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De-icing salts are applied to roads and walking surfaces to mitigate winter hazards
resulting from ice, snow and freezing rain. The vitality of streetside trees, especially
those growing in densely built urban areas, is compromised by repeated exposure to
de-icing salts. Such trees already experience unfavorable establishment and growing
conditions resulting from poor soil quality, inadequate moisture, physical abuse and
air pollution−exposure to de-icing salt aggravates these challenges and can be an
essential catalyst in tree mortality. Climate change is creating less predictable weather
and, in some cases amplifying the intensity of winter storms. Cities that undertake
snow and ice management may adopt modified approaches, and those less familiar
with this practice may require its episodic adoption. We identify three pathways by
which future climate warming may, counterintuitively, result in cities increasing their
use of de-icing salt: (a) Warming winter temperatures in cities that were historically too
cold to make effective use of sodium chloride (NaCl) for de-icing; (b) cities where daily
high temperatures in winter may increase the frequency of freeze-thaw cycles; and, (c)
cities in North America and Eurasia that may experience more severe winter weather
resulting from greater variability in the circumpolar vortex (CPV). To offset potential
damage to existing urban streetside trees and to ensure adequate soil and growing
conditions for future trees, there is an immediate need for city foresters to collaborate
with traffic safety and public works departments. We present a toolbox of approaches
that can facilitate synchronized management efforts, including identifying the location of
existing vulnerable trees and re-envisioning future infrastructure that would mitigate tree
exposure to de-icing salts. At the same time, we call for the prioritization of research
that investigates new potential pathways along which climate change may contribute to
the novel adoption of de-icing salts.

Keywords: urban forest, city, climate change, pollution, winter storms, toolbox, management

INTRODUCTION

In this perspective article, we present the case for potential increases in the application of winter
de-icing salt in some areas of the Northern Hemisphere, despite clear trends in global atmospheric
warming and generally milder winter temperatures. Our assertion is independent of the potential
of other regions, ones that have historically relied on de-icing salts, to lessen application frequency
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in the future. Moreover, creating a ledger predicting global de-
icing salt application is beyond the scope of this perspective.
While de-icing salt is a known toxin to many plants (Equiza et al.,
2017), our focus is on its impact on city trees (specifically effects
of sodium chloride, NaCl). As integral components of urban
ecological systems (Gaston et al., 2013; Duinker et al., 2015), city
trees deliver numerous environmental benefits, including flood
moderation, summer temperature attenuation, and improved
air quality (Solecki et al., 2005; Roy et al., 2012). Moreover,
they are essential to the mental wellbeing of urban residents
(Donovan et al., 2013) and, in aggregate form, tree benefits have
important monetary value, including energy conservation and
flooding prevention (McPherson et al., 2011). At the same time,
increases in demand for urban real estate have caused building
densification and expansion of roads and pedestrian surfaces
(Eigenbrod et al., 2011; Touati-Morel, 2015), thereby crowding
out trees. Therefore, most dense urban areas integrate tree
plantings adjacent to pedestrian and vehicular streets (Limoges
et al., 2018); however, the growth of streetside trees is challenged
by exposure to numerous stresses typically not associated with
more naturalized urban areas (Gillner et al., 2016).

In cities that experience winter conditions, streetside trees
and their soils are regularly exposed to and contaminated by de-
icing salts used to improve vehicular and pedestrian safety. When
considered in combination with the typically harsh growing
conditions most city streets experience (Mullaney et al., 2015),
exposure to de-icing salt can tip the balance in favor of tree
mortality (Ordóñez-Barona et al., 2018). Therefore, it must be
the responsibility of winter ice management operations, both
public and private, to explore and embrace opportunities and
approaches that prevent or ameliorate the harmful effects of salt
contamination in urban soil. Moreover, collaborating with urban
forestry managers, winter maintenance operations could triage
resources by identifying priority salt-vulnerable treed streets
coincident with assets and infrastructure that must be kept
ice-free in winter. In these places, the targeted application of
alternative de-icers, the selection of salt-tolerant tree species, and
the integration of tree vegetation into a more expansive and
protective network of green infrastructure (GI) would all serve to
improve tree vitality and buffer against the mounting challenges
of climate change in urban centers.

