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A new development algorithm 
for permeability prediction: A 
new milestone
Kai Sun  and Liqin Dong *

College of Geography and Ecotourism, Southwest Forestry University, Kunming, Yunnan, China

Permeability is one of the most important reservoir rock parameters in 

petroleum engineering, reservoir, and exploitation. This parameter causes 

the movement of hydrocarbon reserves in the reservoir rock. Therefore, it is 

an important parameter from the economic point of view because it greatly 

impacts the amount of extraction from the reservoir rock. In this study, 

the combined RBFNN-GA algorithm and 200 data sets collected from a 

field in the Middle East were used to predict permeability. Water saturation, 

porosity, and specific surface are the input variables used in this study. GA 

has advantages such as solving complex optimization problems of continuous 

functions and multi-objective problems. The advantages of RBF neural 

networks are that they are easy to design, strongly tolerant to input noise, 

and have good generalization. The RBFNN-GA model has the advantages of 

both algorithms. RBFNN-GA algorithm and experimental models have been 

compared in terms of performance accuracy. The results show that RBFNN-

GA with STD = 89.8 and R-square = 0.9011 for the total data set obtained from 

a field in the Middle East has better accuracy and performance in predicting 

permeability than experimental models. Compared to other neural network 

methods, the RBFNN-GA model has a higher performance accuracy and is 

efficient for predicting other parameters. Oil researchers and engineers can 

use this method to predict other parameters in their studies and research.
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Introduction

Permeability is defined as the ability of the porous rock to move oil and gas (Olatunji 
et al., 2014). Permeability can be considered one of the most important characteristics of 
reservoir rock because it indicates the volume of pore fluid and its ability to move (Tabasi 
et al., 2022). The presence of hydrocarbon resources in reservoirs becomes very important 
when these resources reach the well for harvesting (Beheshtian et al., 2022; Jafarizadeh 
et al., 2022; Zhang et al., 2022; Rajabi et al., 2022c); permeability is the factor that enables 
the movement of hydrocarbon resources in the rock (Rajabi et al., 2022d); therefore, in 
petroleum engineering, permeability is very important because of production or determines 
the unproductiveness of the reservoir rock (Rajabi et  al., 2022c). Permeability is an 
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important parameter from an economic point of view because it 
greatly impacts the amount of extraction from the reservoir rock 
(Rajabi et al., 2022b). Porosity, the geometric shape of the holes, 
and the connection between them affect the permeability value. 
The effect of porosity on permeability is done by using macro and 
microstructures. It is important because it is an important 
parameter for reservoir modeling based on field development 
programs (Lideng et al., 2019; Zhong et al., 2019; Liu et al., 2020; 
Rajabi et al., 2022a). One of the important petrophysical properties 
is permeability, which is one of the reservoir’s most important 
properties and plays a significant role in reservoir evaluation, such 
as reservoir numerical simulation, drilling planning, reservoir 
quality mapping, and reservoir engineering calculations (Rajabi 
et al., 2021; Gao et al., 2022). Permeability, as the most important 
characteristic of hydrocarbon flows, plays an important role in 
describing hydrocarbon reserves, and its prediction is necessary 
for exploring these resources (Olatunji et al., 2011; Akande et al., 
2015; Rashidi et al., 2020; Hazbeh et al., 2021). The petrophysical 
characteristics of a reservoir that must be  considered for 
producing hydrocarbons include porosity, permeability, pore, 
grain distribution, sedimentary environment, facies distribution, 
and basin description (Adizua and Oruade, 2018; Farsi et al., 2021; 
Mohamadian et al., 2021). Permeability prediction can manage 
hydrocarbon reserves using information such as average flow rate 
and the amount of recoverable oil it provides (Olatunji et  al., 
2011). To predict permeability, well tests, seismic data, field 
production data, and well logs are used (Ahmed et al., 1991).

