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Organisms are assemblages of the host and their endogenous bacteria, which are
defined as microbiomes. The host and its microbiome undergo a mutual evolutionary
process to adapt to changes in the environment. Chironomids (Diptera; Chironomidae),
are aquatic insects that grow and survive in polluted environments; however, the
mechanisms that protect them under these conditions are not fully understood. Here
we present evidence that the chironomids’ microbiome enables them to survival in
polluted environments. It has been demonstrated that about 40% of the microbiota that
inhabit Chironomus transvaalensis egg masses and larvae has the potential to detoxify
different toxicants. Metagenomic analysis of Chironomus ramosus larvae demonstrated
the presence of genes in the insects’ microbiome that can help the insects to survive
in hostile environments. A set of experiments demonstrated that short exposure of
C. transvaalensis larvae to metals significantly changed their microbiota composition in
comparison to unexposed larvae. Another experiment, that followed Koch’s postulates,
demonstrated that disinfected C. transvaalensis larvae can survive toxic lead and
chromium exposure when they are recolonized with bacteria that can detoxify these
toxic metals. This accumulating research, points to the conclusion that the chironomid
microbiome plays a role in protecting its host from toxicants.
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INTRODUCTION

All organisms host microbial assemblages that reside inside or on the surfaces of their body. These
endogenous microorganisms, and the genes that are encoded in their chromosomes, are called
the microbiome. Rosenberg and Zilber-Rosenberg (2013), proposed that an organism should be
defined together with its microbiome as a holobiont. Moreover, they suggested that the host and the
microbiota that inhabit it undergo joint evolutionary processes. One of these mutual evolutionary
processes may be the adaptation to survive under hostile environments.

This review discusses how chironomids can survive and proliferate in stressful environments.
We will highlight the chironomids’ abilities to endure toxic heavy metals and demonstrate which
microbes and genes may be involved in protecting the insects under stressful conditions.

Frontiers in Ecology and Evolution | www.frontiersin.org 1 February 2022 | Volume 10 | Article 796830

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.796830
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2022.796830
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.796830&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/articles/10.3389/fevo.2022.796830/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-796830 February 9, 2022 Time: 15:45 # 2

Sela and Halpern Chironomids’ Microbiome Protect Its Host

CHIRONOMIDS

Chironomids (Insecta; Diptera; Chironomidae; Chironomus spp.),
are insects that undergo a full metamorphosis of four life stages:
eggs, larvae, pupae (that develop in the water) and flying adults.
In contrast to mosquitoes, chironomid adults do not feed or bite.
They are globally distributed in various aquatic environments.
It has been demonstrated that chironomids are natural hosts
of V. cholerae and Aeromonas spp. (Broza and Halpern, 2001;
Senderovich et al., 2008; Laviad and Halpern, 2016; Laviad-Shitrit
et al., 2020).

The larvae of Chironomus spp. live at the bottom of freshwater
habitats and form one of the most important functional groups
in these ecosystems (Pinder, 1986). Aquatic sediments act as a
sink for naturally occurring wastes and tend to be contaminated
with toxic inorganic and organic compounds (Salmons et al.,
1987). Chironomids live in almost every type of aquatic habitat
and can tolerate extreme temperatures, pH, salinity, depth,
current velocity and even dehydration and ultraviolet (UV)
and gamma radiations (Armitage et al., 1995; Datkhile et al.,
2009a,b, 2015; Thorat and Nath, 2015). As a group, they are
considered pollution tolerant and are known to thrive under
adverse environmental conditions (Armitage et al., 1995; Wright
and Burgin, 2009). They were found to dominate the fauna
in polluted areas of streams, while in unpolluted sections of
the same streams, they formed only a minor part of the fauna
(Winner et al., 1980; Richardson and Kiffney, 2000; Watanabe
et al., 2000). Tolerance of chironomids to pollution is well
documented; however, the protective mechanisms they employ
in contaminated and sometimes extreme environments are not
fully understood.