Snow and ice control are critical to maintaining safe road
and sidewalk conditions. Hence, large quantities of solid and
liquid chemicals (for de-icing or anti-icing, collectively known
as de-icers) are now applied on paved surfaces in winter
months to improve traffic and pedestrian safety. In many
cities, urbanization has progressed around the requirements for
personal automobiles (Pucher, 1988; Dargay et al., 2007). One
such provision includes extensive paved surfaces both for driving
and parking. In the mid-latitudes, winter weather (snow, freezing
rain, sleet) is a common inconvenience for motorists and poses
an essential threat to public safety. Perhaps the greatest danger
to the motorist during winter conditions is when precipitation
adheres to the pavement, forming ice (Andrey et al., 2013;
Black and Mote, 2015).

Large-scale application of de-icers occurred in the
United States northeast in the late 1930s (USEPA, 1999);

following this, winter “bare pavement” policies soon became
common across much of North America (USEPA, 1999; Rubin
et al., 2010). Because de-icing salt was cheap and readily available,
the approach of “if a little is good, more is better” became the
de facto application standard. An early study by Kuemmel and
Hanbali (1993) with North American data showed an average
reduction in automobile accident rates based on de-icing salt
application was 87% for two-lane undivided highways and 78%
for freeways. With findings like these, the view that roads should
be free of snow and ice has permeated the public psyche in
North America—now a societal expectation that applies to most
paved surfaces, including sidewalks and pedestrian paths, in
global cities that experience winter weather (Fekete et al., 2021;
Gerasimov et al., 2021).

Chloride-based salts are the most used de-icer by roadway
agencies (Fay and Shi, 2012). Of these, sodium chloride
(NaCl) has been the most widely used chemical to melt ice
(and prevent its formation) due to its low cost and high
abundance (Ramakrishna and Viraraghavan, 2005). However,
calcium chloride (CaCl2) and magnesium chloride (MgCl2)
perform better as a de-icer at lower temperatures than NaCl (Shi
et al., 2009). The effective minimum temperatures for CaCl2,
MgCl2, and NaCl are –25◦C, –15◦C, and –10◦C, respectively (Fay
and Shi, 2012). CaCl2 and MgCl2 are used in road and sidewalk
anti-icing practices by applying them before the onset of a snow
event, where the first 1 or 2 cm of falling snow in contact with
the road surface or sidewalk will melt. These anti-icing agents
prevent black ice formation by weakening the bond between ice
and road surface.

CLIMATE CHANGE MAY CREATE AN
INCREASED NEED FOR DE-ICERS

A warming climate has produced less predictability in the
location, intensity, and duration of winter weather events
(O’Neill et al., 2017; Ummenhofer and Meehl, 2017). Urban
areas are particularly vulnerable to weather irregularity as
much of their infrastructure is designed around the probability
of occurrence (e.g., 100-year events) (Henstra, 2012; Bulkeley
and Tuts, 2013). In North America and Eurasia, average
daily December, January, and February (DJF) temperatures
have generally increased in the last century (Cohen et al.,
2014). Additionally, winter freeze-thaw events show increased
frequency in locations that once had daily high temperatures just
below freezing (Sinha et al., 2010; Brown and DeGaetano, 2011;
Vincent et al., 2018; Wang et al., 2020). Moreover, extreme winter
storms, driven by instability in the circumpolar vortex (CPV), are
predicted to occur more frequently in the United States central
Midwest and northern Europe and Russia (Cohen et al., 2021).
Each of these three pathways (Figure 1) may lead to the increased
application of winter de-icing salt.

Figure 1—Pathway A identifies increases to daily DJF
temperatures in Northern Hemisphere cities located at higher
latitudes that motivate a shift toward increased use of NaCl
because it is the least expensive and most easily administered of
the de-icing options (Cunningham et al., 2008). Unfortunately,
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FIGURE 1 | Three pathways by which future climate warming may, counterintuitively, result in cities increasing their use of winter de-icing salt: (A) Warming winter
temperatures in cities that were historically too cold to make effective use of sodium chloride for de-icing; (B) cities where winter daily high temperatures may
increase the frequency of freeze-thaw cycles; and, (C) cities in North America and Eurasia that may experience more severe winter storms resulting from greater
variability in the circumpolar vortex. Cities are selected to be representative locations for each scenario and do not constitute an exhaustive list. Locations
experiencing Pathway B may also be subject to Pathway C. Temperature surface adapted from Cohen et al. (2014).

