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Vector-Borne Diseases in a Warming
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Predicting how climate warming affects vector borne diseases is a key research priority.

The prevailing approach uses the basic reproductive number (R0) to predict warming

effects. However, R0 is derived under assumptions of stationary thermal environments;

using it to predict disease spread in non-stationary environments could lead to erroneous

predictions. Here, we develop a trait-based mathematical model that can predict disease

spread and prevalence for any vector borne disease under any type of non-stationary

environment. We parameterize the model with trait response data for the Malaria

vector and pathogen to test the latest IPCC predictions on warmer-than-average

winters and hotter-than-average summers. We report three key findings. First, the R0

formulation commonly used to investigate warming effects on disease spread violates

the assumptions underlying its derivation as the dominant eigenvalue of a linearized

host-vector model. As a result, it overestimates disease spread in cooler environments

and underestimates it in warmer environments, proving its predictions to be unreliable

even in a constant thermal environment. Second, hotter-than-average summers both

narrow the thermal limits for disease prevalence, and reduce prevalence within those

limits, to a much greater degree than warmer-than-average winters, highlighting the

importance of hot extremes in driving disease burden. Third, while warming reduces

infected vector populations through the compounding effects of adult mortality, and

infected host populations through the interactive effects of mortality and transmission,

uninfected vector populations prove surprisingly robust to warming. This suggests

that ecological predictions of warming-induced reductions in disease burden should

be tempered by the evolutionary possibility of vector adaptation to both cooler and

warmer climates.

Keywords: basic reproductive number (R0), climate warming, disease spread, disease prevalence, vector-borne

diseases

INTRODUCTION

Vector-borne diseases constitute a significant source of the global disease burden (WHO, 2019).
Vectors and pathogens are ectotherms whose life history traits and contact rates are directly affected
by temperature. There is increasing evidence that climate warming will not only increase global
mean temperatures but also hot extremes (IPCC, 2018; Sherwood et al., 2020). This means that
diseases are likely to go extinct from areas that become too hot and spread to cooler climates at
higher latitudes. Knowing when and where this will happen is crucial for developing cost-effective
public health policies to combat vector-borne diseases.
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For well over a century, vector-borne disease spread has been
predicted using the Basic Reproductive Number (R0) (Ross, 1911;
MacDonald, 1955, 1957; Aron, 1988; May and Anderson, 1991),
the expected number of secondary cases produced by a single
case during its infectious period (Diekmann et al., 1990; Dietz,
1993). This metric was initially derived using the classical Ross-
Macdonald model for Malaria with time delays (Ross, 1911;
MacDonald, 1955; Diekmann et al., 1990; Dietz, 1993), under
the strict assumption of a constant environment and equilibrium
conditions. Specifically, R0 is the dominant eigenvalue of the
next generation matrix evaluated at the disease-free equilibrium
(Diekmann et al., 1990; Dietz, 1993). Despite this history, R0
computed as the dominant eigenvalue is increasingly being used
to predict the effects of climate warming on vector-borne disease
spread [e.g., Mordecai et al. (2013, 2017), Johnson et al. (2015),
Shocket et al. (2018, 2020), Tesla et al. (2018), Cator et al. (2020)].
The problem is that climate warming violates both the constant
environment and equilibrium assumptions.

It is not uncommon in theoretical ecology to apply models to
real-world situations that violate model assumptions. However,
doing this in the case of disease spread is risky, given the direct
impacts of model predictions on public health. Climate warming
is a phenomenon that is not only non-constant but also non-
stationary, meaning that, unlike typical seasonal variation, it does
not settle into a predictable pattern of temperature variation. In
such an environment, there is no disease-free equilibrium, and
the eigenvalue approach no longer holds. The R0 formula used
to predict climate warming, retains the eigenvalue approach but
assumes the vector population to be growing exponentially in the
absence of the disease (Mordecai et al., 2013, 2017; Johnson et al.,
2015; Shocket et al., 2018, 2020; Tesla et al., 2018; Cator et al.,
2020). This itself is a contradiction, since the eigenvalue approach
is predicated on equilibrium assumptions. The studies using the
R0 formula attempt to circumvent this problem by assuming the
vector population is in climatic equilibrium under exponential
growth, i.e., for each climate there is a population size at which
the vector’s intrinsic growth rate is zero (Parham and Michael,
2010). But, climate warming is a dynamical process, whichmeans
that a climatic equilibrium is never reached.

These complications suggest the need for alternative
approaches that can accommodate the non-stationary thermal
environment generated by climate warming. Here, we propose
a trait-based framework that provides such an alternative. This
work goes above and beyond previous work in three important
ways. First, we use mechanistic response functions, derived from
first principles of thermodynamics, to characterize vector and
pathogen trait responses to temperature. Second, we incorporate
vector trait response functions into stage-structured models
that realistically depict the developmental delays characteristic
of vector life cycles. Third, we couple the vector dynamics
model with trait-based epidemiological models of host-vector
interactions to predict disease prevalence under the most recent
IPCC predictions of hotter-than-average summers and warmer-
than-average winters (IPCC, 2018). Our mechanistic approach
allows us to make predictions about disease prevalence based
solely on trait response data and completely independently
of population-level information, a potentially powerful

approach for formulating public health policy in the age
of warming.

CONCEPTUAL FRAMEWORK

We defer the mathematical details to Appendices and focus
instead on the biological implications. We start with a summary
of past work, with emphasis on the use of R0 to predict disease
spread. We then explain why R0 is not suitable for predicting
disease spread under warming. We present an alternative
approach, based on a dynamical model, for investigating climate
warming effects on vector-borne diseases.