Literature review

Different methods for predicting permeability have been used 
until now, and most of them are used in homogeneous 
environments to predict permeability (Newman and Martin, 1977; 
Pugh and Thomas, 1989). In hydrochloric reservoirs, the porous 
medium is more heterogeneous, and the homogeneous medium 
is rarely seen (Dou et  al., 2011; Ahmadi and Chen, 2019). 
Therefore, using these methods to predict permeability, which 
always considers the porous medium homogeneous, is unsuitable 
(Newman and Martin, 1977; Rostami et al., 2019b). Permeability 
depends on porosity, lithology, pore geometry, and fluid 
(Anifowose et  al., 2017). Permeable is estimated from several 
methods, including direct core measurement, well test analysis, or 
empirical equations of well report parameters. Some researchers 
who have used experimental methods to predict permeability 
include Wyllie and Rose, who in 1950, presented an equation 
based on porosity and a water-saturated equation (equation 1) 
(Kamali et  al., 2022). After that, Archie in 1952 presented an 
equation in which permeability is a function of porosity (equation 
2) (Kamali et al., 2022). A few years later, in 1990, Chilingrian 
et  al. also presented an equation in which the permeability 
equation is a logarithmic equation and a function of a specific 
surface, porosity, and water saturation. The reported equations are 
as follows (equation 3) (Kamali et al., 2022):
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The direct measurement method is a method that takes a lot 
of time and money, and the empirical equation method cannot 
explain the heterogeneity of permeability for the reservoir in any 
condition (Marshall, 1958; Morgan and Gordon, 1970; Ahmadi 
et al., 2008). Therefore, many intelligent calculation methods can 
predict permeability with high accuracy. In recent decades, 
machine learning tools have been used to predict permeability 
from porosity and well-log data (Unsal et al., 2005; Basbug and 
Karpyn, 2008; Rostami et al., 2019a).

Moussa et al. (2018) used a self-adaptive differential evolution 
(SaDE) optimization algorithm to find the optimal control 
parameters of artificial neural networks (ANNs) to predict 
permeability, then applied the optimized SaDE-ANN model. The 
input data of this study are micro-spherical focused resistivity 
(RSFL), deep resistivity (RT), neutron porosity (NPHI), bulk 
density (RHOB), and gamma-ray (GR). The results showed that 
the empirical correlation developed based on the SaDE-ANN 
model could predict reservoir permeability with high accuracy 
(mean square error [MSE] 0.0639 and correlation coefficient 
0.979). The results of this study can help petroleum engineers to 
have a better understanding of reservoir performance when 
laboratory data is not available (Moussa et al., 2018).

Ahmadi and Chen (2019) used different machine learning 
methods, including conventional ANNs, genetic algorithm (GA), 
fuzzy decision tree, the imperialist competitive algorithm (ICA), 
particle swarm optimization (PSO), and a hybrid of those to 
predict Porosity and paternal influence were compared. The 
results of this study showed that the combined methods of 
HGAPSO-LSSVM, a fuzzy decision tree (FDT), and ANN 
perform better than other methods for prediction (Ahmadi and 
Chen, 2019).

Adeniran et  al. (2019) used a novel competitive ensemble 
machine learning model to predict permeability in heterogeneous 
reservoirs. The results of the study showed that the proposed 
competitive ensemble proposed in this study predicts permeability 
in heterogeneous reservoirs well (Adeniran et al., 2019).

Mathew Nkurlu et al. (2020) used a group data handling 
(GMDH) neural network from well-log data of the West arm 
of the East African Rift Valley to predict permeability. In this 
study, the comparative analysis of the GMDH permeability 
model and ANN methods of Backpropagation Neural Network 
(BPNN) and Radial Basis Function Neural Network (RBFNN) 
were further investigated. The results obtained from this study 
show that the proposed GMDH model in this study performed 
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better than BPNN and RBFNN because it reached the R/root 
mean square error (RMSE) value of 0.0241/0.989 and 
0.204/0.868 for prediction, respectively (Mathew Nkurlu 
et al., 2020).

In this article, 200 data sets collected from the Middle East, 
including porosity, water-saturated, and specific surface 
parameters, have been used to predict permeability, one of the 
most important key parameters in reservoir engineering, 
exploitation, and production. In order to predict this issue, one of 
the newest artificial intelligence hybrid algorithms, RBFNN-GA, 
has been used. Compared to other published articles, the novelty 
of this article is that no researcher has used this method to predict 
this key parameter. Therefore, in this research, the effort is that 
this new method, which can solve complex optimization problems 
of continuous functions and multi-objective problems, easy 
design, strong tolerance to input noise, and good generalization, 
can be applied to the oil and gas industry, as well as to determine 
other parameters. Reservoir key, operation, and drilling should 
be used. The results in this article indicate the high accuracy of 
this algorithm compared to other methods mentioned in the 
introduction, as well as the original results of experimental  
methods.

Methodology

GA

The genetic algorithm is introduced as a function 
optimization algorithm (Gao et al., 2022). The way of using this 
algorithm is inspired by way of human evolution. The genetic 
algorithm is based on the idea of "survival of the fittest.” The 
genetic algorithm is implemented in such a way that first, the 
initial population of problem solutions is generated (Farsi et al., 
2021). These solutions are considered like chromosomes in 
biology (Wu and Zhao, 2018). Chromosomes can be good or 

bad-quality chromosomes in the evolution process. The fitness 
function evaluates the quality of chromosomes and determines 
the fitness of each chromosome. The fitness function selects the 
best population chromosomes for a new population (Hazbeh 
et al., 2021). The fitness value of each chromosome determines 
the survival probability of the chromosome. Then the high-
quality chromosomes are multiplied by the genetic algorithm, 
and a new population is created, resulting from the selection, 
mutation, and mating operators. The children of the new 
population will be one step closer to producing the optimal 
global solution. This work continues until the genetic algorithm 
converges to the optimal global solution. Figure 1 shows the 
steps of the genetic algorithm.

