnamoorthy,
2019). In the multivariate case, disparities in wing and thorax
were evaluated using the Procrustes pairwise distances between
specimens and the sample mean as metric of the morpho-
space occupied by all specimens in a landscape class. We
estimated the values of disparities of wing and thorax with the
“morphological.disparities” function implemented in geomorph
package in R. We used a permutation test (2,500 iterations)
to assess statistical significance differences (Adams et al.,
2020). Morphological disparities in the antennal phenotypes
were estimated through principal components scores using
the “dispRity” package in R (Guillerme, 2018). We used a
bootstrapping procedure (2,500 iterations) to assess 95%
confidence intervals and a t-test to evaluate significant
differences between values of morphological disparity after
Bonferroni correction.

Pattern of Similarities in Morphometric
and Morphological Data
We calculated a Mahalanobis distance matrix for each
morphometric and morphological data by sex. These distance
matrices were employed to construct a pattern of hierarchical
similarities among landscape classes that were visualized in
a cluster analysis based on the UPGMA (Unweighted Pair
Group Method using Arithmetic averages) algorithm performed
in R v3.5.0. We compared the topology and correlation
between clusters to detect patterns of similarity/concordance
between dendrograms generated by each morphological and
morphometric data. Due to the uneven number of samples
between the morphometric and morphological data set,
dendrogram comparisons were carried out with the dendextend
package in R v.3.5.0 (Galili, 2015). We calculated the quality of the
alignment among clusters (topology) with the “entanglement”
function, where values range from 0 to 1 where a lower
entanglement coefficient corresponds to a good alignment
(values close to 0). Also, we calculated a correlation coefficient
through de Goodman and Kruskal’s gamma index (γ). The values
of this index vary from 0 (absence of agreement) to 1 (100%
positive association or perfect agreement).

RESULTS

Abundance, Fitness Proxy and Feeding
Information
Eight hundred and seven bugs were collected during 2014–
2019 (55% Msd, 18% Sv, and 15% U; Supplementary Table S2).
Overall, 67% of the triatomines showed blood ingestion, of
which 74% were females and 57% were males. Seventy nine
percent and 70% of triatomines that were captured in Secondary
vegetation (Sv) and forest (Msd) respectively were fed, while 65%
of the urban bugs were fed. These frequencies were significantly
different (Chi-squared = 18.938, df = 3, p-value = 0.00028;
Table 2). A post hoc comparison showed further differences
between forest (Msd) and Urban (U) (p = 0.018) and Secondary
vegetation (Sv) and Urban landscape class (p = 0.015, Table 2).
Only 18% of females were gravid (n = 84). Most gravid females
were observed in 2015, 2016, and 2018. Two hundred and forty-
two females were recorded in Msd, and 26% of them were
gravid, while of the 100 females in Sv, 38% were gravid. In
Homegardens (n = 52) and Urban (n = 79), only 21 and 19%
of the females were gravid, respectively. The number of eggs
per female between landscapes was barely significantly different
(Kruskal–Wallis chi-squared = 8.4297, df = 3, p-value = 0.04;
Supplementary Table S2), However, post hoc comparisons
showed only one marginally significant difference between urban
(U) and forest (Msd) landscape class (p = 0.049), with the former
having fewer eggs.

Flight Morphology Variation
Thorax
The LMM detected significant differences in thorax size among
landscape classes (Table 2). The same variation pattern was
detected in both sexes. A statistically significant smaller thorax
size was found in Urban (U) individuals, while conserved and
rural landscapes had a significantly larger thorax size (Figure 3
and Table 3).

A large thorax size was observed in individuals from Hg and
Sv (Figure 3). For both sexes, the PCA based on thorax shape
indicates a small proportion of variance explained by the first
two components (females: PC1 35%, PC2 18%; males: PC1 38%,
PC2: 15%) (Figures 4A,B). According to the LMM, no significant
differences in thorax shape among landscapes were detected
(Supplementary Tables S3, S4).