Derivation of the Basic Reproductive
Number (R0)
As noted above, R0 is derived as the dominant eigenvalue
of the next generation matrix of a host-vector model (Ross,
1911; MacDonald, 1955; Aron, 1988; Diekmann et al., 1990;
Dietz, 1993). Here, we provide a new derivation using a delay
differential equationmodel that incorporates both stage structure
arising from the vector’s life cycle (e.g., juvenile and adult)
and class structure arising from the host-vector interaction (see
Appendix A for details). We also consider vector self-regulation
at different life stages (Table A1 in Appendix A). With these
biological details, the expression for R0 is given by:

R0DDE =
√

√

√

√

(

pHV (T)B(T)e−dHτH

dH + dI + γ

)(

pVH(T)B(T)e−d(T)τV (T)U⋆(T)

d(T)H⋆

)

.

(1)

where dH , dI , and γ represent, respectively, the host’s background
mortality rate, disease-induced mortality rate, and the recovery
rate, and τH is the disease exposure (latent) period in the host.

The quantity H⋆ =
(bH−dH )
bHqH

is the equilibrium abundance of a

self-regulated host population with qH denoting the per capita
competition coefficient. The parameters B(T) and d(T) depict
the vector’s temperature-dependent per capita biting rate and
adult mortality rate, and pVH(T) and pHV (T) denote, respectively,
the per-bite transmission probability of the pathogen from
host to vector and from vector to host. The quantity U⋆(T)
is the equilibrium abundance of a self-regulated population
of the uninfected vector, which depends on the life stage
(juvenile, adult) at which self-regulation operates (Table A1 in
Appendix A).

Previous studies of warming effects on disease spread (Parham
and Michael, 2010; Mordecai et al., 2013, 2017; Johnson et al.,
2015; Shocket et al., 2018, 2020; Tesla et al., 2018) use a formula
for R0:

R0RM =

√

(pHV (T)B(T)

γ

)(pVH(T)B(T)e−d(T)τV (T)U(T)

d(T)H

)

, (2)

which is a special case of our general derivation when there is no
background or disease-induced mortality in the host (i.e., dH =
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dI = 0) and the host population is constant. The most crucial
difference between our general derivation and this one is that
the latter assumes exponential growth in the uninfected vector
population, with no long-term steady state. This is a violation of
the fundamental assumption underlying the eigenvalue analysis
that a disease-free equilibrium exists (i.e., there is a unique
vector population abundance to which the population returns
following a perturbation; Diekmann et al., 1990; Dietz, 1993).
Previous authors circumvent this problem by using a Poisson
approximation of the probability that there are a given number
of mosquitos at any time t, and calculate the probability of
extinction using the mean of the Poisson distribution (birth
rate/death rate), assuming that the population is in climatic
equilibrium (i.e., under any given climate there is a population
size at which the vector’s intrinsic growth rate is zero) (Parham
and Michael, 2010). Under these assumptions, they approximate

the uninfected vector population asU(T) = b(T)e−dJ (T)τJ (T)

d(T)
. Before

any consideration of climate warming, one needs to determine
how this approximation affects R0 predictions in a content
thermal environment.

To this end, we compare our derivation of R0 based on
a self-regulated vector population with vector developmental
delays [Equation (1)] with the previous derivation assuming an
exponentially growing vector population with no developmental
delays [Equation (2)]. Making this comparison requires that
we first characterize the temperature dependence of vector and
pathogen traits.

TEMPERATURE DEPENDENCE OF
VECTOR AND PATHOGEN TRAITS

The prevailing approach of describing trait responses to
temperature is to fit a range of phenomenological functions
(e.g., linear, quadratic) to the data, and to choose the best-fit
function based on statistical criteria (e.g., AIC; Burnham and
Anderson, 2002). We take the approach of deriving mechanistic
response functions based on how temperature affects the
underlying biochemical processes (Appendix B). This has the
advantage that the functions are derived from first principles
of thermodynamics, and, hence, independently of the data. We
then fit the functions to the data and estimate parameters
(Appendix C). An additional advantage of our approach is that
both the response functions and their parameters have clear
biological meaning (e.g., physiologically optimal temperature,
thermal sensitivity, thermal tolerance limits). Because the
response functions are mechanistic and derived independently
of the data, a poor statistical fit can highlight data limitations
that could lead to mis-specification of trait responses (e.g.,
characterizing a left-skewed function as exponential due to
lack of data at high temperatures). Importantly, its mechanistic
underpinnings make our approach less dependent on species-
specific data. Several large-scale data analyses show that the
qualitative nature (e.g., left-skewed, Gaussian) of trait responses
to temperature is conserved across ectotherm taxa, and that
their parameter values are thermodynamically constrained to fall
within a narrow range (Gillooly et al., 2001, 2002; Brown et al.,

2004; Savage et al., 2004; Dell et al., 2011). This holds the promise
that our mechanistically-derived parameter estimates may yield
model predictions that apply across different vectors and
pathogens inhabiting different geographic areas and latitudes.

Figure 1 shows that these mechanistic functions provide a
very good fit to temperature response data for the Malaria
pathogen (Plasmodium) and its mosquito vectors (Anopheles
species). Table 1 provides the resulting parameter estimates.

