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Brain plasticity is widespread in nature, as it enables adaptive responses to sensory
demands associated with novel stimuli, environmental changes and social conditions.
Social Hymenoptera are particularly well-suited to study neuroplasticity, because the
division of labor amongst females and the different life histories of males and females
are associated with specific sensory needs. Here, we take advantage of the social
wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex,
and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male
wasps had proportionally larger optic lobes, while females had larger antennal lobes,
which is consistent with the sensory needs of sex-specific life histories. Within castes,
reproductive females had larger mushroom body calyces, as predicted by their sensory
needs for extensive within-colony interactions and winter aggregations, than workers
who frequently forage for nest material and prey. Parasites had different effects on
female and male hosts. Contrary to our predictions, female workers were castrated
and behaviorally manipulated by female or male parasites, but only showed moderate
differences in brain tissue allocation compared to non-parasitized workers. Parasitized
males maintained their reproductive apparatus and sexual behavior. However, they had
smaller brains and larger sensory brain regions than non-parasitized males. Our findings
confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic
manipulation drives differential allocation of brain regions depending on host sex.

Keywords: brain plasticity, parasite, parasitic manipulation of host, Polistes dominula, sensory brain regions,
social wasp, strepsiptera, Xenos vesparum

INTRODUCTION

Brain plasticity enables adaptive responses to different sensory demands such as novel stimuli,
changing environments and social conditions (Taborsky and Oliveira, 2012; O’Donnell et al., 2013;
Anderson and Finlay, 2014; Kamhi et al., 2017; Jernigan et al., 2021). For instance, neuroplasticity
has evolved across many lineages as a result of variable selective pressures acting on the cognitive
demands of sensory and perceptual systems (Barton et al., 1995; Barton and Harvey, 2000; Catania,
2005). Since brain tissue is energetically expensive, plasticity in specific brain structures may be
linked to the sensory and processing needs of adaptive behaviors (Isler and Van Schaik, 2006;
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Niven and Laughlin, 2008; Riveros and Gronenberg, 2010;
Pyza, 2013; Montgomery et al., 2016; Dunbar and Shultz,
2017; Rozanski et al., 2021). Investment in neural tissue may
be mediated by experience (Jones et al., 2009; Riveros and
Gronenberg, 2010; Cabirol et al., 2018), diet (Murphy et al.,
2014; DeCasien et al., 2017), environmental stimuli (Burns
et al., 2009; Axelrod et al., 2018), tradeoffs with reproduction
(Pitnick et al., 2006), and/or endocrine factors (Ball et al., 2002;
Lendvai et al., 2013). Previous studies also provide compelling
evidence for how neuroplasticity adaptively supports the division
of labor in complex insect societies and matches sensory
specialization (Groh and Meinertzhagen, 2010; Giraldo et al.,
2013; Kamhi et al., 2017; Gordon et al., 2019; Arganda et al., 2020;
Baudier et al., 2021).

Given that specialized behaviors are associated with a range of
caste-specific sensory needs, corresponding investment in neural
tissue is expected (Gronenberg et al., 1996; Ehmer et al., 2001;
O′Donnell et al., 2007; Seid et al., 2011; Rehan et al., 2015;
Arganda et al., 2020; Penick et al., 2021). Therefore, social insects
provide the opportunity to compare differential investment in
sensory brain regions between castes and sexes with different
life histories (Gronenberg and Riveros, 2009; Beani et al., 2014),
while controlling for genetic background. In insect brains, visual
input travels from the eyes and is received and processed by
the optic lobes, while olfactory input is received by the antennal
lobes (Strausfeld, 1989; Anton and Homberg, 1999; Gronenberg
and Hölldobler, 1999). From these lower-order sensory neuropils,
projection neurons convey the computed information to the
mushroom bodies (Akalal et al., 2006). In these higher-
order brain centers, the chemical and visual information is
further processed and integrated with internal information by
intrinsic neurons and finally projected to premotor areas. The
substructures of the mushroom body calyces, act as learning and
memory centers that integrate sensory information and foraging
experience. Specifically, olfactory information is processed in the
lip, the visual information in the collar, and both sensory stimuli
in the basal ring (Ehmer and Hoy, 2000; Akalal et al., 2006;
Fahrbach, 2006). Finally, the central complex is implicated in
spatial navigation (Pfeiffer and Homberg, 2014; Honkanen et al.,
2019; Le Moël et al., 2019).