Wing
The LMM revealed no significant differences in wing size
and WAR among sexes between landscapes (Table 2 and
Supplementary Table S3). For males and females, the PCA based
on wing shape indicated that the first two components explained
a small proportion of variance (female, PC1 30%, PC214%; male,
PC1 35%, PC2 15%) (Figures 5A,B). Also, the LMM did not
detect significant differences in wing shape among landscapes
(Supplementary Table S4).

The PLS showed that wing and thorax morphology did not
covariate (female, r = 0.359, P = 0.094; male, r = 0.302, P = 0.061).
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TABLE 2 | Results of ANOVA for a LMM for wing and thorax size (as Cs) of T. dimidiata.

Component Female Male

DF SS M Sq R2 F Z P-value DF SS M Sq R2 F Z P-value

Wing

Body size 1 0.0137 0.0137 0.0208 5.3554 1.3192 0.019 1 0.0112 0.0112 0.0216 3.4544 1.1365 0.070

WAR 1 0.0011 0.0011 0.0016 0.4359 0.2256 0.495 1 0.0022 0.0022 0.0043 0.6904 0.4006 0.411

Landscape 3 0.0315 0.0078 0.0476 2.4012 1.2985 0.074 3 0.0170 0.0042 0.0329 4.1287 1.5726 0.205

Landscape: Year 8 0.0262 0.0032 0.0396 1.2753 0.6763 0.260 7 0.0072 0.0010 0.0139 0.3182 –1.7314 0.945

Residuals 223 0.5996 0.0025 0.9057 140 0.4814 0.0032 0.9271

Total 236 0.6620 152 0.5192

Thorax

Body size 1 0.0016 0.0015 0.0004 0.1607 –0.260 0.687 1 0.0199 0.0199 0.0011 0.2671 –0.0305 0.601

Landscape 3 2.0473 0.5118 0.6048 2.3694 2.432 0.005 3 7.4537 1.8634 0.4421 2.49725 4.0428 0.001

Landscape: Year 9 0.1944 0.0216 0.05743 2.1945 1.605 0.500 7 0.4285 0.0535 0.0254 0.7178 –0.1243 0.532

Residuals 108 1.1418 0.0098 0.33730 121 8.9543 0.0746 0.5312

Total 121 3.3851 133

Significant P-values are in bold and italics.

Antennal Phenotype Variation
The univariate analysis rendered similar patterns in sensillum
abundance in both sexes. Our results indicated significant
differences between landscapes at the sensillum level, determined
by the number of sensillum types TK and TH. Among landscapes,
differences in TK and TH were observed in the three segments
(Supplementary Figures S1, S2 and Supplementary Table S5).
In all segments, differences in the number of sensilla type Ba
among landscapes were identified only in males.

At the segment level, in both sexes, the number of sensilla
from Pedicel and Flagellomere I (FI) were greater in Msd and
Sv than in Urban landscape (Supplementary Figures S3, S4
and Supplementary Table S5). In Flagellomere II, differences
in sensillum total abundance were only observed in males
but not in females. Also, in FII, we found fewer sensory
receptors for Hg and U, yet a high abundance for Msd and Sv
(Supplementary Table S5).

The CVA detected significant differences in sensory
phenotypes among landscapes in both sexes (Supplementary
Table S6). For each sex, only one canonical ax allowed

FIGURE 3 | Thorax size variation among landscapes for T. dimidiata female (F)
and male (M). Landscape: Urban (U), Homegarden (Hg), Median
subdeciduous tropical forest (Msd), and Secondary vegetation (Sv).

discrimination among landscapes (female, Wilks’ λ1 = 0.5157,
χ2 = 2.5957, d.f = 21, p < 0.001; male, Wilks’ λ1 = 0.4422,
χ2 = 2.2066, d.f = 24, P = 0.0019). In both sexes, the most
different groups were the anthropized landscapes (U) and
conserved ones (Msd) (Figures 6A–D). The proportion
of correct assignment of specimens based on posterior
probabilities obtained from the CVA scores supported the
differences among U and Msd landscapes. In females, the main
difference between the landscapes was observed in TH of the FII
(0.088), while in males, it was observed in Ba of the FI (0.066)
(Supplementary Tables S6, S7).