COMPARING R0 FORMULATIONS

Incorporating trait response parameters for the Malaria vector
and pathogen into our derivation of R0 based on a self-
regulated vector population [Equation (1)] and the previous
derivation assuming an exponentially growing vector population
(Equation (2)), we see that the latter is greater in magnitude,
attains a maximum at a lower temperature, and has a lower
high temperature threshold for disease spread compared to
the former (Figure 2). This means that the R0 formulation
used in previous studies (Parham and Michael, 2010; Mordecai
et al., 2013, 2017; Johnson et al., 2015; Shocket et al., 2018,
2020; Tesla et al., 2018) over-predicts disease spread in cooler
environments and under-predicts it in warmer environments.
This does not inspire confidence that the widely used formulation
for R0 accurately depicts disease spread, even in constant thermal
environments. Given that R0, even when correctly derived,
cannot be used to predict disease spread under non-constant,
non-equilibrium conditions (Aron, 1988; Diekmann et al., 1990;
Dietz, 1993), we need to look for metrics for predicting disease
spread under climate warming that do not depend on these
restrictive assumptions.

ALTERNATIVES TO R0: DYNAMICAL
MODELS OF VECTOR-HOST
INTERACTIONS

The obvious alternative to R0 to predicting disease spread is
prevalence, the proportion of infected hosts in the population
(Diekmann et al., 1990; May and Anderson, 1991; Dietz, 1993).
Prevalence has the advantage that it can be calculated in
both stationary and nonstationary environments. Quantifying
prevalence, however, requires a dynamical model of host-
vector interactions. The host-vector model we have developed
(Appendix A, Equation A.1) goes above and beyond previous
models in incorporating all relevant time delays (latent period
in the host, juvenile development delay in the vector, and the
pathogen’s extrinsic incubation period) as well as vector self-
regulation at different life stages. It has the advantage that
it can predict disease prevalence under any variable thermal
regime based solely on how temperature affects the vector’s and
pathogen’s life history traits, and thus completely independently
of population-level (e.g., time series) data. However, the
biological realism of the model comes at the cost of analytically
intractability, and the numerical methods used for solving
delay differential equations are out of reach for most ecologists
and epidemiologists.
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FIGURE 1 | Temperature responses of vector and pathogen traits. The top row depicts, respectively, per capita birth (A), maturation (B), juvenile mortality (C), and

adult mortality (D) rates of the mosquito vector of Malaria (Anopheles species). The bottom row depicts the vector’s biting rate (E) and competence (F), and the

sporozoite developmental rate (G) of the Malaria parasite (Plasmodium falciparum). Solid circles depict the observed responses based on published data (Mordecai

et al., 2013; Ciota et al., 2014; Shapiro et al., 2017) on temperature responses of the Malaria pathogen (Plasmodium) and its mosquito vectors (Anopheles species).

The solid curves depict predicted responses obtained by fitting trait response data to mechanistic temperature response functions using least squares non-linear

regression (see Appendix C for details).

Here we adopt an approach that combines the biological
realism of delay differential equation (DDE) models with the
tractability of ordinary differential equation (ODE) models.
A number of previous studies have used class-structured
epidemiological models (e.g., Susceptible-Exposed-Infected-
Removed), constructed using ordinary differential equations,
to model such diseases as Zika, Malaria, Chikungunya, West
Nile, and Leishmaniasis [e.g., Wonham et al. (2004), Bacaër and
Guernaoui (2006), Bacaër (2007), Hartemink et al. (2009, 2011),
Alonso et al. (2010), Gao et al. (2016)]. None of these studies,
however, considered the temperature dependence of vector and
pathogen traits. We develop a stage- and class-structured ODE
model that explicitly incorporates mechanistic descriptions of
vector and pathogen trait responses to temperature. The model
depicts time delays in terms of instantaneous rates, and is
therefore more tractable both analytically and numerically. We
use the model to investigate climate warming effects on disease
prevalence using the latest IPCC predictions (IPCC, 2018).
We defer the mathematical details (Appendix D) and focus
instead on parameterizing the model with trait response data to
investigate disease prevalence under climate warming.

MODEL ANALYSIS

We use the ODE model (Appendix D, Equation D.1) to predict
warming effects on disease prevalence, using seasonal variation as

the basis for comparison. We depict seasonal variation using the
sinusoidal function T(t) = MT + ATS(t) where t is time in days,
MT is the mean habitat temperature in K, AT is the amplitude
of seasonal fluctuations (AT =

Tmax−Tmin
2 ), and S(t) = sin 2π t

yr

(or − cos 2π t
τ
) with yr = 365 days. We incorporate latitudinal

variation into our analyses by using climate data to derive a
statistical relationship betweenmean habitat temperature and the
amplitude of seasonal fluctuations. Based on 47 different latitudes
ranging from the tropics to the high temperate (and including
many locations in west Africa where Malaria is endemic), we
obtained the following relationship: AT = 151.46− 0.49MT (see
online Figure E1 in Appendix E).

Warming Scenarios
We follow the most recent IPCC predictions that climate
warming will manifest as an increase in the mean annual
temperature and/or an increase in thermal extremes (IPCC,
2018). We consider the following scenarios:

1. Warmer-than-average winters: minimum temperature
increases faster than the maximum temperature, resulting in
an increase in the mean temperature and a decrease in the
amplitude.

2. Hotter-than average summers: minimum temperature
increases more slowly than the maximum temperature,
resulting in an increase in the mean and amplitude both.
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TABLE 1 | Key parameters (mean ± SE) of the temperature responses of the

Malaria pathogen (Plasmodium) and its mosquito vectors (Anopheles species).