NaCl is also the most damaging of the de-icers to plants, and
more broadly, ecosystem function (Czerniawska-Kusza et al.,
2004; Kramberger and Žerovnik, 2008). NaCl is only effective as
a de-icer (or anti-icer) at ground surface temperatures (working
temperatures) between 0 and –15◦C (Environment Canada.,
2001), and most municipal operations define the low as –10 (Fay
and Shi, 2012). In Edmonton, Alberta, Canada, annual January
temperatures have risen 4.2◦C in the last century (1920–2020),
where average January high and low temperatures (2007–2017)
were –6.3 and –14.8◦C, respectively (Government of Canada.,
2021). This brought diurnal temperatures into the range where
NaCl can be effective; its use has recently been endorsed in
de-icing policy by the Edmonton city council (Cook, 2020).
Similarly, in Anchorage, Alaska, United States, winter warming
has seen temperatures increase by 1.9◦C (1954–2020), where
average January high and low temperatures (2010–2019) were –
3.7 and –10.1◦C, respectively (NOAA, 2021), making NaCl an
effective de-icer. For the last decade, Anchorage has been using
NaCl as part of its winter de-icing operations (Alaska Department
of Transportation and Public Facilities, 2014). On average,
the sample of cities identified in Pathway A has had January
average temperatures increase by 3.5◦C [standard deviation
(SD) = 0.84◦C] between 1920 and 2020 and now are reaching
average daily temperatures of –11.0◦C (SD = 3.4◦C) where NaCl
can be an effective de-icer.

A sample of cities wherein winters were historically cold
enough to prevent daily high temperatures from climbing above
freezing in January, causing snow and ice melt, are identified
in Figure 1—Pathway B. When temperature increases to the
point where ice and snow melt and then refreeze during a 24-
h period, a freeze-thaw event is said to have occurred (Baker
and Ruschy, 1995; Ho and Gough, 2006). Such events are
particularly hazardous to motorists and pedestrians because they
manifest in rapid state changes of water. The freezing event can
quickly create unpredictable traction between tires or footwear

and a paved surface. Freeze-thaw cycles can also have critical
damaging impacts on road infrastructure resulting from the
repeated expansion and contraction of water volume (Hershfield,
1979; Kraatz et al., 2019). Early studies of freeze-thaw changes
suggested that a warming climate would generally reduce their
frequency (Intergovernmental Panel on Climate Change (IPCC),
1997). However, more recently, this outcome has been identified
as less certain and, most importantly, geographically variable
(Ho and Gough, 2006; Henry, 2008; Mekis et al., 2020; Tropea
and Stewart, 2021). Furthermore, a study conducted in Finland
found that warming temperatures in the mid-winter months of
DJF resulted in a greater application of de-icing salt (Venäläinen,
2001). For the sample of cities identified in Pathway B, average
January temperatures have increased between 1920 and 2020 by
2.1◦C (SD = 1.6◦C). From 2010 to 2020, average daily highs
were 1.3◦C (SD = 1.5◦C), and average daily lows were –5.2◦C
(SD = 2.2◦C), providing optimal conditions for regular ice
formation and reformation (NOAA, 2021).

In recent years, climate change manifest in the rapidly
warming Arctic has weakened the CPV. When the CPV in
the stratosphere is disrupted (i.e., split, displaced, elongated),
it shifts the jet stream southward, bringing Arctic air into
the United States and Eurasian cities in the mid-latitudes
(Kretschmer et al., 2018; Screen et al., 2018). This phenomenon
has created severe winter storm events in cities that have not,
historically, experienced substantial accumulations of snow and
ice (Cohen et al., 2014, 2021). Examples of note include the
Eurasia “Beast from the East” in March 2018 and winter storm
Uri in February 2021 (Overland and Wang, 2019; Overland
et al., 2020; Doss-Gollin et al., 2021). Increased knowledge of
how climate change influences the CPV (Kim et al., 2014; Lillo
et al., 2021) suggests that the unexpected should be the expected
where Northern Hemisphere mid-latitude winter weather is
concerned. Figure 1—Pathway C identifies a sample of cities in
the United States’ central Midwest and Eurasia that are likely
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to experience future novel winter storms driven by instability
in the CPV. Temperature conditions arising from these storm
events will likely favor the selection of de-icing salt, especially
NaCl. Combined with reasonable availability and modest cost, it
may increase its application, often in new urban settings or cities
where the past application was limited.