Here, we take advantage of the primitively eusocial paper
wasp Polistes dominula to test how brain plasticity is associated
with behavioral flexibility (Pardi, 1996; O’Donnell et al., 2014,
2018; O’Donnell and Bulova, 2017; Rozanski et al., 2021).
In this temperate wasp species, the recognition of nestmates,
caste, and sex relies on both chemical and visual cues (Dani
et al., 2001; Cappa et al., 2016, 2020; Beani et al., 2019;
Cini et al., 2019). Females are morphologically similar and
organized in a flexible caste system, according to a dominance
hierarchy (Pardi, 1948). The reproductive castes emerge in mid-
summer and consist of males and gynes that will become
foundresses the following spring. Gynes remain on the natal
nest without performing any colony tasks and then mate,
form winter aggregations, and enter diapause (Reeve, 1991).
The following spring, foundresses initiate construction of nests
and compete for the dominant position establish a dominance
hierarchy. The dominant foundress monopolizes egg-laying, and

the first offspring will become workers (Strassmann et al., 2004).
Therefore, subordinate foundresses and workers are involved in
nest building and defense, the rearing of larvae, and foraging
(West-Eberhard, 1969). In the mid-summer, adult males and new
gynes emerge. Males abandon the nest early after emergence
and display lek-behavior at landmarks where they mate with
gynes and die at the end of fall (Beani, 1996; Beani et al., 2014).
Gynes store sperm for reproduction during the following spring
(Cappa et al., 2013).

In addition, P. dominula is also parasitized by the strepsipteran
insect Xenos vesparum, which provides a great opportunity to
explore the effect of this parasite in allocation of brain tissue
(Hughes and Libersat, 2018; Libersat et al., 2018). X. vesparum
larvae enter worker wasp larvae in the early summer and
develop inside their hosts (Manfredini et al., 2010). When
the hosts emerge as adults, the parasites undergo pupation
and behaviorally manipulate their hosts (Hughes et al., 2004b).
After metamorphosis, adult female parasites remain as obligate
endoparasites inside the host, while adult males emerge from the
host, and mate with females. Parasite pupae decrease the size of
corpora allata in female hosts and castrate them by irreversibly
inhibiting ovary development (Strambi and Strambi, 1973;
Strambi et al., 1982; Hughes et al., 2004b; Beani, 2006). Parasitized
workers abandon the colony and aggregate on selected plants
where parasite mating occurs (Hughes et al., 2004b; Beani et al.,
2018). In contrast, male wasps are less-frequently parasitized,
and instead maintain their reproductive apparatus and sexual
behavior (Beani et al., 2011; Cappa et al., 2014). After mating,
female parasites extend the lifespan of their worker host to
overwinter like a gyne (Beani et al., 2021). Instead, female and
male hosts parasitized by males die at the end of the summer
(Beani et al., 2021).

While brain plasticity within and across social insects has been
extensively studied (Godfrey and Gronenberg, 2019), no studies
have explored plasticity within a species that has morphologically
similar individuals, various colony tasks, and a parasite that
potentially alters brain morphology. We predicted that the
relative volume of selected brain regions reflects specific sensory
needs for each caste and sex (reproductive females, female
workers, and males) (Rozanski et al., 2021). We also predicted
higher volume of visual regions in males to detect and identify
potential mates or rival males in a lek, compared to females. On
the contrary, we expected more olfactory processing by females
compared to males due to social interactions in the colony.
We also tested for the effect of parasitic manipulation in brain
allometry. We predicted a stronger parasite effect in the brain of
workers, because they are castrated and show strong behavioral
manipulation, compared to parasitized males who reproduce
and show no changes in behavior. Finally, little is known about
the specific neuroendocrine effects of female and male parasites
toward female and male hosts. Based on the strong behavioral
alterations induced by the parasite on worker wasps (Strambi
and Strambi, 1973; Beani et al., 2017), we expected a reduction
of corpora allata regardless of parasite sex. Conversely, given the
mild parasite impact on male hosts (Cappa et al., 2014; Beani
et al., 2017), we predicted a small effect of X. vesparum on male
corpora allata size.
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MATERIALS AND METHODS

