
fevo-10-648997 February 12, 2022 Time: 16:27 # 1

ORIGINAL RESEARCH
published: 17 February 2022

doi: 10.3389/fevo.2022.648997

Edited by:
György Barabás,

Linköping University, Sweden

Reviewed by:
Matthew Joseph
Michalska-Smith,

University of Minnesota Twin Cities,
United States

Jurg Spaak,
University of Namur, Belgium

*Correspondence:
Supreet Saini

saini@che.iitb.ac.in

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Models in Ecology and Evolution,
a section of the journal

Frontiers in Ecology and Evolution

Received: 03 January 2021
Accepted: 12 January 2022

Published: 17 February 2022

Citation:
Mall A, Kasarlawar S and Saini S

(2022) Limited Pairwise Synergistic
and Antagonistic Interactions Impart

Stability to Microbial Communities.
Front. Ecol. Evol. 10:648997.

doi: 10.3389/fevo.2022.648997

Limited Pairwise Synergistic and
Antagonistic Interactions Impart
Stability to Microbial Communities
Akshat Mall1†, Sravanti Kasarlawar2† and Supreet Saini1*

1 Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India, 2 Department of Biosciences
and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India

One of the central goals of ecology is to explain and predict coexistence of species. In
this context, microbial communities provide a model system where community structure
can be studied in environmental niches and in laboratory conditions. A community
of microbial population is stabilized by interactions between participating species.
However, the nature of these stabilizing interactions has remained largely unknown.
Theory and experiments have suggested that communities are stabilized by antagonistic
interactions between member species, and destabilized by synergistic interactions.
However, experiments have also revealed that a large fraction of all the interactions
between species in a community are synergistic in nature. To understand the relative
significance of the two types of interactions (synergistic vs. antagonistic) between
species, we perform simulations of microbial communities with a small number of
participating species using two frameworks—a replicator equation and a Lotka-Volterra
framework. Our results demonstrate that synergistic interactions between species
play a critical role in maintaining diversity in cultures. These interactions are critical
for the ability of the communities to survive perturbations and maintain diversity.
We follow up the simulations with quantification of the extent to which synergistic
and antagonistic interactions are present in a bacterial community present in a soil
sample. Overall, our results show that community stability is largely achieved with the
help of synergistic interactions between participating species. However, we perform
experiments to demonstrate that antagonistic interactions, in specific circumstances,
can also contribute toward community stability.

Keywords: microbial communities, species’ interactions, coexistence, cooperation, antagonism

INTRODUCTION

Developing an understanding of the distribution and stable coexistence of species is a major goal
of ecology. The classical view in this context states that the sum total of abiotic factors in an
environment defines the niche available to species in a particular area (Hutchinson, 1978; Colwell
and Rangel, 2009). An increasing body of literature now demonstrates that biotic factors can expand
or contract the niche available for species to exist in an environment (Hardin, 1960; Bruno et al.,
2003; Colwell and Rangel, 2009; Bulleri et al., 2016). How interactions between the biotic factors in
an environment impact the coexistence and stability of species is the focus of this work.
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Microbes live in complex communities. The interactions
between them are important for the ecosystem from a variety
of contexts (Azam and Malfatti, 2007; Lee and Hase, 2014).
These assemblies comprise of large number of genomes and are
engaged in a number of antagonistic and synergistic interactions
between participating species (Faust and Raes, 2012; Corel
et al., 2016). Via these interactions, the participating species can
change the physical, chemical, and biological environment, and
thus, influence the growth of all members of the environment
(Andrade-Dominguez et al., 2014; Moreno-Fenoll et al., 2017).
The altered environment can, in turn, also impacts the strength
of interactions between species (Ratzke et al., 2020). Hence, a
feedback between species and environment exists.

Interactions between species can be of two types. In the first,
presence of one species aids growth of another. This form of
interaction is synergistic. Alternatively, individuals of one species
hinder growth of another species (Hiltunen et al., 2017). This
form of interaction is termed as an antagonistic interaction.
In a microbial context, the former is present when waste or
a secreted metabolite of one species is used by individuals of
another species for growth (Pacheco et al., 2019), and the latter,
when an antibiotic released by one species, which limits growth
of another species.

Which of the two types of interactions described
above contributes more toward preservation of diversity
in an ecological community? The nature of interactions
(synergistic/antagonistic) present in a community shape how
the community responds to challenges like, perturbations in
composition of community, environmental shifts, migration.
In this context, we study the nature of interactions and their
relative effects on stability of a community comprising a small
number of species.

Consider Figure 1. Species A (red) grows at rate rA, and
B (blue) grows at rB (both constant in a given environment).
Let rA < rB. Let PAB be the parameter which defines how
A influences growth of B (PAB > 0, when synergistic; and
PAB < 0, when antagonistic). Similarly, let PBA be the parameter,
which defines how B influences A. Depending on the nature
of interactions between the two species, several topologies are
possible (Figure 1). In the parameter space of PAB and PBA, how
do we identify regions where one species outcompetes the other;
and regions where the two species stably coexist?

In a particular environment, the number of species (n) is in
several dozens, if not more (Vega and Gore, 2018) and previous
work has suggested that diversity brings the challenge of stability
(May, 1972; McCann, 2000; Allesina and Tang, 2012; Coyte
et al., 2015; Bunin, 2017). Hence, a large number of possible
topologies, describing interactions between species, exist. Each
of these topologies dictates the criteria of coexistence of species,
and the community’s response to perturbations. The interactions
could lead to coexistence of any number of one to n of all
participating species. Moreover, coexistence of species could
be stable or unstable. In such a context, which interactions
(synergistic or antagonistic) are more relevant for coexistence
of multiple species? In other words, how the distribution of
interactions shape communities is unknown (Kehe et al., 2020),
and is the focus of this work. Multiple aspects of stability can

FIGURE 1 | Nature and magnitude of interactions between species dictates
criteria for stable coexistence. Two species A (red) and B (blue) in an
environment can exhibit nine topologies depending on how presence of one
impacts growth of the other. In this cartoon, we assume that species A (red)
grows slower than B (blue), when growing in absence of any other species.
Arrow represents synergistic interaction while a blunt end represents an
antagonistic interaction.

be defined and examined for a multi-species community. Here,
we ask the question—given an interaction network that supports
coexistence, how do the different kinds of stability vary with
differing degrees of connectance and fraction of interactions that
are synergistic. We form this analysis for small communities, with
three or four participating species.