While research has identified adverse effects of the use of
NaCl for de-icing on vegetation and aquatic ecosystems as
early as the 1970s (Hanes et al., 1970; Dirr, 1976; Roth and
Wall, 1976), policies governing the use of de-icing salt have
been slow to change, and private use remains unregulated
in most urban areas. For example, in Toronto, Ontario,
Canada, the use of de-icing salt by businesses and residents
accounts for 40% of annual applications (Woodward, 2021).
Working in Toronto and looking at a 10-year interval, Wallace
and Biastoch (2016) determined that while urbanization had
expanded by approximately 6% in land area, the amount of
chloride (originating from de-icing salt) in proximate catchment
streams increased by 48%. This significant increase in chloride
in urban ecosystems suggests that the application of NaCl in
new urban areas may be disproportionately greater than the
expansion of paved surfaces. Several recent Canadian studies have
measured streetside tree exposure to NaCl (Equiza et al., 2017;
Ordóñez-Barona et al., 2018), and there is reason to believe that
increased streetside tree exposure to salt is positively associated
with elevated chloride concentrations in proximate bodies of
water that receive direct runoff from these same paved surfaces.

THE IMPACT OF DE-ICING SALTS ON
STREETSIDE SOIL AND VEGETATION

Sodium accumulation in soil has been demonstrated to
reduce permeability, increase compaction, elevate soil pH,
decrease aeration, and generally negatively influence soil fertility
(Ramakrishna and Viraraghavan, 2005). On the other hand,
calcium and magnesium cations present in some anti-icing
agents have been shown to increase soil stability and improve
permeability and aeration, likely through organic and inorganic
particle flocculation (Defourny, 2000). However, calcium and
magnesium de-icers also carry a potential risk of exchanging
heavy metals in soils and releasing them into the environment
(Fay and Shi, 2012). More generally, microorganism populations
and soil community structure are negatively affected by de-
icing salt (Ke et al., 2013), further affecting plant water and
nutrient uptake. Soil electrical conductivity (EC) values increase
with increasing soil salt concentration. They have been shown
to reach levels characteristic of naturally occurring saline soils
along roads and sidewalks where de-icers are regularly applied
(Equiza et al., 2017). In these exact locations—where urban trees
are often planted—soil pH is also elevated (Kayama et al., 2003;
Gałuszka et al., 2011; Dmuchowski et al., 2014) and leads to
further reductions in nutrient and water uptake (Green et al.,
2008; Marschner and Rengel, 2012).

A tree’s root system has a limited ability to sequester
sodium. Once a threshold concentration is exceeded it is
transported with a transpiration stream to the leaves, where it

accumulates (Apostol and Zwiazek, 2003). The degree of salt
injury experienced by a tree is closely correlated with sodium and
chloride concentrations in the plant tissue (Olivier et al., 2020).
While most of the damage to streetside trees can be attributed
to sodium, chloride accumulation is also phytotoxic. Chloride
can act synergistically with sodium by increasing its uptake and
translocation to shoots, thus further aggravating plant injury
(Franklin and Zwiazek, 2004). Munns and Tester (2008) show
that chloride may even be more toxic for some trees than sodium
because roots cannot readily sequester chloride, which is rapidly
transported to the shoots where it accumulates.

Trees are exposed to de-icing salt through two primary routes:
direct exposure to airborne particles (i.e., salt splash, spray and
dust generated by vehicle traffic and wind) or through the effects
of de-icers on the physical, chemical, and biological properties of
the soil growing medium (Cunningham et al., 2008). Blomqvist
and Johansson (1999) demonstrated that between 20 and 63%
of the de-icing salt applied to streets moved through the air and
was deposited in the soil as far as 40 m. While the concentration
of airborne sodium decreases with increased distance from a
road, Equiza et al. (2017) found that in the City of Edmonton,
AB, Canada, sodium levels remained significantly elevated as
far as 50 m away.

Tree species planted in urban areas vary widely in their
tolerance to elevated soil salinity and airborne salt spray
accumulation (Appleton et al., 2009; Dmuchowski et al., 2020).
Consequently, species selection must be an essential factor in
reducing tree mortality in salt-affected areas. Few evergreen tree
species, for example, have been described as tolerant of saline
soils or salt spray (Appleton et al., 2009), partly due to their
persistent foliage that is both exposed to salt spray and prone to
salt accumulation. The adverse effects of airborne de-icers can
be easily observed in evergreen trees and manifest as extensive
foliage necrosis on the side of the tree facing the roadway or
walkway that has received de-icing salt applications. While this
form of salt stress has been less extensively examined in trees
than soil salinity, studies have shown that de-icers are easily
absorbed by the needles of evergreen trees and through the buds,
leaf scars, and young stems of dormant deciduous trees, thereby
affecting tree growth and delaying bud flushing (Dobson, 1991;
Zimmerman and Jull, 2006).