Field Collection
We collected reproductive females (N = 10 foundresses and N = 9
gynes), non-parasitized workers (N = 10), workers parasitized by
one X. vesparum female (N = 11) or by one X. vesparum male
(N = 11), non-parasitized males (N = 10), and males parasitized
by one or two X. vesparum males (N = 9). All samples were
collected during the first days of July of 2016 and 2018, in the
plain of Sesto Fiorentino (Tuscany, Italy). Males parasitized by
X. vesparum females and parasitized gynes are lacking in our data
set, due to the protandrous emergence of X. vesparum (Hughes
et al., 2004a), and to the scarcity of male and gyne reproductive
larvae during the infection period in the early summer. Wasps
from each caste emerge synchronously and at specific times
throughout the summer, which controls for age (Molina and
O’Donnell, 2008) and seasonality effects that can influence brain
development. Non-parasitized and parasitized hosts are easily
distinguished by inspecting for parasite extrusions between the
abdominal tergites, and parasites can be identified as female or
male because of the shape of their pupal sac (Figure 1B). Finally,
to verify which individuals were parasitized, their abdomens
were preserved and dissected in 70% ethanol. We confirmed
the absence of pupal parasites in female workers and males
without any visible signs of parasitism. In parasitized workers
and males, we also confirmed sex of the parasites and gonad
development predicted for each category (Figure 1C). Finally, we
preserved each head capsule individually in a glyoxal fixative for
subsequent histological sectioning (Prefer, Anatech Ltd., Battle
Creek, United States).

Histology and Measurement of Brain
Regions
We first dehydrated each head capsule with a series of
increasing ethanol and acetone concentrations. We then used
the established concentrations for the Embed 812 resin kit
(Electron Microscopy Sciences, Hatfield, United States) to embed
the head capsule while maintaining their brain dimensions,
following the histology protocol for Polistes wasps (O’Donnell
et al., 2015; Rozanski et al., 2021). The samples were moved
repeatedly between an open-air rocking shaker (Thermo Fisher
Scientific, Waltham, United States) and a vacuum to improve
infiltration of the solvent.

Next, we placed each embedded head capsule in an individual
plastic mold filled with the same concentration of resin in an
oven at 60◦C. After 72 h, the resin was polymerized. We sectioned
each brain in consecutive coronal sections with a thickness of 17
µm and stained the tissue with toluidine blue, to visualize clearly
defined boundaries for each brain region. We photographed the
consecutive brain sections for each specimen using a Canon EOS
5D Mark III mounted on a Leica DM IL LED microscope at 4 x
magnification, including a scale of 1,000 µm.

Using the AxioVision SE64 (Zeiss, NY, United States), we
outlined the area for each individual brain region (Figure 1A).
We traced the antennal lobes and the three substructures of
the optic lobes: medulla, lobula and lamina. We also traced the

two calyx substructures process olfactory and visual stimuli: lip
and collar, respectively, and the central complex. The remaining
structures in the protocerebrum were grouped as the central brain
(Figure 1A), following the established method for this species
(Rozanski et al., 2021) and ants (Sheehan et al., 2019). Outlining
of brain regions was done blind to the category for each sample.
We quantified each brain region for every other section per
brain, as this method shows high accuracy (i.e., < 3.5% error
for 34 µm thick sections) (Ehmer and Hoy, 2000). We then
determined the volume for each region by multiplying the area
by the distance between sections (34 µm). We generated the 3-
D brain reconstruction by using the software RECONSTRUCT
(Fiala, 2005). To control for the effect of head size, we measured
head width. Finally, we determined the cross-sectional area of
the corpora allata by measuring the diameter of one of the two
glands, following the method previously used for this species
(Strambi and Strambi, 1973).

Statistical Analyses
We explored if differential volume in specific brain regions
among phenotypes was the result of changes in allometric scaling
(Ott and Rogers, 2010; Eberhard and Wcislo, 2011; Seid et al.,
2011; O’Donnell et al., 2013; Stöckl et al., 2016; Sheehan et al.,
2019). In P. dominula, the optic lobe represents on average 42%
of the brain and may have an effect on relative neuropil scaling
(Rozanski et al., 2021). Therefore, we compared investment in
each sensory brain region to the central brain, instead of by the
whole brain (Ott and Rogers, 2010; Stöckl et al., 2016; Sheehan
et al., 2019).

