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Recent theoretical studies have identified chaotic dynamics in eco-

evolutionary models. Yet, empirical evidence for eco-evolutionary chaos in

natural ecosystems is lacking. In this study, we combine analyses of empirical

data and an eco-evolutionary model to uncover chaotic dynamics of body

length in a fish population (northeast Arctic cod: Gadus morhua). Consistent

with chaotic attractors, the largest Lyapunov exponent (LE) of empirical data

is positive, and approximately matches the LE of the model calculation, thus

suggesting the potential for chaotic dynamics in this fish population. We

also find that the autocorrelation function (ACF) of both empirical data and

eco-evolutionary model shows a similar lag of approximately 7 years. Our

combined analyses of natural time series and mathematical models suggest

that chaotic dynamics of a phenotypic trait may be driven by trait evolution.

This finding supports a growing theory that eco-evolutionary feedbacks can

produce chaotic dynamics.

KEYWORDS

eco-evolutionary dynamics, chaos, fish body length, genetic variation,
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Introduction

One of the main questions in evolutionary biology is how ecological interactions
affect the phenotypic trait evolution of species (Thompson, 2005). Variation in
phenotypic traits (e.g., body size, behavior, morphology, and physiology) are a common
feature in natural populations and phenotypic traits can evolve in natural environments
(Coulson et al., 2011; Hanski, 2011; Agrawal et al., 2013). Mutual adaptation induced
by ecological interactions; that is, coevolution, can shape the adaptive peaks of pairs
of associated species (Guimarães et al., 2017). Moreover, selection caused by ecological
interactions can even affect the dynamics of whole ecological systems (Koskella
and Brockhurst, 2015) and accelerate the adaptation process of natural population
(Galetti et al., 2013). These ecological and evolutionary interactions are critical to the
structure and functioning of biodiversity (Ehrlich and Raven, 1964; Thompson, 2005).
Hence, understanding how ecological interactions shape biodiversity will determine
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how coevolution acts on associated species (Iwao and Rausher,
1997; Parchman and Benkman, 2002; Ridenhour, 2005;
Thompson et al., 2013).

The interplay of ecological and evolutionary dynamics has
been an increasingly active area of research (Schoener, 2011;
Koch et al., 2014). To this end, one of the most important
areas of research is the long-term predictability of evolution
(Green, 1991; Kauffman and Johnsen, 1991; Ferriere and Fox,
1995), where recent theoretical work has focused on the chaotic
properties of ecological and evolutionary processes (Dercole
et al., 2010; Schreiber et al., 2011; Gilpin and Feldman, 2017).
For example, Dercole et al. (2010) coupled an evolutionary
equation to a food chain model and found that coevolution
can drive the population size to oscillate at the edge of chaos.
Gilpin and Feldman (2017) showed that an even simple two-
species predator-prey model could give chaotic dynamics when
evolution was included in the model. Schreiber et al. (2011)
established an eco-evolutionary model showing how predator
trait variation affects the trait value of prey, showing that
rapid evolution of a polyphagous predator may generate chaotic
dynamics due to eco-evolutionary feedbacks. Some researchers
have also explored chaotic dynamics of multidimensional
phenotypic traits and considered the effects of high-order
interactions (e.g., the rate of phenotype x change with time
(dx/dt) is affected by the x3 term) on the rate of traits change
with time, with the aim of analyzing the unpredictability of
long-term evolution under high-order coupling (Doebeli and
Ispolatov, 2014; Rego-Costa et al., 2018).