Feeding Morphology Variation
No significant differences were detected among landscape types
for the length of the proboscis (F3,245 = 2521, P = 0.069,
R2 = 0.027, Supplementary Table S8). Also, the results showed
that the length of the proboscis was not influenced by sex or body
size (Supplementary Table S8).

Morphological Disparities
The disparity values of the morpho-functional traits revealed
differences between landscapes, but not all the disparity values
follow the urban and non-urban gradient (Table 4). For example,
for females the results showed that the Procrustes variance in
thorax size and AP decreases in urban landscapes, while the
disparity values of the thorax shape, wing shape and proboscis
length decrease in Msd landacape. The highest values of disparity
in AP and proboscis length were observed in Hg and Sv,
which exhibit about three times greater variance than Urban or
Msd (Table 4).

In males, the pairwise disparity comparisons of the wing
morphology (shape and size) and thorax shape did not reveal
significant differences among landscapes, while the Procrustes
variance of thorax size and proboscis length was significantly
lower in Urban and Msd classes, respectively. On the contrary,
disparity values in AP showed significant differences between
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TABLE 3 | Results of pairwise comparison of thorax size of T. dimidiata among landscapes Z and P are based on 2,500 random permutations.

Landscape class Female Male

d UCL (95%) Z Pr > d d UCL (95%) Z Pr > d

U: Hg 0.6984 0.1898 9.9027 0.001 1.3968 0.8620 6.8574 0.001

U: Sv 0.5628 0.1724 8.9711 0.001 1.1257 0.7062 6.5337 0.001

U: Msd 0.3259 0.153 5.4259 0.002 0.6518 0.4585 4.0255 0.001

Hg: Msd 0.3724 0.1824 5.2903 0.001 0.7449 0.5277 3.9390 0.001

Hg: Sv 0.1355 0.1901 0.9285 0.171 0.2710 0.2964 1.4669 0.092

Msd: Sv 0.2369 0.1536 3.6506 0.002 0.4739 0.3669 2.9436 0.001

Landscapes: Urban (U), Homegarden (Hg), Secondary vegetation (Sv) and Median subdeciduous tropical forest (Msd). Significant P-values are in bold and italics.

Urban and Msd, but the lower value was observed in Sv
class (Table 4).

Patterns of Hierarchical Similarities
Thorax size and antennal phenotype similarities among
landscapes were visualized in a cluster analysis based on the

FIGURE 4 | PCA of thorax shape variation for T. dimidiata females (A) and
males (B). Landscape: Urban (U), Homegarden (Hg), Secondary vegetation
(Sv), and Median subdeciduous tropical forest (Msd).

UPGMA algorithm. Thorax size and phenotype dendrograms
showed entanglement values of 0.14 and 0.16 for females and
males, respectively. For both sexes, the correlation coefficients
for both dendrogram pairs were 0.85, suggesting high association
and agreement. All dendrograms showed two groups, being the
Urban the most distinct class. The second group is integrated by
heterogeneous but conserved sites (Msd, Sv, and Hg) (Figure 7).

Differences in all dendrograms were related to the position of
Hg and Sv. For females, the thorax size of Msd was most similar
to Sv, but not so when considering the antennal phenotype. On
the contrary, for males, the thorax size in Msd was similar to Hg
but with an antennal phenotype similar to Sv (Figure 7).