Evidence in this context is conflicting. It has been reported
that synergistic interactions between participating species are rare
(Foster and Bell, 2012; Ghoul and Mitri, 2016), while others
report that the fraction of interactions which are synergistic
can be widespread, and depend on the precise environment
in which the participating species are present (Jared Kehe
et al., 2020). In addition, metabolic modeling and bioinformatics
analysis also suggests strong presence of cooperation among
species in an ecological context (Goldford et al., 2018; Pacheco
et al., 2019). The problem with mutually positive interactions
(cooperative behavior between two species) has shown to be
that it leads to reduced stability of communities (May, 1972;
Allesina and Tang, 2012; Coyte et al., 2015). Analytical work
to study the effect of synergistic interactions on community
structures has also led to the same result (Coyte et al., 2015).
In general, it is thought that for highly connected networks
(where, most species are interacting with each other), cooperative
interactions of even small magnitude are sufficient to make
the system unstable. However, while theory does not support
extensive presence of cooperation and synergistic interactions in
an ecological community, experimental evidence suggests that
synergistic interactions can be present to a relatively large extent
(Pande et al., 2014, 2016; Kehe et al., 2020).

In this context, several questions remain. How does the system
react to a perturbation? How is the stability of the system
dependent on the structure of the topology of the interactions in
the system? Here, stability can be interpreted in a number of ways.
First, stability can be defined as the ability of the community to,
after a transient environmental perturbation, restore the original
frequencies of species. Second, stability can also be the ability of
the system to retain the remaining N - 1 species, should one of
the participating species go extinct. Third, stability can also refer
to the ability of the system to resist intrusion into the community
from non-associated species (Case, 1990; Bascompte et al., 2006;
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Fontaine et al., 2011; Coyte et al., 2015; Mougi, 2016; Rouze et al.,
2017). Lastly, stability can also refer to change in the species
composition in a niche, when the environment changes. This
facet of stability has been recently studied, and shown to have
the capacity to facilitate coexistence of species (Abreu et al.,
2020). However, the effect of the structure of the topology of
interactions itself on the coexistence of species has not been
explored. In this study, we study the structure of interactions
between participating species in a small ecological community,
and its impact on the stability of the community.

To answer this question, we use two modeling approaches.
In the first, we use a replicator dynamic equation to model
coexistence among N interacting species. In the second, we
use a Lotka-Volterra representation to study coexistence among
microbial species. Both these formulations, replicator (Lundh
and Gerlee, 2013; Zomorrodi and Segre, 2017; Venkateswaran
and Gokhale, 2019; Madec and Gjini, 2020) and Lotka-Volterra
(Momeni et al., 2017; Xiao et al., 2017; Gonze et al., 2018;
Kuntal et al., 2019; Mickalide and Kuehn, 2019), have been used
extensively in literature to study population dynamics in a multi-
species environment. However, a comparative analysis between
the two modeling exercises has not been performed.

We use simulations to show that synergistic interactions
play an important role in maintenance of diversity in microbial
communities. We first describe our mathematical representation
of a microbial community, and then analyze it for stability
and co-existence of species. We study the effect of interactions
between species to help stabilize the system against perturbations
to the system at steady state, and also, when one of the species
is removed from the system. We then use an experimental
system of bacterial species isolated from soil, to quantify the
relative frequency of positive and antagonistic interactions
in this community.

MATERIALS AND METHODS

Replicator Equation Model
Model Description
We use a system of autonomous non-linear differential equations
to track the frequency of each species with time in a constant
environment with a fixed interaction network. While ecological
communities are large and comprise of several dozen species,
we do this analysis for small communities. As the size of
communities increases, the likelihood of space being a relevant
variable in explaining coexistence increases. As a result, we focus
on communities comprising of a small number of species. In a
multi-species population, the relative number of individuals of
any species can be represented as a frequency, i.e., the ratio of the
number of individuals of the species (ni) to the total population
size (N), which lies between 0 and 1. In the absence of any external
effects such as interactions, each species may be linked with an
innate growth rate (ri), and the change in frequency of a species
is proportional to the present frequency (Nowak, 2006).

We model an environment as a chemostat, with a total
population size N. Perturbations change the growth rate of the
participating species or changes frequencies of the participating

species. Due to species interactions, relative changes in growth
rate and/or changes in community composition changes the
overall structure of the population as well (Butler and O’Dwyer,
2018). Thus, for any ith species in an N-species population, the
frequency of the ith population, xi is,

xi =
ni

6ni
(1)

Hence,
6xi = 1 and 6ni = N

To ensure this, we introduce a mean growth rate term (8),
with the frequency of each species acting as the corresponding
weights (Nowak, 2006).

8 =

n∑
i=1

rixi (2)

The population dynamics of the system can therefore be
represented as,

dxi

dt
= rixi −8xi (3)

The replicator equation has been used extensively to study
deterministic behavior of large populations (Hofbauer et al.,
1979). An important feature of the model is that density limits
growth rate, effectively acting as a negative feedback loop. It has
also been shown, in a game theoretic framework, that a replicator
equation for n strategies is equivalent to a Lotka-Volterra
equation for n - 1 species (Hofbauer and Sigmund, 1988).