CHIRONOMIDS’ MICROBIOME

Several studies of Chironomus transvaalensis endogenous
microbiota that used both culturable and unculturable
methods identified a list of bacterial species that comprised
C. transvaalensis microbiome. Among the microbiota
that were identified from C. transvaalensis microbiome
there were species from the following genera: Acidovorax,
Acinetobacter, Aeromonas, Aquabacterium, Bacillus,
Brevundimonas, Cetobacterium, Chryseobacterium, Citrobacter,
Clostridium, Comamonas, Deinococcus, Delftia, Desulfovibrio,
Exiguobacterium, Hydrogenophaga, Klebsiella, Oceanobacillus,
Paracoccus, Pseudomonas, Rheinheimera, Shewanella,
Stenotrophomonas, Vogesella, Yersinia, and Vibrio (Halpern
et al., 2007a; Halpern, 2012; Senderovich and Halpern, 2012,
2013; Halpern and Senderovich, 2015; Sela and Halpern, 2019;
Sela et al., 2020). Four isolates that were cultured and identified
from Chironomus egg masses were identified as novel bacterial
species: Oceanobacillus chironomi, Rheinheimera chironomi,
Leucobacter chironomi, and Brachymonas chironomi (Halpern
et al., 2007b, 2009a,b; Raats and Halpern, 2007).

Sela et al. (2020) found significant differences between
the microbiota compositions of C. transvaalensis egg mass,
larva, pupa and adult life stages. In each developmental

stage, some genera were relatively dominant. In the egg
mass stage, Hydrogenophaga, Deinococcus, Rheinheimera, and
Aeromonas; for larvae, Cetobacterium, Vibrio, Aeromonas,
and Acinetobacter; in pupae, Aeromonas, Aquabacterium, and
Clostridium; and in adults, Aeromonas, Acinetobacter, and
Vogesella. Interestingly, Aeromonas species were detected in all
life stages of C. transvaalensis, suggesting that chironomids are
reservoirs of Aeromonas species and they may serve as symbionts
(Senderovich et al., 2008; Sela et al., 2020).

EVIDENCE FOR THE PROTECTIVE ROLE
OF THE ENDOGENOUS MICROBIOTA

It has been demonstrated that chironomids’ larvae microbiota
may play a role in protecting their host from toxic metals
(Senderovich and Halpern, 2012, 2013). Senderovich and
Halpern (2012), isolated and identified different bacterial
species from C. transvaalensis egg masses and larvae that
were able to grow on selective media with high metal
concentrations. The following bacterial species were isolated
and identified from egg masses and demonstrated resistance
to toxic metals; Citrobacter freundii; Citrobacter youngae;
Enterobacter ludwigii were found to be resistant to copper while
Bacillus horneckiae; Bacillus stratosphericus; Exiguobacterium
indicum were identified as resistant to hexavalent chromium.
Resistance to zinc was found in Pseudomonas geniculate
and Stenotrophomonas maltophilia, while Yersinia nurmii and
Exiguobacterium profundum demonstrated resistance to lead.

When Senderovich and Halpern (2013) analyzed the bacterial
communities of C. transvaalensis egg masses and larvae they
found that about 40 and 25% of all the genera that were identified
in the egg masses and larval bacterial communities, respectively,
may potentially have detoxifying abilities (Table 1). For example;
Aeromonas species (3.3 and 1.6% prevalence in the larvae and the
egg masses, respectively) were documented as species with the
ability to detoxify toxic substances including heavy metals like Pb,
Cr, Cu, Zn, and tributyltin (TBT) (Cruz et al., 2007; Senderovich
and Halpern, 2012, 2013; Laviad and Halpern, 2016; Table 1).
Further confirmation for the potential abilities of chironomid
microbiota to detoxify a wide variety of toxicants was reported by
Sela and Halpern (2019), who found that 43.3% of the genera that
were identified from egg masses that were sampled from natural
environments have the potential to detoxify or degrade different
toxicants (Table 1; Sela and Halpern, 2019).

Leucobacter chironomi and Brachymonas chironomi (Halpern
et al., 2009a,b), that were isolated from chironomid egg masses,
were found to be resistant to heavy metals and other toxicants.
The whole genome sequences of these two species (Genbank
ID; ATXU00000000 and ARGE00000000, respectively) (Laviad
et al., 2015a,b), revealed that their genomes include genes with
the potential to detoxify toxic substances (Table 2).