FIGURE 5 | PCA of wing shape variation for T. dimidiata females (A) and
males (B). Urban (U), Homegarden (Hg), Secondary vegetation (Sv), and
Median subdeciduous tropical forest (Msd).
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DISCUSSION

Our general assessment of how morpho-functional traits of
T. dimidiata have responded to a non-urban and urban gradient
provides new insights of likely drivers underlying adaptive
processes for triatomines. In what follows, we discuss our results
in terms of how microevolution is presumably acting in our
study species at the population level. First, there were similar
fitness payoffs among landscapes. Although only urbanized
animals showed some reduction in egg number, gravid females
were similarly common in urbanized and non-urbanized areas.
Second, our results suggest that changes in wing morphology
are not associated with landscape modification (e.g., Urban,
Rural) in contrast to thorax size. Third, thorax size and antennal
phenotype reveal a morpho-functional convergence as both show
a similar trend in phenotypic simplification. For both sexes, the
phenotypic pattern follows a simplification in the non-urban
and urban gradient. And fourth, convergence of thorax size
and antennal phenotype suggests that T. dimidiata s. l. exhibits
differences in flight/locomotion performance and dispersion as
an adaptive response to host availability. We discuss these results
at length below.

There was a decrease in thorax (pronotum) size and sensillum
antennal density in urban individuals relative to their sylvatic
and rural counterparts. Previous studies had documented intra
and interspecific variation in flight capacity in triatomine bugs
associated to a lack of development of flight muscle or thorax size
(e.g., T. sherlocki) (Almeida et al., 2012; Hernández et al., 2015;
Nattero et al., 2017). Given that flight initiation and dispersion in
triatomine bugs is modulated by starvation or inanition (Lehane
and Schofield, 1982; Lehane et al., 1992; McEwen and Lehane,
1993; Galvão et al., 2001), a large thoracic area would grant
bugs an enhanced ability to fly and, thus, disperse to track
diverse and scattered host burrows. This could explain why
in sylvatic and regenerating landscapes (i.e., abandoned fields)
and rural ecotopes, triatomines exhibit a large thoracic size and
disparity values. However, it is also possible that the similarities
in thorax size between Msd, Sv, and Hp are explained by the
fact that the great majority of individuals within these categories
(Sv and Hp) have a sylvatic origin, which coincides with the
infestation/movement process documented in rural landscapes
in this region (Dumonteil et al., 2002, 2007; Nouvellet et al.,
2011). Our findings suggest that occupying stable landscapes
(i.e., urban landscape class), where hosts do not have seasonal
changes in abundance and are thus predictable throughout
the year, would allow a reduction in triatomine investment in
structures of reduced use.

The morpho-functional pattern documented in thorax size is
similar to that of antennal sensilla, showing a clear morphological
simplification in T. dimidiata s. l. in the urban landscape.
The antennal phenotype of this species is characterized by a
high diversity of chemoreceptor sensilla in the pedicel (Catalá
et al., 2005; Arroyo et al., 2007; May-Concha et al., 2016,
Supplementary Table S9), which coincides with the complexity
of the niche it occupies throughout its geographical distribution
(Ibarra-Cerdeña et al., 2014; Villalobos et al., 2019). Given that
TK and TH chemoreceptors are sensitive markers of habitat