Under most environmental conditions, tree roots are naturally
colonized by mycorrhizal fungi. Several recent studies have
shown that this colonization in salt-affected soils can benefit
streetside trees by improving nutrient and water uptake and
lessening heavy metal and salt toxicity (Shi et al., 2019; Arora,
2021). Mycorrhizal associations can also reduce plant uptake,
and associated tissue concentrations, of sodium and chloride,
thus enhancing salinity tolerance in trees (Muhsin and Zwiazek,
2002; Bois et al., 2006; Calvo-Polanco et al., 2008). Studies on
ectomycorrhizal associations with Hebeloma crustuliniforme and
Laccaria bicolor showed that they could improve the growth
of streetside trees (Garbaye and Churin, 1996) and ameliorate
salinity and soil compaction stress in different species (Calvo-
Polanco et al., 2008). However, different species of mycorrhizal
fungi vary in their effectiveness in conferring salt tolerance to
plants (Nguyen et al., 2006; Calvo-Polanco et al., 2009). Moreover,
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existing urban soil may not contain proper fungi species to
colonize tree roots after planting or may have low mycorrhizal
inoculation potential, creating sub-optimal protection against
de-icing salt (Zwiazek et al., 2019).

A TOOLBOX TO SUPPORT THE
CO-MANAGEMENT OF WINTER
DE-ICING OPERATIONS AND URBAN
FORESTRY IN SALT-VULNERABLE
STREETSIDE LOCATIONS

Many city trees require significant, active, and potentially costly
management efforts to survive to maturity (Nowak et al., 2013;
Duinker et al., 2015; David et al., 2018; City of Toronto, 2020).
To triage priorities and conserve resources, it is prudent to
identify the geographic locations where streetside trees are most
vulnerable to de-icers. These delineated “Salt-vulnerable Zones”
(SVZs) provide a setting for novel and alternative approaches
to caring for streetside trees (Government of Canada, 2013;
Conservation Ontario, 2018; Durickovic, 2019). At present,
most salt management efforts that delineate sensitive areas
focus on watershed and aquifer protection (Durickovic, 2019).
The establishment of SVZs to increase protective measures
for vulnerable streetside trees could help to synchronize
and integrate winter road and pedestrian safety with tree
management goals.

Implementation of integrated salt and tree management
strategies, including the delineation of SVZs, would require
robust spatial analysis, design and planning, supported by data
supplied by salt and tree monitoring technologies (Ordóñez-
Barona and Duinker, 2013; Lake Simcoe Region Conservation
Authority., 2015; Zhao et al., 2017; Li et al., 2019; Brokking
et al., 2021). Moreover, an assessment of local opportunities and
constraints for implementing a coordinated salt management
effort is required. Once SVZs are established, a synchronous
winter road/sidewalk maintenance and tree management effort
would pursue a spectrum of different actions, from modifying
de-icing products to creating robust GI that supports the
bio-desalination of contaminated meltwater through enhanced
species-specific urban greening. To this end, we propose a
toolbox of actions prioritized by ease of implementation and
increasing long-term effectiveness (Figure 2).

Actors responsible for minimizing the winter hazards of
ice and snow must first avail themselves of opportunities for
reduced use of NaCl de-icers, either by optimizing the timing
and amount of their application through real-time precision
applicator systems (McCormick, 2014; Ruiz-Llata et al., 2014)
or by using alternative de-icing agents (Salminen et al., 2011).
Where limited modification to the application of NaCl-based
de-icers is possible, management efforts should instead focus
on designing and implementing structures or strategies that
intercept, detain, and divert salinized meltwater away from
sensitive areas, including tree plantings (Reinosdotter, 2007; Xiao
and McPherson, 2011; Herb et al., 2017; Payne et al., 2018). To
minimize reliance on centralized facilities for snow management,

especially during spring, meltwater management systems can
be connected to locally implemented GI systems that support
streetside trees, such as rain gardens and bio-retention cells,
potentially located on the sides of streets (Jarden et al., 2015;
Vadenais, 2015).