Interaction Effects
Let the interaction effect on species i by species j be designated
as Pij, which is positive if the interaction is synergistic, negative if
the interaction is antagonistic and zero if there is no interaction.
The strength of these effects is also proportional to the frequency
of the species causing the interactions. Only interactions between
distinct species are considered. The effect of a species’ metabolic
products on its own growth are absorbed in the ri term.
This assumption, however, is violated when the system is far
from steady state.

The population dynamics can then be quantified as,

dxi

dt
= xi (ri + Pi1x1 + Pi2x2 + · · · + PiNxN)−8xi (4)

Where the mean fitness of the population is represented as,

8 =

n∑
i=1

xi(ri + Pi1x1 + Pi2x2 + · · · + PiNxN) (5)

Steady State Analysis and Stable Coexistence
At steady state, the system of ordinary differential equations is
a system of polynomial equations whose solutions represent the
frequencies of all species of the population at steady state.

dxi

dt
= 0 = xi (ri + Pi1x1 + Pi2x2 + · · · + PiNxN)−8xi (6)
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We analyze the stability of solutions by performing a Taylor’s
expansion of the governing equations in the neighborhood of the
fixed points such that time derivatives of the deviations yi from
equilibrium can be written in the linear form,

dy
dt
= Ay (7)

Where, y is a column vector of deviations from
equilibrium = [y1 y2...yN]

T , and A is an N × N Jacobian
matrix of the governing equations. An equilibrium is stable if
real parts of all eigenvalues of matrix A are negative.

For a given set of innate growth rates and interaction
parameters, the system is stable if there exists a stable fixed
point at which frequencies of all species present in the
population is non-zero.

The above formulation assumes that the population size
remains constant with time. However, in an ecological setting,
this is likely to be not true. Environmental perturbations are likely
to lead to fluctuating population sizes over time. To mimic this,
separate simulations were performed. We show that the systems
found to be stable in the context as defined in (7) were also found
to be stable, when perturbed due to an environmental disturbance
(See Supplementary Section 1 for more details).

Generating Random Networks
Species networks were simulated using the following growth
rates: three species, [0.98, 1, 1.02] time−1; four species, [0.98,
0.99, 1.01, 1.02] time−1; five species, [0.97, 0.98, 1, 1.02, 1.03]
time−1, and six species, [0.97, 0.98, 0.99, 1.01, 1.02, 1.03] time−1.
We study the steady state behavior of the system as a function
of two parameters. First, connectance (c): the ratio of non-
zero interactions to the total number of possible interactions
in the system. This can take values between 0 and 1, where
c = 0 signifies a system with no interaction effects while c = 1
represents a completely connected system, that is, each species
directly affects growth rates of all others. In the case with c = 0,
the interaction matrix P only comprises of zeros; in the case
c equal to 1, all off-diagonal terms of P are non-zero. Second,
the fraction of non-zero interactions in the network which are
synergistic (fc), i.e., fraction of non-zero elements of the P matrix
which are positive.

For a specified pair of values of these parameters, c, and
fc, 1,000 interaction networks were randomly generated in the
following manner. For a given c, non-zero interactions were
selected randomly from the N(N - 1) off-diagonal terms in the P
matrix. Among the designated non-zero interactions, a fraction fc
were chosen randomly to be > 0. The distribution of interaction
effects among interacting species are not well-known. Hence, the
magnitude of each interaction effect was sampled in two different
ways. In the first, the strength of interactions were sampled from
a uniform distribution ranging between 0 and 1. The distribution
generated via random sampling from a uniform distribution
was identical to a uniform distribution (p < 0.00001). In the
second, strength of interactions were sampled from exponential
distributions. The exponential distributions were so chosen such
that the mean of an antagonistic interaction was 10% of the
maximum innate growth rate (ri) in the species group. The mean

of synergistic interactions was 5% of the maximum innate growth
rate (ri) in the group of species whose growth is being studied.

Lotka-Volterra Model
We use the Lotka-Volterra system of equations to model the
growth of an interacting multi-species microbial population.
The interaction between participating species can be modeled as
effects on the intrinsic growth rate of the species experiencing
the interactions.

In an n-species population, the rate of change of individuals of
a ith species can be thus modeled as follows,

dNi

dt
= (ri + Pi1′N1 + Pi2′N2 + · · · + Pin′Nn) Ni (8)

Where, Ni is the number of individuals of species i, ri is
the growth rate of species i, Pij′ is the interaction effect of
species j on species i. In this representation, Pij′ > 0 signifies a
cooperative interaction directed from j to i, Pij′ < 0 signifies an
antagonistic interaction, while Pij′ = 0 represents the absence
of any interaction effect of species j on species i. In our model,
all Pii′ terms are taken to be negative, that is, Pii′ < 0. This is
because resources are limited, and numbers of any species cannot
continue to grow indefinitely (Venturelli et al., 2018). In our
simulations, we take Pii’ equal to -1× 10−12.

Sampling Random Matrices
We use the model above to study populations comprising three or
four different species. For the three species network, r was taken
as defined above. We study the behavior of the system with regard
to two key variables: (a) the extent of interactions present in the
community, and (b) the relative pervasiveness of cooperative and
antagonistic interactions.

We call the first variable connectivity (c), and is
mathematically defined as the ratio of number of non-zero
interactions present to the number of possible non-zero
interactions. Consider a 3-species system. The interaction matrix
may be defined as,

P =
P11 P12 P13
P21 P22 P23
P31 P32 P33

. (9)

As defined earlier, Pii’s are all set to less than zero and are
not included in the number of non-zero interactions. Thus,
the number of possible non-zero interactions is six. Thus, c
equals number of non-zero interactions present in a particular
simulation divided by six. The second variable is fraction of
interactions which are cooperative (fc), and is defined as the ratio
of number of cooperative interactions to the total number of
non-zero interactions.