Vector birth rate (b(T))

b(T ) = bTopte
−

(T−Toptb
)2

2sb
2

bTopt = 23.88± 1.57(p = 0.042) Toptb = 301.22± 0.64(p = 0.0014)

sb = 7.81± 1.0(p = 0.08)

Vector maturation rate (mJ(T))

m(T ) =

mTR
T

TR
e
AmJ

(

1
TR

− 1
T

)

1+e
AH

(

1
TH

− 1
T

)

TRm = 297K mTR = 0.07

Am = 8423± 725.2(p = 8.3e− 05) AH = 41010± 5886(p = 0.00094)

TH = 306.0± 39.67(p = 6.9e− 14)

Vector mortality rate (dJ(T))

dX (T ) = dX TRe
AdX

(

1
TRX

− 1
T

)

(

1+ e
ALX

(

1
TLX

− 1
T

)

)

(X=J, A)

Juvenile mortality rate (dJ(T))

TRJ = 297K dJTR = 0.02

AdJ = 29284.68± 1387.51(p = 2.9e− 05) ALJ = −74869.43± 35198.11(p = 0.1)

TLJ = 294.12± 1.4(p = 3.1e− 09)

Adult mortality rate

TRJ = 298K dTR = 0.04

Ad = 20710.62± 441.89(p = 8.3e− 08) AL = −35973.81± 7717.18(p = 0.005)

TL = 294.25± 3.51(p = 4.6e− 09)

Vector biting rate (B(T))

B(T ) =

BTR
T

TR
e
AB

(

1
TR

− 1
T

)

1+e
AH

(

1
TH

− 1
T

)

TRB = 298K BTR = 0.28

AB = 11082.95± 1803.84(p = 0.00085) AH = 27277.74± 3951.64(p = 0.00046)

TH = 307.08± 1.28(p = 3.6e− 13)

Per-bite transmission probability from vector to host (pHV (T))

pHV (T ) =

pHV TR
T

TR
e
ApHV

(

1
TR

− 1
T

)

1+e
AH

(

1
TH

− 1
T

)

TRpHV = 297K pHVTR = 0.52

ApHV = 5666.85± 3526.26(p = 0.21) AH = 32837.18± 7734.03(p = 0.02)

TH = 304.76± 1.78(p = 4.4e− 07)

Pathogen maturation rate (mV (T))

TRm = 298K mTR = 0.1

Am = 10595.26± 3854.44(p = 0.03) AH = 22696.19± 9162.0(p = 0.048)

TH = 304.7± 2.53(p = 2.2e− 11)

3. Baseline: minimum and maximum temperatures change at
the same rate, resulting in an increase in the mean while the
amplitude stays the same.

We depict the change in the seasonal thermal regime under
climate warming as follows:T(t) = (MT+mt)+(AT+at)S(t) with
m = (mhigh +mlow)/2 and a = (mhigh −mlow)/2 depicting,
respectively, the daily rate of increase in mean and amplitude.
The quantities mlow = s1/(n ∗ yr) and mhigh = s2/(n ∗ yr)
where s1 and s2 are, respectively, the number of degrees by which
the minimum and maximum temperatures increase in n years.
When the minimum and maximum temperatures increase at the
same rate (s1 = s2), the mean temperature increases over time
with no net change in the amplitude (Baseline scenario). When
the minimum temperature increases faster than the maximum

FIGURE 2 | Basic reproductive number (R0(T )) in a constant thermal

environment. The x-axis depicts the range of the constant temperatures over

which R0(T ) is quantified; The orange curve represents R0 calculated in

previous studies assuming an exponentially growing vector population with no

developmental delays (Equation (2)), and the black curve, R0 we have derived

from the DDE model for a self-regulated vector population with developmental

delays (Equation (1)). Temperature-dependent parameters are given in

Table 1. Temperature-independent parameter values are: bH = 0.02,dH =

0.01;qH = 0.002,dI = 0.02, δH = 0.2, γ = 0.05, k = 0.3,pVH = 0.91.

(Warmer winters; s1 > s2), the mean increases over time
while the amplitude decreases. When the maximum temperature
increases faster than the minimum (Hotter summers; s1 <

s2), the mean and the amplitude both increase over time. We
incorporate warming as a linear increase in the mean, minimum
and maximum temperatures. Our formulation, however, is
general and can accommodate any form of empirically observed
warming regime.

Warming Effects on Disease Prevalence
The most recent study (July 2020) of climate sensitivity predicts
that the global increase in mean temperature over the next 150
years is likely between 2.6−4.1◦, and very likely between 2.0−5.7◦

(Sherwood et al., 2020). We, therefore, investigate cases in which
minimum andmaximum temperatures change in such a way that
the mean annual temperature increases by 2–4◦ over a period of
100 years. To give an illustrative example, in the warmer-winters
(hotter-summers) scenario the mean increases by 3◦ when the
minimum temperature increases by 4◦ (2◦), and the maximum
temperature by 2◦ (4◦) over 100 years. When minimum and
maximum temperatures both increase by 3◦ over 100 years,
we get the baseline scenario. We investigate warming-induced
changes in disease prevalence under the three warming scenarios
over a gradient from tropical to temperate latitudes.