In the strategy envisioned here, GI performs rainwater and
snowmelt management functions using vegetation and soil
(Burgis et al., 2020). For example, bioretention cells detain and
retain water through infiltrating soils and evapotranspiration,
helping to manage the volume and quality of downstream
water flows (Herb et al., 2017). Recent research suggests that
these systems effectively manage salinized water from adjacent
snowmelt and that their functions may be augmented with
woody species and enhancements to tree-supportive soil media
(Muerdter et al., 2018; Burgis et al., 2020). Streetside trees
can be planted as a part of many design configurations that
integrate into the street design (e.g., soil cell technologies)
(Ow et al., 2018). Arguably, GI designs may include tree
planting areas configured primarily to support tree growth
and vitality with water runoff control as a secondary function.
While the widespread adoption of GI as a reliable water
management tool in cities is variable, and the crafting of
supportive policies that promote their construction can be
challenging (William et al., 2020), GI is gaining government
support in many jurisdictions (Brokking et al., 2021). GI is
a best practice for combatting many potential environmental
challenges in cities aggravated by climate change (Johns,
2019). To ensure climate resilience, cities must advance
infrastructure design methods that reflect functional, spatial
and temporal flexibility, understanding that GI, and any
integration of trees, should account for the range of design
constraints found in high-trafficked, built-up urban areas
(Brokking et al., 2021).

Perhaps the most effective approach to protecting streetside
trees is to ensure a resilient and healthy soil environment
for optimal growth and longevity (Pike et al., 2021). GI
designs that provide ample soil volumes minimize compaction
and encourage the formation of microbiological−especially
mycorrhizal−communities beneficial to the health of trees
(Calvo-Polanco et al., 2008, 2009) offer protection against the
harmful effects of salt contamination. Ongoing monitoring
of soil environments adjacent to the trees, both to appraise
performance and help direct maintenance activities in the face
of changing conditions, is an important investment in the
long-term success of tree plantings and GI more generally
(Pascual et al., 2019).

Planting streetside tree species that show evidence of salt
tolerance is an essential step toward enabling successful urban
greening (Dirr, 1976; Muerdter et al., 2018; Dmuchowski
et al., 2020). However, when adopted in isolation, this
strategy may limit urban forest biodiversity in favor of a
homogenized ecosystem that performs well when exposed
to de-icing salt but lacks resilience in the face of other
climate-induced environmental changes such as drought
or exposure to disease and insect pests (Groffman et al.,
2014). Importantly, managing de-icing salt contamination
should be coordinated with other urban greening efforts
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FIGURE 2 | Actions can be conceived and executed as a progressive set of steps that build on one another, from the optimization of de-icing salt application (2) to
the integrative solutions of (5) and (6). The action items are not exclusive of one another in that the completion of one does not suggest that no further action should
be taken. The delineation of Salt-Vulnerable Zones (1) is arguably a necessary precursor to the other actions.

to maximize the benefits of trees to the communities in
which they grow.

CONCLUSION

Our perspective is that climate change has the potential
to increase, albeit counterintuitively, the demand for and
application of NaCl-based de-icers in certain mid-latitude global
regions, many with a dominant continental climate classification.
Abundant research has demonstrated that exposure to these
de-icers negatively impacts plant vitality and, in sufficient
concentration, can cause mortality. Our concern is with the
vulnerability of urban streetside trees to new or increased de-
icing salt exposure. Novel or enhanced exposure can exert greater
stress on the health and vitality of streetside trees, already subject

to harsh urban growing conditions, further complicating and
confounding existing efforts to revitalize and expand urban forest
canopy. We identify the immediate need for cooperative and
synergistic efforts between actors involved in ensuring public
safety during snow and ice events and those focused on city
forestry and tree protection. To this end, we have proposed a
toolbox of actions that can triage proactive decisions beginning
with establishing geographically circumscribed SVZs, paying
particular attention to the health of vulnerable streetside tree
populations and the soil environments that support them. This
triage approach can serve as staging for: (a) space and time
optimization of de-icing applications, (b) geographically targeted
application of de-icing alternatives, (c) management of saline
meltwater more generally, and (d) synergistic integration of
GI initiatives and soil quality that address saline runoff and
support tree growth, while at the same time achieving stormwater
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management objectives. Streets and sidewalks free of winter
hazards do not need to conflict with the health and vitality of
urban tree cover.
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