The interaction strengths are assumed to be exponentially
distributed and the values are assigned to each element by
sampling from an exponential distribution. The magnitude
in case of antagonistic interactions is taken to be twice as
large as in case of cooperative interactions. The mean of the
exponential distribution from which the strength of cooperative
interactions were sampled was 10−9 and that of the exponential
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distribution from which the strength of antagonistic interactions
were sampled was 2 × 10−9. Alternatively, the magnitudes
of cooperative and antagonistic interactions were sampled
from a uniform distribution between magnitudes zero and
2× 10−9, for both cooperative and antagonistic interactions. The
relative magnitude of interaction strengths in an Lotka-Volterra
representation for microbial systems has been previously used
(Venturelli et al., 2018).

Likelihood of Coexistence
For a population with a given number of species, we study
the likelihood of the community coexisting stably as the two
parameters vary. Given independent growth rates and an
interaction matrix, we model the growth of each species, starting
from an equal number of individuals and note the number of
individuals of each species at equilibrium. The population is said
to coexist if the frequency of each species (xi) at equilibrium is
non-zero.

xi =
Ni

6Ni
(10)

We numerically solve the ODEs mentioned above (Equation
8). We approach the equilibrium asymptotically, and the
frequency of a species is taken to be zero if xi < 10−5. For
a given pair of values of c and fc, we generate a large number
(∼= 1, 000) of matrices, and observe the equilibrium state in each
instance. The likelihood of coexistence for the given parameter
set is estimated as the fraction of instances in which a coexisting
population is observed.

Likelihood of Coexistence After Loss of a Species
To study the ability of a community to coexist in the event of
a loss of one species from the population, for a given system
of species, we remove a single species from the population.
The resulting P matrix does not contain the interaction effects
pertaining to the species removed. The system is then simulated,
and the new equilibrium recorded. We record the number of
instances in which, upon removal of one species, the remaining
species coexisted. We estimate the likelihood that a population
having an interaction network [of a particular set of (c, fc)]
would coexist on loss of any one species, by calculating the
fraction of instances when the remaining population survived
after removal of a species.

Experiments With Soil Bacteria
There is limited data regarding the relative frequency of absence,
antagonistic, or synergistic interactions among microbial species
existing in ecological niches. One of the niches where microbial
communities have been studied is soil samples. To quantify
this distribution, we isolate bacterial species from a garden soil
sample, and study pairwise interaction.

Isolation of Soil Bacteria
Bacterial strains used were isolated from one gram soil in the
Indian Institute of Technology Bombay nursery (19 Dec 2018).

One gram of soil was suspended in 10 ml of 50 mM phosphate
buffer (in 1 liter, 8 g NaCl, 0.2 g KCl, 0.2 g KH2PO4, 1.15 g
Na2PO4) at pH 7.5 (adjusted with HCl). The mixed solution

was diluted in the phosphate buffer by the factor of 102–106.
Each dilution was spread on the LB agar media plate containing
Nystatin (25 µg/ml) (Juhnke and des Jardin, 1989). The plates
were then incubated for 24 h at 37◦C. Following appearance
of colonies, all colonies which exhibited a unique morphology
and/or color were picked and steaked onto fresh LB agar plates
individually to isolate pure strains. The fraction of soil bacteria
which is culturable in laboratory environment is known to be
extremely small (Stewart, 2012).

Glycerol stocks were prepared from the pure colony culture
and stored at -80◦C. The genomic DNA from all species
was isolated, and the 16s RNA sequenced to identify the
bacterial species. Bacterial 16S rRNA gene (1,500 bp) was
amplified using polymerase chain reaction in a thermal cycler
using universal primers 5′-AGAGTTTGATCCTGGCTCAG–3′
and 5′–CCGTCAATTCMTTTRAGTTT–3′ (Fredriksson et al.,
2013). All the 16s RNA sequences were analyzed using NCBI
BLAST sequence alignment tool. Most similar matches were
taken together to construct phylogenetic trees to understand the
bacterial classification.

Nutrient rich medium (LB) used [composition per liter of
distilled water: peptone, 10 g; yeast extract, 5 g and sodium
chloride, 10 g (Sambrook and Russell, 2000)]. Minimal media
(M9) was used as per the following composition (per liter):
Na2HPO4, 6.78 g: KH2PO4, 3 g: NaCl, 0.5 g; NH4Cl, 1 g; to
which filter sterile 1 M MgSO4 and 0.1 M CaCl2 solutions added
aseptically. Bacterial cultures were supplemented with glucose,
0.2% or glycerol 0.2% or pyruvic acid or sodium acetate, 0.2%
as the sole carbon and energy source. Agar (1.5%) was used to
solidify the medium.

Pairwise Growth Experiments
Frozen stocks of individual species were streaked on LB agar
plates, grown at 30◦C for 24 h. Single colonies were picked
and each species was grown separately in 2 ml LB broth for
24 h. The growth rate of each species was obtained from the
resulting growth curve (Supplementary Section 2) (Sane et al.,
2020). After this growth, an equal number of colony forming
units (CFUs) for the two strains were transferred to the M9
media containing 2% glucose. The initial density of the culture
was 0.05 OD600 nm.

After 24 h of growth, appropriate dilutions of the M9
media were plated on LB plates and the number of colonies
of each of the two strains counted. Based on the count
of the colonies of each kind, the species were recorded
to be co-existing (if colonies of both morphologies were
observed) or one specie eliminating the other (if only one
morphology was observed). The individual growth rates of
the two participating species were calculated from this. The
growth rate, so obtained, of each species was compared
with the growth rate of that species growing in a pure
culture. If the growth rate in pure culture was less than the
growth rate when grown with another species, the interaction
was defined to be positive. Alternatively, if the growth rate
in pure culture was greater or equal to that when grown
with another speices, the interaction was defined to be
antagonistic or absent, respectively. In this manner, a pairwise
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competition experiment was performed for all 190 pairs, and the
number of synergistic and antagonistic interactions quantified.
All experiments were performed three times independently.
A minimum of 500 colonies were counted in each pairwise
growth experiment.