A metagenomic study on Polypedilum vanderplanki
(Chironomidae) larvae, that can endure desiccation, revealed
that microbiota that inhabit this larval species can also
withstand desiccation and radiation. However, it is not clear
if these microorganisms that are resistant to desiccation
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TABLE 1 | A list of bacterial genera that were identified in C. transvaalensis egg masses, larvae or pupa and that have the potential to detoxify toxic substances.

Class/Genus Known detoxifying activity References

Betaproteobacteria

Hydrogenophaga Biodegradation of polychlorinated biphenyls Lambo and Patel, 2007

Acidovorax Degradation of polychlorinated biphenyls Ohtsubo et al., 2006

Dechloromonas Degradation of benzene, toluene, ethylbenzene, and xylene Chakraborty et al., 2005

Comamonas Catabolism of biphenyl or chlorobiphenyl; steroid degradation Sylvestre, 1995; Horinouchi et al.,
2014

Diaphorobacter Degradation of pyrene Klankeo et al., 2009

Burkholderia/Paraburkholderia Crystal violet biodegradation; xenobiotic pollutants degradation O’Sullivan and Mahenthiralingam,
2005; Gan et al., 2014

Gammaproteobacteria

Pseudomonas Aromatic hydrocarbon oxidation; bioremediation of polluted areas; phenol degradation Williams and Sayers, 1994; Jõesaar
et al., 2017

Acinetobacter Biodegradation of chlorinated phenols Lee et al., 1994

Aeromonas Tributyltin degradation Cruz et al., 2007

Rheinheimera Degradation of phenolic lignin-related compounds Virk et al., 2012

Halomonas Arsenic detoxification Wu et al., 2018

Stenotrophomonas Utilization of aromatic compounds; tolerance to heavy metals Aslam et al., 2018

Escherichia-Shigella Detoxification of silver ions; nitric oxide detoxification Franke et al., 2001

Thiothrix Sulfur oxidization Flot et al., 2014

Deltaproteobacteria

Desulfomicrobium Chromate bioremediation Michel et al., 2001

Desulfovibrio Chromate reduction Michel et al., 2001

Smithella Degradation of alkanes Tan et al., 2014

Bacilli

Exiguobacterium Bio-removal of hexavalent chromium from water; arsenic tolerance Okeke, 2008; da Costa et al., 2018

Flavobacteriia

Flavobacterium Bioremediation of polycyclic aromatic hydrocarbons Samanta et al., 2002

Fluviicola Phenol and thiocyanide degradation Liu G. X. et al., 2017

Cloacibacterium Heavy metal resistance Jayanthi et al., 2017; Liu H. et al.,
2017

Actinobacteria

Aeromicrobium Hydrocarbon-degrading bacteria isolated from petroleum-polluted soil Chaillan et al., 2004

Propionibacterium Dechlorination of tetrachloroethylene- and cis-1, 2-dichloroethylene Chang et al., 2011

Leucobacter Heavy metal tolerance Hou et al., 2018

Anaerolineae

Longilinea Vanadium reduction Liu H. et al., 2017

Caldisericia

Caldisericum Sulfur oxidation and/or sulfate reduction reactions Aida et al., 2014

Cyanophyceae

Cyanobacterium Cr VI removal; phenol degradation Sood et al., 2015

Alphaproteobacteria

Rhodobacter Adaptation to metal stress; cadmium bioremediation Bai et al., 2008; Volpicella et al.,
2014

Data were summarized from Senderovich and Halpern (2013), Sela and Halpern (2019), and Sela et al. (2020).
Classes names are is in bold letters.

contribute to the resistance of the larvae to desiccation
(Shaikhutdinov et al., 2020).

METAGENOMIC STUDY OF Chironomus
ramosus LARVAE

Sela et al. (2021) analyzed three Chironomus ramosus larval
microbiomes using metagenomics. Genes for detoxifying toxic
metals like, copper (pcoD; copC; pcoC), Zinc (zraP), lead (cadC;

smtB), and others, were detected in the metagenomic data.
Furthermore, the presence of genes for resistance to antibiotics,
UV radiation and others that were related to stress tolerance
were also identified in the C. ramosus larval microbiome.
Overall, 115,959 bacterial functional genes and 445 different
pathways were detected in the C. ramosus larval microbiome
(Sela et al., 2021).