influence in our study species (Catalá et al., 2005; Arroyo et al.,
2007; May-Concha et al., 2016, 2018), our findings indicate
that these odor-detecting traits may be responding to selection
via a reduction in complexity in urbanized environments.
Interestingly, abundance of TK flagellum in T. infestans (Catalá
and Dujardin, 2001) and T. dimidiata (Catalá et al., 2005) was
higher in urbanized areas in South America. Notwithstanding,
we found that the highest abundance of TK sensilla was observed
in individuals from Msd and Sv and not in stable landscapes
as represented by U. Also, we found a complex relationship
between antennal phenotype and sylvatic habitats (Msd and Sv),
as evidenced by the density of TK and TH sensilla and the
total abundance of sensilla per segment. In this regard, sensillum
density in the pedicel and FI was higher in Msd and Sv than
in Urban and Hg for both sexes. Additionally, unlike females,
males showed a nature-urban gradient in the total abundance
of sensilla in FII and significant differences in Ba abundance
between landscapes. These sexual differences may be related to
mate searching activities by males because Ba is related to the
perception of sex-pheromone components (Bohman et al., 2018).
A functional explanation for the decrease in the density of sensilla
in urban environments is that a high density of such structures
is not needed in stable landscapes as blood sources can be, as
indicated above, less diverse and more predictable. This idea
would be supported mainly by the sensillum abundance at the
pedicel in urban triatomines as this trait has been described
in domiciled species that either occupy stable habitats (e.g.,
T. infestans, Catalá, 1997; Catalá et al., 2005) or use humans and
other domestic animals (canids, chickens, cats) as the main hosts
(Ceballos et al., 2005; Rabinovich et al., 2011; Alvedro et al., 2021).

One remarkable aspect of our findings is that these are
compatible with Schofield’s domiciliation hypothesis which
proposes a pattern of phenotypic/genotypic simplification in
triatomines from urbanized areas (Schofield et al., 1999; Flores-
Ferrer et al., 2018). Although the methodological approach
is different, our detected simplification pattern matches with
that documented for Panstrongylus geniculatus in Caracas,
Venezuela (Aldana et al., 2011). Because both sexes are
strictly blood-sucking, host-feeding traits in urban landscapes
will show convergence, which is the case of thorax size
and antennal phenotype. Moreover, our results are also in
agreement with those of other insects, where morpho-functional
structures are smaller in urban individuals than their rural
counterparts and that such phenotypic variation would be
related to the respective foraging landscape (Eggenberger
et al., 2019). The phenotypic simplification in T. dimidiata
may imply a reduced ability during flight/locomotion and
dispersion, related to a less diverse yet more predictable hosts
in urban landscapes. This logic has a sound background:
it has been shown that while bugs make use of a larger
range of hosts in rural environments, bugs that infest and
colonize urban dwellings make use of humans and domestic
animals (Alvedro et al., 2021). In this sense, the phenotypic
simplification in urban bugs, could be supported by the blood-
feeding profiles so far documented in bugs from the city
(Guzmán-Tapia et al., 2007), which contrasts with the full
range of host types identified in sylvatic and rural individuals
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FIGURE 6 | Antennal phenotype variation of T dimidiata among landscapes by sex (A,C). Distribution of individuals by landscape class along the first two canonical
axes (B,D). Female (A,B) and Male (C,D). Groups with the same letter did not present significant difference (p < 0.05) according to the Scheffé test. Urban (U),
Homegarden (Hg), Secondary vegetation (Sv), and Median subdeciduous tropical forest (Msd).

TABLE 4 | Disparity values of four morpho-functional traits of T. dimidiata s. l. along a nature-urban gradient.