Experiments With Bacillus haikouensis (A), Bacillus
firmus (B), and Bacillus megaterium (C)
In a three species network (comprising of species A, B,
and C), to test the relevance of the antagonistic interaction
between A and C, the following experiment was performed.
In the first experiment, co-culture of the three species,
with equal CFUs of the three species, with an initial OD
of 0.05 in LB broth was allowed to grow for 24 h.
After this period of growth, the relative frequencies of the
three species were determined by plating on LB. This was
done by counting the number of colonies for the distinct
morphologies of each kind.

To mimic a setting where the A to C antagonistic interaction
is not present, we start the co-culture with equal number of
members of the three species. The three species’ co-culture was
then allowed to grow for 2 h, after which, the frequency of the
three species was noted. To calculate the frequency of the three
species, the co-culture was spread of LB plates, and individual
colonies of each species counted. A minimum of 500 colonies
was counted to estimate the frequency of each of the three
species. The same frequencies were then recreated by adding A
and B (spun down from their respective independent cultures)
to a tube in which only species C was allowed to grow for
2 h. The premise of this exercise was that by doing do, we
allow the metabolite secreted by C into the media remain in
the co-culture, while the metabolite released by species A is
not introduced to the culture media. The three species were
then allowed to growth together for another 2 h, and the
whole process was repeated. This was done because during
growth for 2 h, the antagonistic metabolite released by A,
would likely start interfering with growth of C. To prevent this,
the community was created again using a culture of pure C,
with spun down A and B added to the tube. All experiments
were performed three times independently. The experiment
was continued till no change in the species composition was
observed. This equilibrium was achieved after eight rounds
of growth for 2 h.

RESULTS

Minimum Connectivity Needed to
Preserve Diversity
We first answer if there exist bounds on the number of
interactions in the population for a coexistence solution
to be possible. For this purpose, we use a replicator
equation representation.

For connectance, c = 0, coexistence is never possible and
the species with the greatest innate growth rate (ri) takes over
the population. This indicates the existence of a lower bound
on connectance, to ensure coexistence. Consider two species i

and j in an N species population. The equations predicting their
frequencies at steady state are,

xi (ri + Pi1x1 + Pi2x2 + · · · + PiNxN)−8xi = 0 (11)

xj
(
rj + Pj1x1 + Pj2x2 + · · · + PjNxN

)
−8xj = 0 (12)

Suppose i and j do not interact with any other species i.e., all
Pik and Pjk terms are zero, for all k from one to N. The equations
then reduce to,

xiri = 8xi, and xjrj = 8xj (13)

The two equations only hold true if ri is equal to rj.
This suggests that for any two species with dissimilar innate
growth rates, coexistence is not possible in the absence of
interaction terms.

Thus, this suggests that for a larger network with N
species, at least N – 1 species must be recipients of at least
one non-zero interaction effect. We can evaluate a minimum
connectance (cmin) necessary for any N-species population to
have a coexistence solution. Each species can instigate at most
N – 1 interactions, and the total number of interactions possible
in an N-species network is, hence, N(N − 1).

The minimum number of non-zero interactions necessary is
N − 1.

cmin =
N − 1

N (N − 1)
=

1
N

(14)

Additionally, the species causing these interactions must be
distinct. Consider the case where the minimum required N – 1
interactions are all instigated by one species, say species N. The
steady state equation for xN then reduces to,

xN =
8− r1

P1N
=

8− r2

P2N
= · · · =

8− rN−1

P(N−1)N
(15)

For the given innate growth rates, a solution exists only if the
interaction effects are of a magnitude which precisely satisfy the
Equation (15). Such a constraint is severe and infeasible. This
relation between two interaction effects would arise unless the
interaction effects are caused by distinct species in the population.

Thus, alongside a minimum degree of connectance c equal
to 1/N, where N – 1 distinct species are recipients of interaction
effects; these effects must also be instigated by distinct species,
unless the interaction parameters yield to follow extremely
severe constraints.

In the Lotka-Volterra formulation, the minimum degree of
connectance c, which ensures coexistence is zero. In such a
scenario, each species will approach a density as dictated by its
innate growth rate, and the self-limiting term Pii.

Synergistic Interactions Help Preserve
the Diversity in a Microbial Community
We now attempt to uncover the precise features of these
interaction networks that help a multi-species population coexist.
The first aspect we study are the nature of interactions, namely,
synergy and antagonism.
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FIGURE 2 | Coexistence in a two-species system can be facilitated via a
beneficial (A top) or an antagonistic (A bottom) interaction. (B) In the replicator
model, coexistence solutions were identified as non-zero solutions of the
steady state of the differential equations used. For parameter values in the
green and yellow regions, such coexistence solutions were possible. The
stability of these solutions was determined by linearizing the equations around
these fixed points, and checking the Eigen values of the Jacobian matrix
obtained. The coexistence solutions determined by the green region were
stable, that is, frequencies of all species were attracted toward this solution.
For the yellow region, the coexistence solutions were unstable, that is,
frequencies of all species were repelled away from this solution and the fate of
the population was extinction of one species. (C) In the Lotka-Volterra model,
stable coexistence solutions were determined by numerically solving the
differential equations from a random initial condition, and observing if the
population approached a point where all species coexisted. For parameter
values in the green region, frequencies of both species approached a
non-zero value, and hence, the coexistence solution is stable. For other
parameter values, frequency of one of the species approached zero. The
exact boundaries of the rectangles in panels (B,C) depend on the numerical
values of the innate growth rates used in the model.

Consider two species (A and B) inhabiting a common constant
environment, each capable of surviving in the absence of the
other. In the absence of any interactions, the species whose
members grow fastest (say B) takes over the population. We
now let interactions develop between the species with the goal
of ensuring coexistence of both. The most simple interaction
networks would involve a beneficial interaction directed from B
to A, and/or a detrimental one directed from A to B (Figure 2A).