One of the pathways that was detected in the larval
microbiome was the toluene degradation pathway. Toluene,
known to cause harm to the central nervous system
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TABLE 2 | A list of genes encoding enzymes with predicted resistance to toxic substances (data from Laviad et al., 2015a,b).

Bacterial species Arsenic resistance Copper resistance Other heavy metals Organic solvents

Brachymonas
chironomi (Genbank
ID; ARGE00000000)

ArsR; Arsenical resistance
operon trans-acting repressor,
ArsD; Arsenite efflux
ATP-binding protein, ArsA; A
hypothetical arsenic resistance
protein (ACR3 family). A gene
for arsenate reductase (ArsC
family) is present in a different
operon.

Copper resistance protein D,
CopD; copper chaperone,
copper-resistance protein,
CopA; copper (or silver)
translocating P-type ATPase

Organic solvents; two genes
encoding the ABC-type
transport system involved in
resistance to organic solvents

Leucobacter
chironomi (Genbank
ID; ATXU00000000)

Arsenical resistance protein
(ArsB); arsenite efflux pump
ACR3 and related permeases.

Copper chaperone; copper (or
silver) translocating P-type
ATPase

Heavy metal-(Cd/Co/Hg/Pb/Zn)-
translocating P-type ATPase and
transcriptional regulator (ArsR
family) involved in stress-
response to heavy metal ions

FIGURE 1 | Koch’s postulates were applied to demonstrate the role of the chironomid microbiome in protecting its host from toxic metals. Untreated larvae that
contained the endogenous microbiota survived significantly better in lead-nitrate environments in comparison to disinfected (with chlorhexidine gluconate 0.05% and
cetrimide 0.5%) larvae. The supplementation of Chromobacterium aquaticum that has been previously isolated from larvae that survived in the presence of lead, to
the disinfected larvae in lead nitrate environment, significantly improved the survival rate of the disinfected larvae. The survival rate of untreated larvae that contained
its normal microbiota was 78% (right side of the figure) while the survival rate of the disinfected larvae in the presence of lead was only 31% (Left side of the figure).
The addition of C. aquaticum to the disinfected larvae that were incubated with lead caused the survival rate to rise from 31 to 82% (left side of the figure; data from
Senderovich and Halpern, 2013).
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(Beller et al., 1992), is a waste product in different industrial
processes and as such, is defined as an environmental
contaminant (Heydarnezhad et al., 2018). It was found that
species of Bacillus and Pseudomonas genera are able to degrade
toluene and use it as their sole carbon source (Hamzah et al.,
2011). These genera were identified in C. ramosus metagenomic
analysis (Sela et al., 2021). Another relevant pathway identified
is the atrazine degradation pathway (Sela et al., 2021). Atrazine is
herbicide (Steinberg et al., 1995) extensively used to prevent the
growth of wild plants in agriculture worldwide (Graymore et al.,
2001). High concentrations of atrazine are detected in waterbody
sediment (Graymore et al., 2001), where chironomids flourish.
A variety of Gram-negative and Gram-positive bacterial genera
were reported to degrade atrazine, including Pseudomonas
(Mandelbaum et al., 1995), Rhodococcus (Behki et al., 1993),
Acinetobacter (Mirgain et al., 1993), and Arthrobacter (Cai et al.,
2003). All these genera were identified in the metagenomic data.
Remarkably, high abundances of Acinetobacter and Pseudomonas
were identified in C. ramosus larvae (Sela et al., 2021). These
data provided evidence for the ability of the C. ramosus
microbiome to protect the insect in hostile environments
(Sela et al., 2021).