Land Female Male

Wing Thorax Proboscis AP Wing Thorax Proboscis AP

Shape Size Shape Size Shape Size Shape Size

U (a) 0.0034/
c, d*

0.0506/ – 0.0022/
d*

0.0284/
d*

5.0140/
b, c*

3.078/
b, c, d**

0.0004/ – 0.0446/ – 0.0012/ – 0.0290/
b*

4.4237/
b, c**

5.199/
c, d*

Hg (b) 0.0039/ 0.0269/ – 0.0008/ – 0.0254/
d*

7.4041/
a, d*

6.799/
a, c, d**

0.0004/ – 0.0326/ – 0.0010/ – 0.2079/
a*

9.1016/
a, d**

6.74/
c*

Sv (c) 0.0005/
a*

0.0490/ 0.0014/ – 0.0468/ 6.9166/
a, d*

5.201/
a, b, d**

0.0005/ – 0.0540/ – 0.0012/ – 0.0372/ – 7.4442/
a, d**

1.989/
a, d*

Msd (d) 0.0005/
a*

0.0375/ – 0.0010/
a*

0.0821/
a, b*

4.5841/
b, c*

3.240/
a, b, c**

0.0004/ – 0.0390/ – 0.0011/ – 0.0753/ – 5.1845/
b, c**

6.086/
a, c*

Procrustes variance for landscape classes (Upper)/statistical significance represent by letters (lower, p < 0.05*, 0.001**).
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FIGURE 7 | Patterns of hierarchical similarities in thorax size (left) and antennal phenotypic (right) by landscape for T. dimidiata (A) female and (B) male. Landscape:
Urban (U), Homegarden (Hg), Secondary vegetation (Sv), Median subdeciduous tropical forest (Msd) Goodman-Kruskal-gamma index (γ); Alignment quality
(Alignment).

(López-Cancino et al., 2015; Dumonteil et al., 2018; Moo-Millan
et al., 2019).

Opposite to our predictions, we did not find variation in
proboscis length and wing morphology related to landscape,
possibly showing that these structures are equally economic and
functional among the different landscape classes. These results
reflect the generalist and opportunistic nature that characterizes
this species (López-Cancino et al., 2015; Dumonteil et al., 2018;
Moo-Millan et al., 2019). On the contrary, specialization has been
the main driver of the differentiation of proboscis length under
a rural-urban gradient in other insects (Eggenberger et al., 2019).

As for wing morphology, our findings agree with previous studies
in the YP (Dumonteil et al., 2007; Nouvellet et al., 2011).
Notice that wing shape is a genetically determined character
(Birdsall et al., 2000; Zimmerman et al., 2000) so that the
absence of differentiation documented in our study match with
the low genetic structure detected (Dumonteil et al., 2007;
Nouvellet et al., 2011) and the fact that there is mainly a
single haplogroup (Hg1) circulating in Yucatan state (Pech-May
et al., 2019). Our interpretation of the morphological stability
between landscapes and the lack of functional integration with
thorax is that the variation in wing morphology does not
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affect the flight performance and dispersion in T. dimidiata s.
l. Actually, walking is another important dispersal mechanism
in triatomines (Vazquez-Prokopec et al., 2004, 2005; Abrahan
et al., 2011) and the muscle involved with such locomotion
is also concentrated in the thorax (Davis and Holden, 2015;
Hernández et al., 2015). The evidence suggests that through
this dispersal mechanism (walking), triatomine bugs could
disperse more actively, regardless of their nutritional status
or even if they are not fed, which favors the invasion and
colonization of new habitats (Lobbia et al., 2019). Thus, possibly
a small thorax is related to a lower capacity for locomotion
performance in urban bugs.

Nutritional status (as a body weight/body length ratio or
feeding status) is associated with population structure and
dispersal in triatomine bugs (Lehane and Schofield, 1982; Lehane
et al., 1992). Although this study was carried out in different
periods of time during certain months, the nutritional status
would be an immediate indicator of the individual’s physiological
state, while the morpho-functional variables quantified in this
study would reflect the conditions (environmental, nutritional,
etc.) that prevailed during development of nymphal stages
(Hernández et al., 2011). The former would also explain
the significant differences in the frequency of blood feeding
documented in this work. This is, it is a momentary indicator
of the physiological state and blood-source availability. Although
the frequency of blood feeding between urban versus rural and
sylvatic individuals were significantly different, our results show
that bugs from all landscapes are fairly successful in gaining
access to blood (higher than 65%). For example. this value is
higher than that reported for peridomicile bugs of Rhodnius
pallescens in Panama (less than 40%; Gottdenker et al., 2011), and
shows a less contrast between sylvatic and urban/rural bugs (a
difference of 14% in T. dimidiata in our study vs. 40% difference
in Rhodnius pallescens).