It is important to note that proving if eco-evolutionary
feedbacks can lead to chaotic dynamics is a daunting task, and
the empirical evidence for chaos in phenotypic traits are rare.
This lack of evidence may be primarily due to the absence
of long time series data on phenotypic traits. Interestingly,
body size–a vital phenotypic trait–is also well known to be
a major player in the dynamics and stability of interactions
and here some longer time series exist (De Roos et al., 2003;
Rooney et al., 2010; Heckmann et al., 2012; Delong et al.,
2015). For example, Delong et al. (2015) analyzed the interaction
between body size and trophic cascades, and found that the
loss of larger predators have greater consequences on trophic
control and biomass structure than smaller predators. Rooney
et al. (2010) systematically analyzed the inner property of two
food webs–the Cantabrian Sea Shelf marine and the Central
Plains Experimental Range (CPER) shortgrass prairie soil. They
found that biomass turnover rates (Production: Biomass ratio)
decrease with increasing body size and larger organisms tend
to have higher trophic positions. Heckmann et al. (2012) used
a bioenergetics approach to analyze the interplay of body-size
structure and adaptive foraging of consumers, and they found
that stronger body-size structures (i.e., species on higher trophic
levels have larger body masses than species on lower levels)
and faster adaptation stabilize food webs. De Roos et al. (2003)
synthesized research about population dynamics and body size

dependence in individual life history, and they found that body
size generally leads to population cycles driven by differences in
competitiveness of differently sized individuals. Given that body
size has been identified as important in mediating dynamical
outcomes, it is surprising that no research has investigated eco-
evolutionary dynamical properties (e.g., chaos) in the body size.

All of the previously mentioned research has shown that
body size affects population dynamics and food web stability.
Consistent with this, recent macroecological results found
that body size from aquatic ecosystems (composed of smaller
body-sized organisms) were less stable (a higher coefficient
of variation) than wetland and terrestrial organisms (Rip and
McCann, 2011). At the same time, for freshwater fish, recent
work showed that the linear correlation between community
biomass and mean body mass was not significant (Hatton
et al., 2015). However, due to the influence of eco-evolutionary
feedbacks (Ferriere and Legendre, 2013), we speculate that there
is a non-linear correlation between community biomass and
body mass. One well-known mechanism for eco-evolutionary
feedbacks that may play a potent role in fish population
dynamics is fisheries-induced evolution, which has been
significant and ubiquitous in harvested ecosystems (Olsen
et al., 2004; Jørgensen et al., 2007). Empirical data of a single
fish population has found that body length of different ages
can yield cyclic dynamics over time (Eikeset et al., 2016),
it remains unknown whether these potentially and rapidly
evolution induced evolutionary feedback can have chaotic
properties or not.

In practice, the Lyapunov exponent (LE) is a classical
method to characterize the chaotic nature of real and model
ecosystems (Li et al., 2020; Rogers et al., 2022), and two
approaches have been used to compute the LE: direct estimation
and Jacobian/indirect estimation. On the one hand, the direct
approach uses the definition to estimate LE from the data by
measuring the divergence rate of the nearest neighbors over a
finite time horizon (Rosenstein et al., 1993). In ecology, this
approach is mainly used to describe the results of experimental
systems (Becks et al., 2005; Graham et al., 2007; Benincà
et al., 2008; Kosuta et al., 2008; Becks and Arndt, 2013; Wang
et al., 2019). On the other hand, the Jacobian/indirect approach
requires fitting a delayed embedding model (with embedding
dimension and lag) to the available time series and calculating
the LE from the Jacobian matrix of the model (Nychka et al.,
1992). A variety of methods may be used to estimate unknown
model frameworks, such as generalized additive models (GAMs)
(Benincà et al., 2015), neural networks (Ellner and Turchin,
1995), local linear regression (Sugihara, 1994), and non-linear
local LE (Li and Ding, 2022). In particular, to accurately predict
the model framework of empirical data, the Jacobian/indirect
method usually requires the incorporation of abiotic factors
(e.g., temperature) into the system, which inevitably increases
the data quality requirements.