Both topologies, under appropriate interaction strengths,
generate a solution where the two species coexist at steady
state. However, synergy allows the solution to be stable while
antagonism renders it unstable.

Consider the case presented in Figure 2A, where species
A represses B. Assume that initially the species are present in
the precise frequencies, which correspond to the coexistence
solution. Suppose a perturbation causes a slight excess of species
A. The excess individuals of A would increasingly inhibit growth
of species B, which frees individuals of A to proliferate even
further. This effective positive feedback for species A encoded via
an antagonistic interaction would drive species B to extinction
and allow individuals of A to take over the population.

Similarly, an excess of B would result in the individuals
of A, whose frequency has now decreased slightly, unable to
inhibit species B to a sufficient extent such that they have equal
growth rates; and individuals of B would eventually occupy
the entire niche.

Following similar arguments, consider the case of synergy
between the two species, as represented in Figure 2A. Let us
assume that the initial frequencies of the two species are such that
the system is at equilibrium. A perturbation which increases the
frequency of species A would diminish the beneficial interaction
directed toward A, causing its numbers to consequently drop
back to equilibrium. An excess of B would initially decrease the
frequency of species A, but would allow it to recover, courtesy
the increased benefit imparted to individuals of A by the elevated
numbers of species B.

In the replicator equation formulation, while solutions that
lead to coexistence (dashed lines, Figure 2B) are possible for
interactions of either nature, they are stable only when the
interaction is synergistic. This differing response to synergy and
antagonism results in synergistic interactions being critical to
preservation of species diversity while antagonistic interactions
tend to lead to a loss of biodiversity in natural ecosystems.

Consider the interaction matrix:[
0 p
q 0

]
p represents the interaction effect of species B on species A,
and q represents the interaction effect from A to B. On a plot
of pvs.q, we can study the interaction values which enable a
coexistence solution.

Both the rectangles, with boundaries enclosed by the dashed
lines, represent sets of values of p and q which result in
a coexistence solution. The green one, which lies largely in
the first quadrant, depicts a stable solution while the solution
associated with the yellow one, primarily in the third quadrant,
is always unstable.

In the Lotka-Volterra formulation, the region of parameters
p and q which facilitate stable coexistence are as shown in
Figure 2C.

These results combined show that synergistic interactions are
in a large manner responsible for coexistence of species in an
ecological niche.

Interplay Between Synergy and
Connectivity Dictates Steady State
Behavior of System
We now explore the interplay between synergy and connectance,
i.e., the nature of interactions and the density of the connections
in the network of the participating species, in dictating the steady
state behavior of the system.

The innate growth rates of all participating species and
the interaction strengths between species i and j are sampled
randomly, as described in “Materials and Methods” section.
These choices give us a complete description of the network.
From this, the probability of stable coexistence of all participating
species was calculated. For this calculation, in the replicator
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equation formulation, stability against small fluctuations in the
composition of the community were studied by local linearization
of the coexistence solution. Negative real parts of eigenvalues
of the Jacobian matrix indicate that the solution is locally
stable in the face of perturbations. In Figure 3, the x-axis
denotes the fraction of interactions that are synergistic, and the
y-axis denotes the likelihood of a randomly sampled network
ensuring stable coexistence. The different lines represent different
degrees of connectance.

For the Lotka-Volterra case, for each randomly generated
network, the corresponding systems of differential equations
were numerically solved (starting with a 1,000 individuals of
each species) until the frequency of each species approached a
constant value. If all frequencies were observed to be non-zero,
the network was said to ensure stable coexistence.

The likelihood of stability of a network shows a strong
positive correlation with the fraction of synergistic interactions;
and appears independent of connectance for all values except
at very high values of fc. We also note that the likelihood of
the system reaching a stable coexisting steady state decreases
as we increase the size of the network from three to four
species. Both replicator equation (Figures 3A,B) and Lotka-
Volterra (Figures 3C,D) formulations demonstrate this result.
In this formulation, we sample the interaction strengths from
an exponential distribution. The mean strength of interaction
for antagonistic interactions is twice the mean strength for the
cooperative interactions. The same result holds if the strength

of interactions were sampled from a uniform distribution, and
if the analysis is repeated for networks with size N equal to 5 or 6
(Supplementary Figure 3).

Stability
As a first measure of stability, we locate all steady state
coexisting solutions for a three-species system and check for
their stability, when the system is perturbed from the steady
state. By perturbation, we mean a change in the frequency of
species present in the community. This represents a scenario
where a large fluctuation is introduced in the composition
of the community, perhaps via convective flow introducing a
large number of members of a particular species. Thus, after
introducing a change in the composition, the ability of the system
to reach the original steady state was quantified as stability of
the system. For an interaction network in a 3-species system,
which has a coexistence solution, the likelihood of the solution
being stable (y-axis) is positively correlated to the fraction of
synergistic interactions (x-axis) in the network (Figure 4). The
likelihood of stability is largely independent of c. However,
below a critical fc, stability is almost never achieved in a three-
species network. This analysis was performed with the replicator
equation representation.