Several aspects of the morpho-functional simplification in
T. dimidiata in urban areas are unknown and need to be
addressed in future studies. First, would this simplification
generate a trade-off with fitness-related traits? For example, could
feeding on an urban host generate nutritional stress that affects
their development, reproduction, and/or survival? Related to this,
developmental instability (Dujardin et al., 1999; Nattero et al.,
2015a,b) and reduced size and survival (Gutiérrez-Cabrera et al.,
2021) has been documented in triatomines that feed on specific
hosts that occupy predictable habitats. However, we are not aware
of any fitness-related difference when triatomines use urban vs.
non-urban hosts. On the other hand, despite providing data on
egg number as a fitness proxy, there is not any apparent benefit of
occupying urban landscapes where the availability of resources
would be stable. Future studies should include several fitness
measures (e.g., number of eggs laid, hatching nymphs and/or
survival) to unravel the costs/benefits of occupying urban niches
for T. dimidiata. Second, because the intraspecific morphological
variation in Triatominae does not necessarily have a linear
relationship with the genetic structure (Dujardin et al., 1999,
2009), the microevolutionary potential that urban environments
could exert on this species remains unknown. T. dimidiata is
a species sub-complex integrated by at least four evolutionary

lineages (Pech-May et al., 2019) with records in several cities
of Mexico (Ramsey et al., 2015) and other Central and South
America countries (Zeledon and Rabinovich, 1981; Zeledón et al.,
2005; Dorn et al., 2007). In this sense, because the ecological
pressures in cities would be similar (Santangelo et al., 2018), it is
expected that urban traits will be highly canalized, independently
of genetically distinct lineages, as has been documented in the
south American triatomine, R. ecuadoriensis (Abad-Franch et al.,
2021). Third, related to the wide distribution of T. dimidiata, the
question remains as for whether the morphological changes are
explained by phenotypic plasticity or are evolutionary responses
to selection at the population level. One key feature of vectors
that are expanding their distribution range is their phenotypic
plasticity (Lefèvre et al., 2009). Future research should answer
this for triatomines. This can be done with selection experiments
whereby phenotypic plasticity is examined via fitness payoffs in
different environments. And fourth, although we have provided
a general discussion on how the phenotypic traits we measured
are related to urbanization, a more intimate link may occur at
the level of microhabitat structure. For example, the antennal
traits can be used to detect places with particular humidity and
temperature ranges where bugs can hide (e.g., Triatoma infestans
Vazquez-Prokopec et al., 2002). Thus, one further step would be
to link such traits with microhabitat structure.

Ample evidence has shown that the biotic and abiotic
characteristics in urbanized environments are responsible for
the nearly 1600 phenotypic changes that have been documented
in plant and animal species worldwide (Alberti et al., 2017).
Cities are fragmented landscapes with a high degree of human
disturbance, characterized by pollution, noise, light intensity,
where the habitat structure is shaped by artificial buildings that
tend to increase the temperature (urban heat island effect) and
thus affect important biophysical and physiological processes
(Liker, 2020). The availability of food and nutrients in the urban
landscape is also another factor that influences inter/intraspecific
competition, predation and diversity (Biard et al., 2017; Liker,
2020). All of these ecological conditions can generate strong
selection that leads to the evolution of specific urban phenotypes.
In this regard, while we know that the triatomine phenotype
is modulated by ecological factors in the sylvatic-rural gradient
within a context of an anthropogenic drive (domiciliation), the
role of cities as new adaptive filters has been little investigated.
While in many cases, urban evolution is explained by non-
adaptive processes (i.e., genetic drift), there is evidence that
suggests that genetic diversity and gene-flow among populations
of T. dimidiata are not associated to anthropic gradients in
Yucatan state (Dumonteil et al., 2002; Pech-May et al., 2019).
This gives support to the hypothesis that differentiation in thorax
size, density of sensilla, and their morphological convergence,
cannot be explained by genetic drift. The feeding characteristics
of T. dimidiata (i.e., opportunistic and host generalist status),
and assisted movement of bugs by rural human migration to
Mérida (Chi-Méndez, 2016) could help sylvatic insects to move
into the urban landscape, thereby increasing genetic diversity
and reducing the genetic structuration (e.g., “Urban facilitation
models,” Miles et al., 2019). Since infestation and transmission of
CD in urban settings has increased elsewhere (Vallvé et al., 1996;
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Levy et al., 2006; Medrano-Mercado et al., 2008; Carvalho et al.,
2014; Parente et al., 2017; Alvedro et al., 2021), there is a potential
signal for urban evolution in triatomines, due to the presence of
a suitable niche where susceptible hosts are abundant and not
intermittent (Bradley and Altizer, 2007). What factors could be
driving such niche search? Food resource availability in cities
appear to be a leading factor driving phenotypic adaptation in
several species (Serruys and Van Dyck, 2014; Alberti et al., 2017;
Biard et al., 2017; Eggenberger et al., 2019; Liker, 2020) including,
possibly, our study species. We do not rule out that other
evolutionary mechanisms (e.g., orthogenesis) or phenomena
(e.g., epigenetics/pleiotropy) could be related to morphological
simplification in urban individuals of T. dimidiata. However,
our findings should foster research linking genetic bases of this
morpho-functional structuring and possible fitness benefits in
the urban landscape. Also key is to answer if the availability of
food resources (as host diversity, nutritional stress, etc.) is one
driver underlying these covariations and phenotypic structuring
(Donihue and Lambert, 2015; Santangelo et al., 2018; Lambert
et al., 2020).