Frontiers in Ecology and Evolution 02 frontiersin.org

https://doi.org/10.3389/fevo.2022.1064873
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064873 November 10, 2022 Time: 15:57 # 3

Wang and Wang 10.3389/fevo.2022.1064873

In what follows, we use a biologically plausible eco-
evolutionary model to study the relationship between a
phenotypic trait (body length) and population biomass. We
first examine dynamical properties of body length based on
the direct LE estimation to reveal evidence of underlying
oscillations [via autocorrelation function (ACF)] and chaotic
dynamics (via attractor reconstruction) of the phenotypic trait
in a natural time series. Second, we explore a relatively simple,
yet plausible, theoretical eco-evolutionary model with body
length as a trait, that shows similar dynamical signatures and
chaos. Our results suggest that potential for eco-evolutionary
dynamics. We answer two vital problems: how phenotypic trait
affects population dynamics and system stability; and whether
changes in the magnitude of genetic variation in body length can
drive eco-evolutionary chaos (chaotic dynamics in ecological
and evolutionary processes) in fish population dynamics. Our
work supports a growing theory that eco-evolutionary feedbacks
can produce chaotic dynamics.

Materials and methods

Time series data

We used a previously published time series data set (Eikeset
et al., 2016) on the body length of the northeast Arctic cod
(Gadus morhua), to study the dynamics of a phenotypic trait.
The data set consists of mean body length for different age
stages (age 3–12 years) of the population from year 1946 to
2004 (Supplementary Figure 1). The original data set includes
body length for all 10 age stages. For simplicity, the data set was
divided into three broader age classes: age class I (age 3–5), age
class II (age 6–9), and age class III (age 10–12). Each class has a
different competition (compete for the shared resources) ability
and reproductive (egg supply) rate per biomass. We assume
that cod of the age class I has the lowest competition ability
(characterized by the maximal attack rate) and reproductive
rate, the age class II has a moderate level, and the age class
III has a high level; we assume that three age classes have
low, moderate, and high growth potential in body length (see
Table 1), respectively. In each age class, means of body length
were calculated. Finally, to facilitate data analysis, three time
series were transformed by a square-root power transformation
to suppress sharp peaks.

Phase space reconstruction of body
length

For the empirical data, we employed a state-space
reconstruction (i.e., we reconstructed the multidimensional
dynamics of each body length class, using the body length time
series) (Takens, 1981; Becks et al., 2005; Benincà et al., 2008;
Wang et al., 2019; Dakos, 2020). To this end, the C–C method

(Kim et al., 1999), which is useful for smaller data sets, was first
used to calculate the time delay (τ) of each time series. Second,
combined with the time delay (τ), the Grassberger–Procaccia
(G–P) method was used to calculate the embedding dimension
(m) (Grassberger and Procaccia, 1983). Third, by combining τ

and m, the largest LE of each time series was derived (Wolf
et al., 1985); moreover, in order to distinguish whether chaos is
driven by external environmental noise or endogenous factors,
we use wdencmp function (Donoho et al., 1995) to filter out
the environmental noise of empirical data and re-calculate the
largest LE of body length (see Supplementary Figure 2 and
simulation codes in Supplementary material). Notably, the
system has chaotic dynamics only if the Lyapunov exponent is
larger than zero. The Lyapunov exponent quantifies the rate of
exponential divergence (or convergence) of nearby trajectories
(Strogatz, 1994), and a positive LE indicates chaos where the
magnitude of LE effectively measures the system sensitivity to
initial conditions.

Eco-evolutionary model

Different with the attractor reconstruction approach, we
combine ecological processes (consumer-resource dynamics)
with evolutionary processes (phenotypic trait dynamics) to
simulate the complex dynamics in fish populations.