The same analysis could not be performed for the Lotka-
Volterra equations since, in this setup, the population could be
at equilibrium with respect to the frequencies of each constituent
species, but not with respect to their numbers, that is, the

FIGURE 3 | A higher connectance and a higher fraction of synergistic interactions, both, independently, facilitate coexistence. In the replicator formulation, three- (A)
and four-species (B) systems exhibit greater likelihood of coexistence as the number of interactions which are positive increases. In the Lotka-Volterra formulation,
three- (C) and four-species (D) systems exhibit greater likelihood of coexistence as the number of interactions which are positive increases. The strength of
interactions in the randomized networks is chosen from an exponential distribution. Mean strength of antagonistic interactions was 0.1 and that of positive
interaction was 0.05. The legend describes the value of c for each set of simulations.
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FIGURE 4 | Synergistic interactions make the system more stable.
Randomized networks, when perturbed from their steady state have a greater
tendency to return to the original steady state when the fraction of interactions
which are cooperative is high. Perturbations were introduced such that
frequency of each species changes by at least 20%. There exists a critical
threshold of fraction of interactions, which should be positive for system to
exhibit stability.

frequencies of each species might approach a constant value,
while the number of individuals were still dynamic. Thus,
analytical solutions to the system of equations dni/dt = 0,
required for finding coexistence solutions and checking their
local stability to perturbations, could not be obtained. This would
be the case when 1

ni
. dni

dt =
1
nj

.
dnj
dt 6= 0.

We also examine stability from the context of loss of a
species from a network. This was explored in the following
manner—for an interaction network that had a stable coexistence
solution, each of the constituent species was removed one at
a time, and the remaining N – 1 species allowed to reach a
new equilibrium. If the new equilibrium retained all remaining
N – 1 species, then the system was characterized as stable with
respect to perturbations where a species is eliminated from a
niche. This was repeated for all interaction networks known
to have a locally stable coexistence solution. The number of
instances where the network was resilient to the loss of a species
was recorded, and the likelihood that, for a given degree of
connectance c, and fraction of interactions which are synergistic,
fc, a stable N-species population will be resilient to the loss of a
species estimated.

As shown in Figures 5A,B, for a three- and four-species
network using the replicator equation, the resilience of a
population against the loss of a species shows trends similar
to those observed for stability against internal perturbations in
frequencies. An increasing fraction of synergistic interactions
tends to lend the population stability against the loss of a
species, with increasing connectance conferring minimal gains
in this regard. Similar results were obtained when the process
was repeated for a three- four-species network (Figures 5C,D)
using the Lotka-Volterra model. Figure 5 represents results
when interaction strengths for the P matrix were sampled
from exponential distributions. Qualitatively similar results were

observed when interactions were sampled from a uniform
distribution for the two formulations (Supplementary Figure 3).
In these simulations, each species was removed one at a time,
for each of the 1,000 randomized matrices, and the stability thus
classified for the N1000 matrices.

Connectance, c and Fraction of
Interactions, Which Are Synergistic fc
From Ecological Samples
While our modeling results show that the major determinant
of preservation of diversity, in a small community of 3–4
participating species, is the fraction of interactions in a network
that are synergistic, we still do not know of the respective values
of these numbers from real systems. Toward this end, we isolated
bacterial samples from a garden soil sample, and isolated bacterial
species as described in “Materials and Methods” section. Twenty
bacterial species were isolated from these samples.

We next performed pairwise growth cultures of all 190 pairs
from this set of twenty, and on comparing their growth with
cultures of single species, characterized the interaction between
the pairs as cooperative or antagonistic or no change in the
growth because of presence of another species. Of 380 possible
interactions, in our experiments, we find 39 cooperative, and 9
antagonistic interactions. This equates to a connectance c of 0.12
and fraction of interactions, which are cooperative fc as equal to
0.81. The qualitative nature of this relative distribution, though,
is likely to be strongly dependent on the system/species being
studied (Adler et al., 2018).

The c value from our analysis is likely to be an underestimation
of the actual interactions present in the network. This is due to the
following reasons. First, we measure the impact of one species
on the other by counting colonies of each species, when two
species are grown together for a specific amount of time. While
the technique can capture large effects, it is likely insufficient to
be able to estimate small effects on fitness of the participating
species. Second, the niche from where these species were isolated
was a soil sample. The experiments we perform to estimate the
interaction between species are in an environment where there
is no spatial structure (liquid media). As a result, it is likely that
interactions between species, which are associated with spatial
arrangement will be missed from our analysis. Third and lastly,
while we only investigate pairwise interactions in our work,
it is also possible that higher order interactions exist in the
community (Mickalide and Kuehn, 2019). The presence of these
higher-order interactions can increase or decrease the number of
pairwise interactions in the community.

While there have been few studies which have quantified the
distribution of interaction effects between participating species
in a network, for our system, a large number of interactions are
synergistic. This result is also likely a function of physical and
chemical environmental conditions in which these experiments
were performed. Given the widespread distribution of synergistic
interactions, our results, however, raise the following question:
What is the role of antagonistic interactions in a consortium of
species? Consider the following two three-species systems (A, B,
and C), with innate growth rates in the order rC > rB > rA.
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FIGURE 5 | Cooperative interactions help the system retain diversity. Upon removal of a species from an N-sized network, the remaining N - 1 species are allowed
to reach the new equilibrium. If the new steady state comprises of all N - 1 species, the system is classified as stable. (A) Three-species network, and (B)
four-species network when analyzed in a replicator equation framework. (C) Three-species network, and (D) four-species network when analyzed in a Lotka-Volterra
framework. All interactions are sampled from exponential distributions. The data represents data from 1,000 simulations of randomized P matrices for each pair of c
and fc. The legend describes the value of c for each set of simulations.

We are merely drawing the reader’s attention to the Figure
6A. The synergistic interaction directed from C to A stabilizes
the number of individuals of species A in the culture media
(since A grows the slowest). The antagonistic interaction between
species A and C inhibits such commensalism and establishes
a negative feedback loop to maintain population diversity, by
ensuring presence of species B at steady state.

The network in Figure 6B ensures stable coexistence of the
three species. Here, species C, unlike A and B, does not aid
the growth of the other two species. Rather, species C and the
antagonistic interaction between species B and C serve to restrain
C from taking over the population. The absence of either or both
antagonistic interactions would render coexistence impossible
and lead to extinction of A and B.