The first step or determining the coding strategy: genetic 
parameters are set to determine the fitness function. These 
parameters are population size, the maximum evolutionary 
generation, probability of crossover, and probability of mutation 
(Weerasooriya et  al., 1992). The second step or coding 
chromosome: After the binary coding strategy is selected to 
be  used for coding, the initial population is generated by the 
system. The third stage: In this stage, the quality of each 
chromosome is determined by calculating the value of the fitness 
function. Step 4: In this step, a strategy is chosen to create the next 
generation of the new population. The fifth stage: In this stage, the 
conformity of the fitness value with the goal is determined 
(Weerasooriya et al., 1992).

RBFNN

A RBFNN is a network with three layers, one of the layers of 
this network is hidden, and the other is the output layer (Ghorbani 
et al., 2020; Luo et al., 2021). Figure 2 shows the RBFNN structure 
of the l-m-n structure. l represents the number of nodes in the 
input layer, and m represents the number of nodes in the hidden 
layer. The number of nodes in the output layer is represented by n. 

FIGURE 1

Schematic diagram of genetic algorithm steps.
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x = [x1, x2, …, xn]T ∈ Rl is the input vector in the network, W ∈ 
Rm × n here expresses the output matrix, and the activation function 
of the jth hidden node with Φj (∗) and y = [y1, y2, …, yn]T is defined 
(Luo et al., 2021).

One of the most prominent features of RBFNN is that RBF is 
used as an activation function. The location of the RBF is near the 
center of the radially symmetric n space. The distance of the input 
from the central point and the degree of activation have a direct 
relationship. When the degree of activation is lower, the distance 
between the input and the central point is greater (Shen et al., 
2020). This feature is called the local feature of the hidden layer 
node. So, each hidden layer node of RBFNN has a data center 
(equation 1). The definition of the K output of RBFNN is given in 
Figure 2.

 y w x ck
j

m
i j j j= −( )
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1

¦ ,σ  (4)

Determining the hidden layer and the output weight: The 
construction and training of RBFNN have a process of 
determining the number of neurons of the hidden layer, the 
center, and the width of each basis function of the hidden layer 
and the output weight (Shen et al., 2020). Three forms of RBF that 
can satisfy Micchelli’s theorem are given below (Gaussian, 
Multiquadric, and Inverse polyquadratic function) (equations 
5–7). The special feature of each of these RBFs is that the amount 
of input samples is equal to the number of hidden nodes (Wang 
and Li, 2019).
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New hybrid RBFNN-GA

Setting the variance parameters σ, the center of the node 
transfer function of the hidden layer, and the connection 
weights between the hidden layer and the output layer are the 
main parameters in the RBFNN training process (Zhu and 
Meng, 2021).

Constant methods, gradient descent, and K-means clustering 
algorithm are used for neural network training. There are flaws in 
this algorithm, but its strength is that it is easily implemented. The 
center c and the connection weight ω between the hidden layer 
and the output layer and the variance σ of the transfer function are 
optimized using GA in training the RBFNN prediction model, 
and the prediction accuracy of RBFNN is increased. Figure  3 
shows the flow of the GA algorithm with RBFNN (Bellinger 
et al., 2017).

The steps mentioned below are the steps of the algorithm: 
The first step is individual coding, whose components are the 
network connection weight ω, the hidden layer, and the center 
c of the transfer function. The second step is an individual 
evaluation of the algorithm. The fitness measure of an 
individual in GA determines whether it is possible for an 
individual to be inherited by the next generation or not. The 
advantages and disadvantages of the algorithm are measured 
by the individual fitness measure (Khalick Mohammad et al., 
2017). The fitness function of the ith person in the population 
is shown below:
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The third step is to determine the RBF center. The center of 
Ci = (Ci1, Ci2, …, Cil) is the location of parameter m × l. To calculate 
ci, the mean clustering method is used, which is explained below 
and is as follows (Figure 3):

Result and discussion

In this research, we used the petrophysical data of an oil field 
in the Middle East. The set of data used in this study to predict oil 
and gas permeability is 200. The cores prepared for drilling 
hydrocarbon reserves in oil and gas fields were analyzed to prepare 
these data.

Water saturation, porosity, permeability, and specific surface 
are introduced as the data used in this study. The mentioned data 
are obtained from the analysis of cores.