Warming Effects on Vector-Host Dynamics
The above analysis on disease prevalence seeks to uncover large-
scale patterns in disease prevalence. A complete understanding
of how warming affects disease prevalence requires elucidating
how these patterns arise from temperature effects on life history
and transmission traits at the individual level. To this end,
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we compared the annual abundance patterns of vector life
stages (juvenile, adult) and epidemiological classes (susceptible,
exposed, infected) at different latitudinal locations. Because we
have the most complete trait response data for Malaria, we
used the parameterized model to investigate disease dynamics in
four subregions in west Africa where current disease prevalence
ranges from low to high, and which is predicted to experience
a temperature increase of 1.2–5.9◦ between 2070–2100 Yamana
et al., 2016).

RESULTS

Warming Effects on Trait Responses
All warming scenarios cause the mean habitat temperature to
approach or exceed the physiologically optimal temperature for
vector life history (birth, maturation) and transmission traits
(biting rate, per-bite transmission probability from vector to
host), causing large decreases in trait response values compared
to typical seasonal variation (Figure 3). Hotter-than-average
summers have stronger effects on vector traits than warmer-
than-average winters because this scenario increases the mean
temperature as well as the amplitude, leading to hot extremes
that exceed the limit of vectors’ phenotypic plasticity. Warming
has its strongest effects on juvenile maturation, juvenile and adult
mortality, and per bite transmission probability from vector to
host (Figure 3). While the biting rate itself is less sensitive to
warming than the per-bite transmission probability from vector
to host, their multiplicative effect is what determines disease
transmission from vector to host (Appendix D, Equation D.1).
As can be seen (Figures 3K,O), this joint response is strongly
impacted by warming.

These findings allow us to predict how trait responses
to temperature may translate into disease prevalence at the
population level. Given that warming both increases mortality
and causes a steep decline in vector and pathogen maturation
rates, vector biting rate, and the per-bite transmission probability
from vector to host, we expect these two responses to jointly
drive warming effects on disease prevalence. Given that the
qualitative nature of the temperature responses of life history and
interaction (e.g., transmission) traits are conserved across taxa,
these predictions about how warming effects on traits translate
into disease prevalence should be applicable to most ectotherm
disease vectors.

Warming Effects on Disease Prevalence
Across Latitudes
Climate warming not only causes disease extinction from the
warmest climates (e.g., equatorial tropics) but also contracts the
overall thermal range for disease persistence (Figure 4). This
is because, despite substantial warming of cooler climates at
higher latitudes, there is a lower thermal limit below which
the infected vector population cannot persist (Figures 4D–F).
Hotter summers prove to be the most detrimental, through a
substantially larger decrease in infected host abundance within
the thermal range for disease persistence (Figure 4).

A closer analysis of vector-host dynamics reveals how trait
responses to temperature at the individual level can lead to

unanticipated outcomes at the population level. Uninfected
adult vector populations exhibit a much wider thermal range
for viability compared to their infected counterparts (Figure 4;
Figures E1–E3, in Appendix E). They can withstand a 3◦

increase in the mean temperature in localities with typical mean
temperatures as high as 33◦ C (Figure E1 in Appendix E). They
can attain substantial numbers in localities of initially high
disease prevalence even after the mean temperature increases
by 4◦, the only adverse effect being a brief decline in summer
abundance under the hotter summers scenario (Figure E2 in
Appendix E). They can also expand their range to higher
latitudes, with typical mean temperatures as low as 12◦ C,
even under low levels of warming (2◦ increase in the mean
temperature; Figures 4A–C; Figure E3 in Appendix E). This
is in dramatic contrast to the infected vector population,
which exhibits a steep decline in abundance over a much
longer duration even under the best case scenario of moderate
warming (mean temperature increase of only 2◦) at the latitude
corresponding to maximum disease prevalence in the absence of
warming (Figures 4D–F; Figure E2 inAppendix E). The infected
host population follows the same trend as the infected vector
population (Figures 4G–I; Figure E2 in Appendix E). When
the disease goes extinct from lower latitudes (Figures 4G–I), it
is because the infected vector population does (Figures 4D–F;
Figure E1 in Appendix E). We see the same pattern at the low-
temperature end. The infected vector population cannot persist
at higher latitudes even under the highest levels of warming
(Figures 4D–F; Figure E3 in Appendix E).

Warming Effects on Malaria Prevalence in
West Africa
To determine whether the above general conclusions hold in
the specific case of Malaria prevalence, we used the dynamical
model to analyze vector-host dynamics in four subregions of west
Africa (Figure 5). Yamana et al. (2016) predicted a reduction
in prevalence in subregion (i), disease extinction in subregion
(ii), decreased prevalence (subject to rainfall) in subregion (iii),
and no effect in subregion (iv). Our trait-based analysis of
the most recent IPCC predictions shows that prevalence in
subregion (i) is driven by the amplitude of typical seasonal
fluctuations and warming effects on transmission.When seasonal
fluctuations are relatively small (e.g., Linguere, Senegal), infected
mosquitos experience large declines in summer abundance under
all warming scenarios, lowering the number of infected hosts
and reducing disease incidence; when fluctuations are large,
(e.g., Berma, Mali) infected mosquitos experience large declines
in summer abundance under the warmer winters scenario,
and extinction under hotter summers scenario. Even when the
uninfected mosquito populations can persist, albeit with large
fluctuations, disease prevalence is minimized by large reductions
in the infected vector and host populations.