We used the allometric equation y = a∗xβ for the scaling
relationship between brain regions x and y. We then
logarithmically transformed the estimates β (slope) and
α (intercept of a regression) by using the linear equation
log(y) = βlog(x) + log(a), where log(a) = α (Dubois, 1897; Huxley
and Teissier, 1936). Standardized Major (SMA) regression
analyses were calculated by using the SMATR v.3 package for R
(WartonI, Wright et al., 2006, Warton et al., 2012).

First, we tested for a common slope among non-
parasitized phenotypes as a baseline comparison,
consisting of males, reproductive females and workers
(H0 = βmales = βreproductives = βworkers). We implemented
log-likelihood tests followed by post hoc pairwise comparisons
provided in the SMATR package. Since allometric scaling did
not differ significantly between foundresses and gynes, we
pooled them under a new category called “reproductives.”
Second, we tested for a common slope among non-parasitized
workers, with one female parasite and with one male parasite,
and between non-parasitized and parasitized males. The volume
of brain regions did not differ between male wasp parasitized
by one or two male X. vesparum, so we also pooled them. We
compared allometric changes in the whole brain with head width,
central brain with whole brain, and pooled sensory regions with
changes in the central brain. Finally, we explored the allometric
relationship between each sensory brain region and central
brain, following our established method for this wasp species
(Rozanski et al., 2021).
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FIGURE 1 | Study system: a female brain, the abdomen of a parasitized female, and Xenos vesparum parasites. (A) Frontal view of a 3-D reconstructed brain of a
female Polistes dominula. The sensory brain regions are color coded: substructures of the optic lobes (blue), antennal lobes (yellow), lip (bright red), collar (dark red)
and the central complex (white). All sensory regions are normalized by the central brain (gray). For reference, the subesophageal zone is shown in bright pink and the
mushroom body peduncles in light red. Scale bar = 500 µm. (B) A host abdomen shows a male X. vesparum pupa (top) and the cephalothorax of a neotenic female
X. vesparum pupa (bottom) extruding from the tergites. (C) Same larvae of X. vesparum after being dissected from the host’s abdomen: male parasite on top and
female on the bottom. (B,C) Are scaled (scale bar = 2 mm).

For categories that shared a common slope, we used log-
likelihood tests to calculate the slope index (SI) for the brain
region comparisons described above. The SI determined if a brain
region is allometric (β 6= 1), meaning that sensory brain region
(y)/central brain (x) would change with size. We also used a
Wald Test to calculate the common shift (H0 = equal axis among
phenotypes), for any shift along the x axis. Finally, we calculated
how much larger a sensory region (y) is compared to the
central brain (y), by using a grade shift index (GSI) to compare
phenotypes (i.e., H0 = α males = α reproductives = αworkers). The
GSI reflected changes in intercept α (elevation) with no changes
in the slope β. This method facilitates pairwise volumetric
comparisons between phenotypes (i.e., e α males− α reproductives),
by implementing a Wald test. For example, if GSI > 1, males
had larger volume of a brain region compared to reproductives,
and if GSI < 1 the relationship would be inverse. We specify
the direction of change for each of the analyzed categories in
“Results” section and Supplementary Tables 1, 2. Lastly, we also
ran a Kruskal-Wallis test with subsequent pairwise comparisons
to determine corpora allata growth across castes and to test the
effect of both parasite and host sex.

RESULTS

Investment in Sensory Regions by Caste
and Sex
All brain regions, except for the central complex showed
a common slope, but had differences in the GSI, common
shift and/or SI depending on the specific region (Figure 2
and Supplementary Table 1). Males and reproductive females
had proportionally larger pooled sensory regions compared
to workers (GSI = 1.056, P = 0.01 and GSI = 1.036,

P = 0.006, respectively, Figure 2C). Males had proportionally
smaller antennal lobes when compared to reproductive females
(GSI = 0.87, P < 0.001), as an effect of both changes in elevation
and a common shift (Figure 2D and Supplementary Table 1).
Males also had smaller antennal lobe volume than workers
(GSI = 0.926, P = 0.002, Figure 2D). Males had larger optic
lobes than reproductive females (GSI = 1.064, P = 0.001) and
workers (GSI = 1.103, P < 0.001, Figure 2E and Supplementary
Table 1). Within females, reproductives had larger antennal lobes
(GSI = 1.057, P = 0.002, Figure 2D) and calyces compared to
workers (GSI = 1.042, P = 0.003, Figure 2F). Reproductives had
increased optic lobe volume compared to workers (GSI = 1.037,
P = 0.02, Figure 2E). Finally, workers showed an isometric
increase in the central complex (P = 0.052), in contrast to a
hypoallometric reduction of this navigational brain region in
reproductive females and males (Figure 2I).