Experimental Test of Role of
Antagonistic Interactions
Topology 6A was observed between three of the species isolated
from soil samples. From 16sRNA sequencing, we determined
that the participating species in this three species network
were Bacillus haikouensis (A), Bacillus firmus (B), and Bacillus
megaterium (C), respectively (See Supplementary Section 5 for
more details about the physiology of the three species).

As shown in Figure 6C, in the culture experiment, the
end-point result of the experiment when all three species are

allowed to grow unperturbed, stable coexistence of the three
species was found. However, in the altered design, where the
antagonistic interaction from A to C is eliminated, species B is
lost from the system (see methods section “Experiments With
Soil Bacteria” for more details). These experiments propose
a likely role of antagonistic interactions, in specific contexts,
toward aiding diversity in an environment. While these simple
experiments suggest a possible role for antagonistic interactions
in maintaining diversity in a culture, other possibilities remain.
First, it is also possible that higher-order interactions between
species are disrupted on removal of species C from the system.
As a result, the effect on dynamics is not due to altered
topology, but due to eliminating of this higher-order interaction.
We also note that the experimental system in our study does
not strictly represent the mathematical formulation of species
growth, which is best studied in a chemostat environment.
However, we present evidence that manipulating the interactions
between species, as we perform the experiments, dictates the
equilibrium structure of populations.

DISCUSSION

There has been considerable interest in studying
bacterial/microbial communities in recent years (Chubiz
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FIGURE 6 | Possible role of antagonistic interactions in maintaining species diversity. Loss of antagonistic interactions in two different topologies (A,B) in a
community leads to loss of diversity. (C) Antagonistic interaction provides stability to a three-species system. Black circle represents the starting frequencies of the
three species. Blue circle represents the steady state between the three species when cooperative and antagonistic interactions between A and C were present.
Red circle represents the steady state when only cooperative interaction from C to A was present; and the antagonistic interaction was absent from the system.
Steady state in this experiment represents serial culturing the growth media yielded no change in the frequencies of the species present. The experiment was
performed in triplicate, and the average of the three experiments is shown. The standard deviation in the frequencies for the case with all interactions present was
<5% of frequency. Species B was eliminated in all three runs of the experiment, when antagonistic interaction was eliminated.

et al., 2015; Goldford et al., 2018; Vega and Gore,
2018; Pacheco and Segre, 2019). This is largely due to
the fact that microbial communities (a) represent the
physiology of microorganisms as they exist in their
environments and (b) are relatively easy to re-create
and study in a laboratory environment. The community

structure includes interactions between the members of
participating species. These interactions between members
of same/different species can be due to changes brought
about in the physical, chemical, or biological environments.
In this context, the broad prevalent nature of these
interactions in ecology remains an open question. While
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theory predicts that cooperative interactions render the system
unstable (May, 1972; McCann, 2000), and hence, community
interactions are largely antagonistic; experimental evidence
suggests that positive interactions are widely present in bacterial
communities (Kehe et al., 2020).

In this context, through simulations using two approaches
and experiments, we, via simulations of small number of species
networks and experiments to study nature of interactions
among bacterial species in soil, present evidence that stability to
microbial systems is largely conferred by synergistic interactions.
These interactions provide stability against perturbations
in population structure, loss of species. In an ecological
context, other measures of stability exist too. These include
preventing invasion by an antagonist species, or stability against
environmental fluctuations. The last one is particularly relevant
in an ecological context, where selection is likely to be cyclic
in nature, and not time invariant (Abreu et al., 2020). The
number of possible topologies increases exponentially as the
size of the network increases. Hence, sampling topologies
from all possibilities as the network size increases becomes a
computational challenge. The analysis is made more intensive by
the fact that, for each topology, many networks exist, depending
on the value of the interaction strength parameters. Moreover,
as number of species increases in a community, their relative
arrangement in space is also likely an important factor dictating
coexistence. Space, as a variable, is largely absent from studies of
microbial species (Vega and Gore, 2018; Abreu et al., 2020; Ratzke
et al., 2020). In a recent study, however, this aspect of microbial
ecology was studied, and it was reported that different species
occupy distinct niches in a spatially structured environment
(Borer et al., 2018). Spatial arrangement was also shown to ensure
coexistence of two species, when present in chaotic flows (Karolyi
et al., 2000; Galla and Perez-Munuzuri, 2017). Second, ecological
communities are often studied in synthetic media from the sub-
set of species isolated from the niche (Kehe et al., 2019; Amor
et al., 2020; Lax et al., 2020). Thus, our interferences are only
limited to interactions between the few isolated species in the
synthetic media conditions in well-mixed environments of a
laboratory setting.

CONCLUSION

We show that in a bacterial community in soil, synergistic
interactions far outnumber antagonistic interactions between the
participating species. While our simulation results show that
synergistic interactions are more significant for coexistence, we
show that, in specific contexts, antagonistic interactions can also
contribute toward coexistence of species in an environment.
While our simulations are for very small networks which are not
representative of the complexity of a structured environment and

diversity in an ecological sample, these results provide evidence
to explain the presence of extent of synergistic interactions in
microbial communities, as reported recently (Kehe et al., 2020).
Next steps in this direction of research would be making use of
simulations and theories to design artificial communities, toward
biotechnological applications.

The principles for understanding coexistence of species is
important from fundamental as well as applied perspectives. No
good methods exist for establishing systems where coexistence
of multiple species can be studied long periods of time in a
spatially structured environment. In the absence of fundamentals
which help us design microbial communities, the challenge
associated with instability of multi-species network has been
addressed by generating auxotrophic mutants, whose existence
is contingent on metabolic trade with each other (D’Souza and
Kost, 2016; Giri et al., 2019). Theory has also been used to explain
this coexistence because of metabolic trade and co-dependence
(Dutta and Saini, 2021). Exploration of space as a variable, and
metabolic cooperation/dependence will likely shed more light in
explaining coexistence of microbial communities with a large
number of species participants.
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