In subregion (ii), which already experiences thermal regimes
at the upper limit of the vector and pathogen’s phenotypic
plasticity, the infected vector population barely persists even
under typical seasonal variation, and disease extinction is indeed
the only outcome except under the warmer winters scenario. In
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FIGURE 3 | Temperature responses of vector and pathogen traits under seasonal variation and warming. In all panels, the blue curves depict the temperature

response function under typical seasonal variation, the blue shaded region depicts the trait response under typical seasonal variation, the solid blue vertical line

depicts the mean habitat temperature, and the dashed vertical blue lines depict the temperature range experienced by species under typical seasonal variation.

Panels (A–D, I–L) depict trait responses under typical seasonal variation, while (E–H, M–P) depict trait responses under the warmer winters and hotter summers

scenarios when the mean annual temperature increases by 4◦. Panels (E–H, M–P), the orange shaded region, delimited by dashed vertical orange lines depicts the

warmer winters scenario, while the red shaded region, delimited by dashed red vertical lines, depicts the hotter summers scenario. Parameter values for trait

responses are given in Table 1.

subregion (iii), where the expectation is reduced prevalence, the
observed outcome depends on the mean annual temperature.
When the mean temperature is lower (< 30◦ C), the disease
can persist but only during the cooler months; when the mean
temperature is higher (≥ 30◦ C) the only outcome is disease
extinction. In subregion (iv), where the expectation is no change
in prevalence, large summer reductions in infected vector and
host populations cause large decreases in disease prevalence.

DISCUSSION

Pathogens (e.g., virus, bacteria, protists) and disease vectors
(e.g., mosquitoes, flies, ticks) are ectotherms whose life

history traits (e.g., birth, maturation, mortality) and contacts
with hosts (e.g., biting rate, transmission probability) depend
directly on the environmental temperature. Climate warming
is therefore likely to have strong effects on disease spread
and prevalence. Predicting warming effects on disease burden
requires that we understand how temperature effects on vector
and pathogen traits translate into population-level patterns of
vector abundance and dynamics, and how these in turn influence
vector species’ interactions with their (mostly) endotherm
hosts. Making accurate predictions about disease spread and
prevalence is a high research priority, given the pressing need
to develop cost-effective public health policies in an increasingly
warmer world.
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FIGURE 4 | Abundances of uninfected vector (A–C), infected vector (D–F), and infected host (G–I) under climate warming (2◦, 3◦ and 4◦ increase in mean

temperature). In all panels, the black curve depicts typical seasonal variation, the blue, orange, and red curves depict, respectively, warmer winters, baseline and

hotter summers scenarios for warming, and the dashed vertical lines depict the thermal limits for infected vector and host viability. Note that the discontinuity in

uninfected vector abundance corresponds to the lower thermal limit for infected vector and host viability. Below this temperature, the uninfected vector persists at a

higher abundance. Temperature-dependent parameters are given in Table 1. Temperature-independent parameter values are:

bH = 0.02,dH = 0.01;qH = 0.002,dI = 0.02, δH = 0.2, γ = 0.05, k = 0.5,pVH = 0.91.

The typical approach to predicting effects of climate warming
on vector-borne diseases is to use the basic reproductive number
(R0) to predict disease spread (Mordecai et al., 2013, 2017;
Johnson et al., 2015; Shocket et al., 2018, 2020; Tesla et al.,
2018; Cator et al., 2020). This metric, however, is derived
under assumptions of constant thermal environments and
equilibrium conditions (MacDonald, 1955, 1957; Aron, 1988;

Diekmann et al., 1990; Dietz, 1993; Parham and Michael, 2010).
It is not applicable to the nonstationary (i.e., non-constant,
non-equilibrium) thermal environment generated by climate
warming. Using R0 to predict disease spread under warming
runs the risk of making erroneous predictions about warming
that could misguide policy decisions. The challenge is to find
an alternative metric that both realistically depicts temperature
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FIGURE 5 | Vector-host dynamics under typical seasonal variation and the three warming scenarios, when the mean temperature increases by 4◦ over a period of

100 years, in several west African regions to which Malaria is endemic. In all panels, the black curve depicts typical seasonal variation, and the blue, orange, and red

curves depict, respectively, warmer winters, baseline, and hotter summers scenarios for warming. Vector and host abundance patterns are depicted for the last two

years of warming. The quantities within brackets below each locality name depict the mean annual temperature and the amplitude of seasonal fluctuations at that

locality. Temperature-dependent parameters are given in Table 1. Temperature-independent parameter values are as in Figure 4.
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effects on vector and pathogen traits, and yields reliable metrics
of disease spread and prevalence.

Here, we present a theoretical approach that combines
a stage-structured model of vector population dynamics
with a class-structured epidemiological model of vector-host
dynamics. It has the advantage of being able to predict disease
spread and prevalence under any type of non-equilibrial,
non-stationary environment, including seasonal variation and
warming. The novelty of our approach is that we incorporate
mechanistic descriptions of vector and pathogen trait responses
to temperature into stage-structured models that realistically
capture the complex life cycles of arthropod disease vectors.
We attempt to strike a balance between biological realism,
mathematical rigor, and tractability of numerical analyses. We
report three key findings.