Investment in Sensory Regions by
Parasitized and Non-parasitized Wasps
Workers parasitized by one female or one male X. vesparum
showed no differences in allocation of most sensory brain regions,
compared to non-parasitized workers (Figures 3A, C, G). Indeed,
non-parasitized workers shared a common slope with workers
with a female or a male X. vesparum, and no volumetric
differences in the antennal lobes (Figure 3D) or the optic lobes
(Figure 3E and Supplementary Table 1). However, we did find
a change in the slope index of the whole brain in workers
parasitized by a female, compared to non-parasitized workers
or those parasitized by a male (P < 0.001, Figure 3B and
Supplementary Table 1). Workers parasitized by one female
had an isometric pattern, resulting in larger calyces (P = 0.031,
Figure 3F) and collars (P = 0.045, Figure 3H), than non-
parasitized workers and those parasitized by one male. Lastly,
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FIGURE 2 | (A–I) Comparison of the investment in sensory regions by sex and caste. The volume of each brain region was log-transformed, and each dot
represents one individual. The males are depicted in black, reproductives (gynes and foundresses) in dark orange and workers in blue. The corresponding colored
lines represent the slope for each category, and each dot represents an individual. Given that most comparisons shared a common slope, see Supplementary
Table 1 for full Standardized major axis (SMA) results.

workers with one male parasite had a hypoallometric reduction
of the central complex in comparison to non-parasitized workers
and those parasitized by a female (P = 0.027, Figure 3I).

In contrast, parasitized and non-parasitized males showed
differential allocation toward specific brain regions. They shared
a common slope and differences in grade shifts for the
following brain regions: whole brain, antennal brain, lip, and
central complex (Supplementary Table 2). Parasitized males
had a proportionally smaller whole brains than non-parasitized

males (GSI = 1.15, P < 0.001, Supplementary Table 2 and
Figure 4A). However, due to a common shift along the main
slope axis, parasitized males had proportionally large antennal
lobes (P = 0.01, Figure 4D), lip (P = 0.001, Figure 4G) and central
complex (P < 0.001, Figure 4I) compared to non-parasitized
males (Supplementary Table 1). In contrast, parasitized males
showed a disproportionately reduced volume of the central brain
(P = 0.02, Figure 4B), but disproportionately large volume of
pooled sensory regions (P = 0.03 Figure 4C), optic lobes (P = 0.03,
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FIGURE 3 | (A–I) Comparison of the investment in sensory regions by parasitized and non-parasitized workers. Categories are depicted as non-parasitized workers
(blue), workers parasitized by one female X. vesparum (dark gray) and workers parasitized by one male X. vesparum (light gray). The corresponding color-coded line
represents the slope for each category and each dot represents an individual. Some comparisons shared a common slope, see Supplementary Table 1 for full
statistical results.

Figure 4D), calyces (P = 0.04, Figure 4F), and collar (P = 0.02,
Figure 4H) compared to non-parasitized males (Figure 4 and
Supplementary Table 2).

Corpora Allata Development According
to Sex, Caste, and Parasitism
The corpora allata were significantly smaller in all males
compared to females (χ2 = 46.86, df = 6, P < 0.001, Figure 5).
Although not significant, foundresses showed the expected trend
toward large corpora allata compared to gynes (Z = 2.02, P = 0.07)
and workers (Z = 0.79, P = 0.06). Post hoc pairwise tests showed

no significant differences in workers parasitized by one female
(Z = 1.62, P = 0.1) and by one male (Z = 4.41, P = 0.5) compared to
non-parasitized workers. Gland size also did not differ according
to parasite sex (Z = −0.84, P = 0.39), or between parasitized and
non-parasitized males (Z =−0.02, P = 0.98).