Statistical errors, which are an accurate and widely used 
method, are superior to artificial intelligence methods and 
mathematical equations in terms of performance accuracy. For 
this reason, they have become one of the most widely used 
methods. In this article, we have investigated statistical errors. In 
this section, the data is divided into two sections, training data and 
test data, for which 85% of the data is for training data and 15% is 
for test data.

FIGURE 2

Schematic diagram of RBFNN algorithm.
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After examining the results given in Tables 1–3, it is clear that 
RBFNN-GA has a higher performance accuracy. Finally, after 
checking, it is found that RBFNN-GA has higher accuracy than 
experimental equations. The results of the new RBFNN-GA 
hybrid algorithm for train, test, and total data are RMSEtrain = 97, 
RMSEtest = 83.7, and RMSEtotal = 92.2.

There are many ways to determine the accuracy of the 
performance. For example, you can determine the average deviation 
from the average line and draw a cross diagram, and with their help, 
the accuracy of the performance is determined. Figure 4 shows the 

cross-plot for predicting permeability for testing, training, and the 
whole dataset based on the RBFNN-GA algorithm. This algorithm 
is remarkably high, as shown in this figure.

Figure  5 shows the RBFNN-GA algorithm for comparing 
AME and STD. Table 3 and Figure 4 provide information that 
shows that the accuracy of the algorithm used in this study is very 
high. AME and STD have a direct relationship; when RMSE 
decreases, RMSE also decreases.

Figure 6 shows the comparison of AE and R-square. Using the 
information presented in Figure 6 and Table 3, it can be concluded 

FIGURE 3

Schematic diagram of RBFNN-GA algorithm.

TABLE 1 Determining the static error parameters for predicting k for 
the training subset.

Models AE AME STD MSE RMSE R-
square

Archie 834.4 918.0 389.0 156,132 395.1 0.6618

Wyllie and 

Rose

593.6 693.7 408.7 175,462 418.9 0.5562

Chilingarian 

et al.

656.9 758.5 403.8 174,306 417.5 0.5645

RBFNN-GA 133.2 144.0 95.8 167,259 97.0 0.8918

TABLE 2 Determining the static error parameters for predicting k for 
the testing subset.

Models AE AME STD MSE RMSE R-
square

Archie 702.4 786.0 257.0 69,240 263.1 0.7098

Wyllie and 

Rose

461.6 561.7 276.7 82,301 286.9 0.6310

Chilingarian 

et al.

524.9 626.5 271.8 81,510 285.5 0.6412

RBFNN-GA 95.2 128.5 83.8 167,259 87.3 0.9104
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FIGURE 4

Cross-plot for k prediction based on RBFNN-GA algorithm and empirical equations.

FIGURE 5

Comparison of for k prediction based on RBFNN-GA algorithm 
and empirical equations.

that the RBFNN-GA algorithm used to predict permeability in 
this study is highly accurate. The relationship between AE and 
R-square is shown in the graph presented in Figure 6, that is, when 
AE decreases, R-square increases.

Conclusion

In this study, k was predicted as one of the most important 
petrophysical properties of the reservoir, which plays an important 
role in reservoir numerical modeling, drilling planning, reservoir 
quality mapping, and reservoir engineering calculations. To 
predict permeability (k), 200 data from a Middle East field, such 
as water saturation, porosity, specific surface parameters, and 
RBFNN-GA algorithm, were used. The RBFNN-GA algorithm 
was compared with three experimental models. The advantages of 

GA are solving complex problems and performing better than 
other artificial intelligence methods despite the noise in the 
system, optimization of continuous functions, and multi-objective 
problems. The advantages of RBF neural networks are that they 
are easy to design, have a strong tolerance to input noise, and have 
good generalization. The RBFNN-GA model used in this study is 
superior to the RBF and GA neural network models because it has 
the advantages of both algorithms, resulting in higher accuracy in 
permeability prediction. The results show that for the total data, 
the accuracy of RBFNN-GA is equal to STD = 89.8 and 

TABLE 3 Determining the static error parameters for predicting k for 
the total subset.

Models AE AME STD MSE RMSE R-
square

Archie 768.4 852.0 323.0 112,686 329.1 0.6858

Wyllie and 

Rose

527.6 627.7 342.7 128,881 352.9 0.5936

Chilingarian 

et al.

590.9 692.5 337.8 127,908 351.5 0.6029

RBFNN-GA 114.2 136.3 89.8 167,259 92.2 0.9011
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R-square = 0.9011. By examining the obtained results and 
comparing this algorithm with the experimental equation, it was 
found that the algorithm proposed in this study has a better 
performance accuracy and is also a useful method for predicting 
other parameters. Because this algorithm has been able to show 
good performance for low data volumes, therefore, this algorithm 
can be used for articles with small data in which the number of 
high data is not considered.
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