First, we find that fitting mechanistic temperature response
functions do not require more data than do the current
phenomenological approaches. Use of mechanistic response
functions is important because it provides a common framework
for characterizing vector and pathogen trait responses to
temperature that can apply broadly across vector taxa, pathogen
types, and geographic location. The functions we use, which
are derived from first principles of thermodynamics, depict how
temperature effects on underlying biochemical processes (e.g.,
reaction kinetics, enzyme inactivation) translate into phenotypic-
level traits such as the vector’s birth, maturation and biting rates,
and the pathogen’s incubation period within the vector. Several
large-scale data analyses (Dell et al., 2011; Englund et al., 2011)
have shown that the qualitative nature of these trait responses
(e.g., Gaussian, left-skewed; Figure 1) are conserved across
ectotherm taxa, and that their parameters are thermodynamically
constrained to take only a narrow range of values (Gillooly et al.,
2001, 2002; Savage et al., 2004). This means that one can use
parameter values from related species when data are unavailable
for focal species, a practice already employed in previous studies
that use phenomenological trait response functions (Mordecai
et al., 2013, 2017; Johnson et al., 2015).

Second, by deriving the Basic Reproductive Number (R0) from
an underlying model of vector-host dynamics that incorporates
all relevant time delays (latent period in the host, juvenile
development delay in the vector, and the pathogen’s extrinsic
incubation period), we show that the R0 formulation commonly
used to predict warming effects on disease spread (Mordecai
et al., 2013, 2017; Johnson et al., 2015; Shocket et al., 2018, 2020;
Tesla et al., 2018; Cator et al., 2020) is unsuitable for making
such predictions. First, it excludes disease-induced mortality
in the host, despite strong empirical evidence to the contrary.
Second, it assumes an exponentially growing vector population,
which violates the fundamental assumption in deriving R0
as the dominant eigenvalue of the next generation matrix
evaluated at the disease-free equilibrium. Third, it assumes
that the exponentially growing vector population is in climatic
equilibrium with the environment, making it inapplicable to
the non-equilibrium conditions generated by climate warming.
A comparison of the previous formulation of R0 with one we
have derived for a self-regulated vector population shows that
the former overestimates disease spread in cooler environments

and underestimates it in warmer environments, proving to be
unreliable even in a constant thermal environment.

Our third finding is on the climate warming effects on vector-
borne disease prevalence. The most recent IPCC predictions
(IPCC, 2018) suggest an increase in mean temperatures as well
as hot extremes. We find that the hotter summers scenario,
which incorporates such extremes substantially lowers the
upper thermal limit for disease persistence and reduces disease
prevalence within the viable region. Because the lower thermal
limit, which is set by infected vector population viability, is
relatively inflexible, warming has the overall consequence of
narrowing the thermal range for disease viability.

A closer inspection of vector-host dynamics reveals an
interesting outcome: uninfected vector populations are
largely unaffected by warming, while infected vector and host
populations are greatly reduced even at low levels of warming.
This finding was confirmed by a separate analysis of Malaria
prevalence in several west African locations. The reason for
this is as follows. Data show that density-independent mortality
increases with increasing temperature above a critical threshold,
and increases with decreasing temperature below it [Savage et al.
(2004) and references in Gillooly et al. (2001, 2002)] (Figure 1).
Because such mortality affects all vector classes regardless of their
infection status, its effects are compounded as the uninfected
vector class moves through the exposed class to the infected
class (see Appendix D, Equation D.1). As a result, the infected
vector population will necessarily have a narrower thermal limit
for viability, and exhibit lower abundances at low and high
temperature extremes, compared to its uninfected counterpart.

While higher mortality of the infected vector population
at lower temperatures explains why the disease cannot spread
to higher latitudes despite warming, higher vector mortality
at higher temperatures cannot, in itself, explain the warming-
induced decline in the infected host population. We need to
also understand how warming affects the transition (maturation)
and transmission rates. It is well-known, based on data from a
large number of multicellular ectotherms, that the maturation
rate exhibits a left-skewed response to temperature, with a
rapid decline at high temperatures (Johnson and Lewin, 1946;
Sharpe and DeMichele, 1977; Schoolfield et al., 1981; Van der
Have and de Jong, 1996; Van der Have, 2002; Ratkowsky
et al., 2005; Dell et al., 2011). The sporozoite maturation rate
of Protozoan parasites (e.g., Plasmodium, Leishmania) within
their vectors exhibits such a left-skewed response. Since it is
directly dependent on the sporozoite maturation rate, the per-
bite transmission probability of the pathogen from vector to
host also exhibits a left-skewed temperature response (Fig. 1).
Moreover, the difficulty of obtaining biting rate data has led to
approximating the biting rate as the inverse of the gonadotropic
cycle (egg maturation time of mosquitoes; Alonso et al., 2010;
Hartemink et al., 2011; Mordecai et al., 2013; Johnson et al.,
2015). But, the mosquito egg maturation rate itself exhibits a left-
skewed response (Fig. 1). The key point is that the transition
from exposed to infected vectors, and disease transmission from
infected vector to susceptible host are both driven by four
temperature response functions, all of which are left-skewed and
decline rapidly at high temperature extremes. Not only does
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the high-temperature decline in the pathogen’s maturation rate
further reduce the number of infected vector individuals at any
given time, but the concomitant decline in the biting rate and per-
bite transmission probability means that fewer host individuals
will be infected. The key point is that it is the interactive effect
of the temperature response of mortality with those of transition
(maturation) and transmission traits that drives the differential
effect of warming on the uninfected vector class, and on the
infected vector and host classes.