DISCUSSION

We provide several lines of evidence supporting the focal
hypothesis that brain plasticity facilitates differential sensory
needs and life histories within the same species. First,
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FIGURE 4 | (A–I) Comparison of the investment in sensory regions by parasitized (purple) and non-parasitized males (black). SMA fits are log-transformed per
categories with the lines based on intercepts and slopes (purple for parasitized and black for non-parasitized males). Most volumetric comparisons did not share a
common slope, see Supplementary Table 2 for full SMA tests.

reproductive females also had larger calyces compared to worker
females, reflecting sensory needs associated with division of labor.
Second, males and females showed a consistent and significant
differential investment in volume of the optic and antennal
lobes. This pattern implies a life history-based plasticity of
otherwise genetically shared backgrounds in Polistes dominula.
Furthermore, we provide novel evidence for the effect of
the Xenos vesparum parasite in neural investment by female
and male hosts. Contrary to our prediction, non-parasitized
and parasitized workers show moderate volumetric differences
in brain sensory regions, while parasitized males showed a
more drastic effect in allocation of neural tissue compared to
non-parasitized males. Overall, our results are consistent with

differential investment in brain regions being advantageous
across social wasp species (O′Donnell et al., 2011).

The observed differential investment in sensory brain regions
reflect the distinct life cycles of P. dominula males and females,
similarly to previous studies in bees and ants (Van Praagh et al.,
1980; Arnold et al., 1985; Menzel et al., 1991; Gronenberg, 2008;
Mysore et al., 2009). Together, these findings suggest that in social
Hymenoptera, male sexual behavior is a fundamental driver
of neural organization (Beani et al., 2014). Male P. dominula
leave their nest within a few days after emergence and gather at
distinct leks to increase their mating opportunities (Beani, 1996).
When attempting to mate, males can visually distinguish between
females and competing males, and between workers and gynes
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FIGURE 5 | Corpora allata size in reproductive females, workers, males,
parasitized workers, and parasitized males. The cross-sectional area of the
corpora allata was calculated by measuring its diameter in microns and
normalized with head size. Wasp categories are color coded: found
(foundresses), gynes, work (workers), work1f m (workers with 1 female
parasite), work1m (worker with 1 male parasite), males and male1m (male with
1 male parasite). Each boxplot shows the median, 25th and 75th percentiles.
The whiskers show the 5th and 95th percentiles.

(Cappa et al., 2013; de Souza et al., 2017; da Silva et al., 2021).
Therefore, larger optic lobes may facilitate detection and
discrimination between potential mates or male intruders in
their defended territories (Beani et al., 2014). Males have smaller
antennal lobes, which is likely due to experiencing less complex
olfactory stimuli, as they do not engage in frequent chemically-
based social interactions in the colony. In contrast, reproductive
females have proportionally larger antennal lobes, lips and collars,
which is consistent with other studies that show sensory needs
associated with division of labor, interactions among nestmates,
learning and memory (Gronenberg et al., 1996; Ehmer and Hoy,
2000; O′Donnell et al., 2011; Mora-Kepfer, 2014; Jernigan et al.,
2021; Mertes et al., 2021; Rozanski et al., 2021; Uy et al., 2021).
Thus, the social environment of female wasps has a wider range
of chemical and sensory processing cues compared to males
(Beani et al., 2014).

Within females, reproductives had proportionally larger
calyces than workers, which coincides with division of labor
in these social wasps (O′Donnell et al., 2007). Foundresses
consistently engage in social interactions both within the colony
and as gynes during winter aggregations, utilizing visual and
chemical cues toward recognition (Dani et al., 2001; Cini et al.,
2019). In contrast, most workers spend less time interacting
with foundresses and brood on the nest, and allocate more
time performing tasks such as foraging for prey and building
material (Gamboa et al., 1978). Our results are similar to studies
in P. dominula (Ehmer et al., 2001), P. instabilis (Molina and
O’Donnell, 2007), and Mischocyttarus mastigophorus (O′Donnell
et al., 2007) that correlate large calyces with social dominance.
Contrastingly, in ants, honey bees, and Polybia paper wasps,

subordinate forager workers have large calyces (Withers et al.,
1993; Gronenberg et al., 1996; O′Donnell et al., 2004). However,
these social insects form large colonies, and show specialized
division of labor and age polyethism. Specifically, workers
transition from tasks inside the nest to more sensory-demanding
tasks outside the nest such as navigation and learning landmarks,
which supports the pattern of large calyces (Gronenberg and
Riveros, 2009; O′Donnell et al., 2011; Cabirol et al., 2018).
Finally, differences in nutrition may also influence allocation
of brain tissue between workers and foragers. In P. metricus,
lower nutrition is associated with higher foraging and brain
gene expression in workers (Toth et al., 2009; Daugherty et al.,
2011). Similarly, in the primitively-eusocial bee Augochlorella
aurata, queens have larger mushroom bodies than workers, due
to increased nutrition as larvae (Pahlke et al., 2019).