From an epidemiological point of view, the morpho-
functional simplification of T. dimidiata in the natural-urban
gradient could suggest a “domiciliation” event which implies that
this species maintains resident urban populations. This actually
challenges the view that T. dimidiata occurrence is restricted to
the warmer months (dry season: March to June) uniformly for the
Yucatan peninsula (Dumonteil et al., 2007; Waleckx et al., 2015).
Thus, a more realistic estimation of Chagas disease risk should
take into consideration the temporal patterns of abundance in
the appropriate landscape (Ribeiro et al., 2021). In the region, the
potential of T. dimidiata to establish colonies has not yet been
clearly determined (Ibarra-Cerdeña et al., 2020). For instance,
some studies have shown that T. dimidiata persists in the city
throughout the year (albeit with low densities) with infection
rates even higher than those documented in rural communities
(48%, Guzmán-Tapia et al., 2007; 90%, Ibarra-Cerdeña et al.,
in preparation) where presence of abandoned backyards are
associated with the house infestation by providing temporary
shelter, where synanthropic and domestic animals are available
as a source of blood (Guzmán-Tapia et al., 2007). This could be
the result of two non-exclusive processes, the urban expansion,
and the passive transport of bugs due to rural human migration
from the countryside to the city (Chi-Méndez, 2016). Since urban
expansion and interstate migration in this region continues to
increase (Goujon et al., 2000; Colditz et al., 2017), it is likely that
bug infestation will also augment. In any case, our approach can
be used to track the process of bug domiciliation.

CONCLUSION

Our study reveals site-specific, simplified morpho-functional
architecture that renders similar fitness pay offs in urban
environments for an insect disease vector. We admit that
selective forces, other than urbanization, may be acting and thus
explaining our results. However, urbanization properties are so
pervasive that it is hard to think about such other forces. It is

necessary to promote and increase research on the “evolvability”
of other morpho-functional and “plastic” traits of T. dimidiata
in urban landscapes. Given a functional specialization in urban
areas, there are implications for triatomine control. One example
would be that urban populations of this species perceive different
wavelengths than those that inhabit rural environments. Related
to this, it has been documented an intense attraction of
triatomines to incandescent light whose use is typical of many
Mexican and Latin American villages (Pacheco-Tucuch et al.,
2012). One may learn whether light sensitivity to such light
sources is part of the novel adaptive repertoire for urbanized
triatomines and, if it is the case, how we can use such information
for bug attraction and control.
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