Given the inapplicability R0 to the nonstationary environment
generated by warming, a more informative approach is to
use a trait-based model of vector-host interactions to calculate
disease prevalence under the appropriate warming scenario.
This requires incorporating temperature response functions of
vector and pathogen traits into the dynamical model. Doing
so, however, does not constitute an additional burden on the
investigator since one needs to perform the same exercise
in order to obtain R0 predictions under warming (Mordecai
et al., 2013, 2017; Johnson et al., 2015; Shocket et al., 2018,
2020; Tesla et al., 2018; Cator et al., 2020). As we have
shown here, fitting mechanistic temperature response functions
that accurately capture temperature effects on the biochemical
processes underlying vector and pathogen traits does not require
more data than the typical approach of fitting phenomenological
functions. Moreover, it affords the advantage that parameters
have clear biological meaning, and can be compared across
different diseases as well as different studies of the same disease.

Previous studies attribute warming-induced declines in
disease spread and prevalence to vector mortality. For instance,
(Yamana et al., 2016) combined a decade of field observations
with climate models to show that warming reduced mosquito
survival and lowered the Malaria burden in west Africa.
Erickson et al. (2012) found that warming facilitated the spread
of dengue to higher latitudes (Illinois) by increasing season
length and vector (Aedes albopitucs) period, but deterred it
at lower latitudes (Texas, Georgia) due to hotter summers
increasing larval mortality. The net outcome was a reduction
in overall mosquito abundance, and a change in the abundance
pattern from a single summer peak to a bimodal distribution
with a spring and autumn peak. Morin and Comrie (2013)
predicted a steeper summer decline of the west Nile virus
vector (Culex sp.) for the central and Gulf states due to the
longer and more intense summer warming projected for these
regions, and a shallower decline for northerly locations and
high elevations experiencing fewer high temperature extremes.
Our trait-based analysis, which differs from these previous
studies in using experimental data to parameterize mechanistic
trait response functions, shows that when warming reduces
infected host and vector populations it is through a complex
interaction between adult mortality—the effects of which become
compounded as the vector transitions from uninfected to
infected—and the warming-induced decreases in the pathogen
maturation rate, the vector’s biting rate, and the per bite
vector-to-host transmission probability. These findings highlight
the crucial role that the pathogen’s maturation rate and the
vector’s transmission traits play in driving warming effects on
vector-borne diseases.

Our finding that uninfected vector populations can both
persist at lower latitudes despite warming, and spread to higher
latitudes because of it, has important evolutionary implications
for predicting future disease burden. While the currently
observed high vector mortality, combined with the reduction in
maturation and transmission, may indicate a lowering of disease
burden from lower latitudes and a curtailment of its spread to
higher latitudes, this expectation does not accommodate vector
adaptation to warming. Provided uninfected vector populations
are not too small and the requisite genetic variation exists,
it is entirely possible that the vector species’ thermal reaction
norms may evolve to withstand warmer climates and to spread
to cooler climates. Evidence for rapid evolution of insecticide
resistance inmosquitos and other arthropod vectors (Roberts and
Andre, 1994; Hemingway and Ranson, 2000; Zaim and Guillet,
2002; Liu, 2015; Labbé et al., 2017) combined with evidence
of genetic diversity within and between species (Tabachnick,
2013; Gloria-Soria et al., 2016; Powell, 2018) caution against
being overly optimistic about warming-induced decreases in
disease burden in lower latitudes. The same is true of the lower
thermal limit for disease persistence. There is ample empirical
evidence of rapid acclimation and adaptation of the lower critical
temperature in insects (Storey and Storey, 1992; Addo-Bediako
et al., 2000; Somero, 2010; Overgaard et al., 2011; Sunday et al.,
2012; Araujo et al., 2013; Olson et al., 2013; Pintor et al., 2016),
raising the possibility of greater disease spread to cooler climates
than is expected based on ecological models alone. There is
a crucial need to develop eco-evolutionary models of vector-
host dynamics that can accommodate both thermal acclimation
and adaptation.

Lastly, our analyses clearly show that using a DDE model
with temperature- and time-dependent developmental delays
provides the most biologically realistic depiction of vector
and pathogen biology, and is therefore the best candidate for
predicting disease spread and prevalence under climate warming.
The problem, though, is that numerical implementation of
such models is difficult and error-prone, unless the appropriate
history conditions are correctly specified and the integral
functions that calculate juvenile mortality during development
are correctly implemented in a computer program (Murdoch
et al., 2003). These challenges put DDE-based models out
of reach for most ecologists and epidemiologists. The use of
ODE equivalents presents an alternative that is more easily
numerically implemented, but the representation of delays in
terms of instantaneous maturation rates can lead potential
under-prediction of disease spread and prevalence at high
temperature extremes. The fact that the ODE models allow
for calculations of both spread and prevalence in variable
thermal environments make them more reliable than the sole
use of R0 formulations derived under constant-temperature
assumptions. However, the reliability of ODE models needs to
be verified by comparing predictions from time-varying DDE
models with their ODE equivalents. While this is beyond the
scope of our current study, it is an important future direction
to pursue.

In conclusion, our work constitutes one of the first attempts
at developing a mechanistic theoretical framework that
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integrates life history theory, thermal biology, population
dynamics and epidemiology to investigate climate warming
effects on vector-borne diseases. Its novelty lies in elucidating
mechanisms from first principles, rather than inferring
mechanisms from the data. We incorporate mechanistically-
derived temperature response functions, parameterized with
temperature response data, into dynamical models to make
predictions about disease spread and prevalence that are
completely independent of population-level (e.g., time series)
data. This provides for greater degrees of freedom and statistical
power in comparing time series of prevalence predicted
from the model with equivalent data for any location. Our
mechanistic approach has the potential to provide reliable
information that can be used in formulating cost-effective public
health policies.
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