Contrary to our expectations, parasites have small effects
on the brain architecture of workers and did not elicit a
significant reduction in the corpora allata. Male parasites induced
a reduction of the central complex, compared to non-parasitized
workers or workers parasitized by one female. This difference
in the central complex, which is mainly implicated in spatial
navigation, is not consistent with the lack of differences in
behavior between workers infected by the two sexes. Noticeably,
workers parasitized by one X. vesparum female showed larger
calyces than non-parasitized workers and those parasitized by
one male. Interestingly, workers parasitized by one female
enter diapause and resemble the behavioral and physiological
phenotype of overwintering gynes, while workers parasitized by
a male die at the end of summer like non-parasitized ones (Beani
et al., 2021). Thus, it is likely that the female parasite should
minimize cognitive impairment of its worker host.

In contrast, male parasites had a more drastic effect in the
brain architecture of P. dominula males, which are parasitized
less frequently than females. Parasitized males had significantly
smaller whole brains and central brains than non-parasitized
males. They also showed a significant increase in the volume
of several sensory brain regions, including the antennal and
optic lobes, and two substructures of the calyx: lip and collar.
Remarkably, neuroendocrine manipulation does not seem to
occur in parasitized males, as they develop their corpora allata,
testes, seminal vesicles and accessory glands and attempt to mate
(Cappa et al., 2014; Beani et al., 2017). The inability to castrate
the male may likely result in brain manipulation instead. Given
that the brain is an expensive tissue to produce (Niven and
Laughlin, 2008; Keesey et al., 2020), the parasite may reallocate
energy and resources to develop inside the host, resulting in the
observed small brains.

Notably, only a few studies have tested for neuroanatomical
changes induced by parasites that do not directly infect in
the brain, but instead lodge inside insect body cavities. The
parasitic fungus Ophiocordyceps manipulates the behavior of
their ant host, but does not induce structural changes in the
brain (Hughes et al., 2011). Instead, the fungal hyphae surround
muscle fibers (Hughes et al., 2011; Fredericksen et al., 2017).
The hairworm Paragordius tricuspidatus induces neurogenesis in
the mushroom bodies of its cricket host, before manipulating
it to jump into the water to continue the parasite’s lifecycle
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(Thomas et al., 2003). Infected crickets also showed differential
expression of proteins in the head (Biron et al., 2006). Together
with our findings, these results suggest that different parasites
likely hijack distinct neural mechanisms to control the behavior
of their insect hosts (Hughes and Libersat, 2018).

Overall, our results demonstrate that brain plasticity is
associated with sensory needs in males and within female castes
of P. dominula, but that parasitic manipulation can also drive
differential investment of brain regions depending on both host
and parasite sex. Intriguingly, workers infected with a female
parasite show a strong manipulation effect of the parasite on
caste determination, lipid storage, and prolonged lifespan in
parasitized females that act as their main host (Beani et al.,
2021), but more dampened effects on allocation of brain tissue.
In turn, the reproductive apparatus and behavior of parasitized
males are essentially unaffected, but they experience stronger
volumetric changes in brain regions. Previous work has shown
that X. vesparum drives gene expression changes of workers
toward a gyne-like pattern; thus, the parasite is manipulating the
transcriptomic plasticity of the caste system (Geffre et al., 2017).
Parasitized females also show low levels of haemolymphatic
protein and juvenile hormone compared to non-parasitized
females, but with no difference between non- parasitized and
parasitized males (Strambi and Strambi, 1973; Strambi et al.,
1982). Our study shows that strepsipteran do not drive evident
neuroanatomical changes in their females hosts, suggesting that
this parasite may be relying on other manipulation mechanisms
(Libersat et al., 2018).
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