EXPERIMENTAL PROOF OF THE ROLE
OF THE MICROBIOTA IN PROTECTING
CHIRONOMIDS

To determine the role of chironomids’ endogenous bacteria
in the survival of chironomids in polluted environments, a
bioassay based on Koch’s postulates was performed (Figure 1;
Senderovich and Halpern, 2013). In a preliminary experiment,
they isolated two bacterial strains; Chromobacterium aquaticum
and Shewanella decolorationis, that were identified from C.
transvaalensis larvae that survived exposure to toxic lead and
hexavalent chromium, respectively. These species were found to
reduce 94% of toxic lead and 100% of hexavalent chromium,
respectively. When these species were added to disinfected
larvae that were incubated in lead or chromate containing
environments, respectively, they significantly increased survival
of the larvae in these toxic environments, compared to
disinfected larvae without the addition of C. aquaticum and/or
Sh. decolorationis. Thus, it has been demonstrated that these
endogenous bacteria enable their host to survive in lead-
nitrate and hexavalent chromate containing environments
(Senderovich and Halpern, 2013).

In another study, Laviad-Shitrit et al. (2021) examined larval
survival and the change in the larval microbiota composition
after 6 days of exposure to different concentrations of toxic
copper and hexavalent chromium. A shift in the bacterial
microbiota composition was observed in the larvae that were
exposed to the different metals (Figure 2). Moreover, this shift
was specific to the contaminating metal, suggesting that microbial
composition changes—specifically proliferation of species with
metal-reducing properties—in response to metal exposure may
protect the larvae from the toxic metals. A proof for this
hypothesis is the fact that there were no significant differences

FIGURE 2 | An NMDS (non-metric multidimensional scaling) plot of the
bacterial community composition of larvae that were exposed to copper or
hexavalent chromium vs. the control (stress value = 0.23). Significant
differences were found between the bacterial communities of the control, the
hexavalent chromium, and the copper treated larvae (ANOSIM: R = 0.476,
p = 0.001). Adopted with permission from Laviad-Shitrit et al. (2021).

FIGURE 3 | The change in the chironomid larval microbiome composition
after exposure to a polluted environment. In an unpolluted environment, the
diversity of the larval microbiome is relatively high. The microbiota composition
contains a collection of bacterial species with different potential abilities (left).
When pollution is introduced into the aquatic environment, specific bacterial
species in the larval microbiome, with the potential ability to detoxify the
pollutant, will relatively proliferate and protect the host under the stressful
conditions (right). As a consequence, the diversity of the larval microbiome will
be reduced compared to the unpolluted environment. This procedure is
bidirectional, meaning that when the environment becomes cleaner, the
diversity of the larval microbiome will increase again.

in the larval mortality between the control and the metal exposed
larvae (Laviad-Shitrit et al., 2021; Figure 2). Furthermore, at the
genus level, Yersinia and Acinetobacter abundances increased
in the copper treated larvae, while Yersinia, Dysgonomonas,
Delftia, and Enterococcus abundances increased after the larvae
were exposed to hexavalent chromium, compared to the
control. The change in the larval microbiota composition was
rapid and metal-specific. Laviad-Shitrit et al. (2021) concluded
that C. transvaalensis larvae host a bacterial consortium that
proliferates differently and specifically under each environmental

Frontiers in Ecology and Evolution | www.frontiersin.org 5 February 2022 | Volume 10 | Article 796830

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-796830 February 9, 2022 Time: 15:45 # 6

Sela and Halpern Chironomids’ Microbiome Protect Its Host

change and thus, protects the insect in various harsh conditions
(Laviad-Shitrit et al., 2021).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The majority of the endogenous microbiota in chironomid egg
masses and larvae is unculturable (Senderovich and Halpern,
2012). In this review we presented evidence that C. transvaalensis
and C. ramosus microbiomes play a role in the survival of
their host under toxic metal conditions. It is likely that the
relative abundance of the different endogenous species that
inhabit the insect changes according to environmental changes.
As shown in this review, under high toxic metal concentrations,
specific bacterial species with the potential ability to detoxify
these metals will relatively proliferate and protect the host
(Figure 3). More studies are needed to explore the mechanisms
of this phenomenon in different Chironomus species and in

different toxic and extreme environments. We assume that this
phenomenon of the protective nature of the microbiota in
the chironomid holobiont unit is probably only the tip of the
iceberg. Further study of the role that microbiomes play in
protecting different organisms is needed to understand the role
of endogenous microbiota in protecting their hosts.
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