The time series data show that fish in the different age
stages have different body lengths (Supplementary Figure 1).
Different with early age-structured consumer-resource models
(Schreiber and Rudolf, 2008; Nilsson et al., 2018), in this
study, 10 ages are divided into three age classes (mean,
body, and length), under the biologically plausible assumptions
(i.e., different maximal attack rate and reproductive rate
in Table 1) of each age class, the system is similar to a
multi-species consumer-resource system. Here, we establish
a bioenergetic consumer-resource model (McCann, 1998)
to include phenotypic representations of quantitative trait
evolution (Cortez, 2016, 2018; McPeek, 2017; Yamamichi and
Letten, 2021). The model can be written as:

dR
dt
= R

(
r (SR)− αR−

x1(SR, S1)C1
1+ x1(SR, S1) h1R

−
x2(SR, S2)C2

1+ x2(SR, S2) h2R
−

x3 (SR, S3)C3

1+ x3 (SR, S3) h3R

)
(1.1)

dCi

dt
=
(
−di (Si)− δiai

)
Ci + gi

xi(SR, Si)CiR
1+ xi(SR, Si) hiR

+ XiYi

(1.2)

dJi
dt
= biCi − Ji

dJi + dJD
n=3∑
j=1

Jj

 (1.3)

dSi
dt
= Vi

(
−

∂di (Si)
∂Si

+ gi
R ∂xi(SR,Si)

∂Si(
1+ xi(SR, Si) hiR

)2

)
(1.4)
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dSR
dt
= V4

(
∂r (SR)
∂SR

−
C1

∂x1(SR,S1)
∂SR

1+ x1(SR, S1) h1R

−
C2

∂x2(SR,S2)
∂SR

1+ x2(SR, S2) h2R
−

C3
∂x3(SR,S3)

∂SR
1+ x3 (SR, S3) h3R

)
(1.5)

Where i= 1, 2, 3, and

Xi =
(W1 −W2) (1− e−kiτi)3

+W2

W2
(1.6)

Yi =
e−dJiτiδidJi

∑n=3
j=1 Jj

2
(
dJD

(
1− e−dJiτi

)
δi
∑n=3

j=1 Jj + dJi
) . (1.7)

The state variable R is the resource biomass; Ci, Ji, and
Si are the biomass, egg biomass and body length of fish in
age class i, respectively; SR is the body length of the resource
fish. Equations (1.1–1.3) represent biomass dynamics and Eqs
(1.4, 1.5) represent trait dynamics, where dSi

dt = Vi
∂

∂Si

[
dCi/dt
Ci

]
and dSR

dt = VR
∂

∂SR

[
dR/dt
R

]
. Here we assume that selection is

frequency-dependent in both the resource (R) and consumers
(Ci). τi is the maturation time for all individuals in a consumer
population (McCann, 1998). Yi is Beverton–Holt recruitment of
age class i based on reproductive effort τi years ago and Xi is the
growth of surviving recruits over τi, in which growth follows a
Bertalanffy function (McCann, 1998). We assume the resource
fish shows logistic growth: r is the intrinsic rate of increase of
the resource, α is the intraspecific competition coefficient for the
resource; Moreover, we use Holling type-II functional response
to show predation terms: xi and hi are the attack rate and
handling time of fish in age class i on the resource, respectively;
di is the instantaneous rate of mortality of fish in age class

i; δi is the instantaneous rate of reproductive energy invested
into offspring for fish in age class i; ai is the conversion costs
of production of soma to gonadal tissue; gi is the conversion
efficiency of prey biomass into adult biomass; bi is the egg supply
rate of fish in age class i; dJi is density-independent egg mortality
rate; dJD is egg mortality related to egg density dependence;
ki is the rate of fish growth; W1 is the asymptotic mass; and
W2 is the mass of an individual egg; both Vi and V4 are the
genetic variation of body length Si and SR, respectively; a higher
value of the genetic variation means a faster speed of evolution.
Finally, based on the relationship among resource and fish,
similar to the early theoretical approach (Dercole et al., 2010),
trait dependencies are modeled using the following functional
forms:

xi = xi (Si, SR) = xi0exp

[
−

(
Si − wi0

ei

)2
+ 2li

Si − wi0

ei

·
SR − w40

fi
−

(
SR − w40

fi

)2
]

(1.8)

r = r (SR) = r0
(
1− r1(SR − w40)

2) (1.9)

di = di (Si) = di0
(
1+mi(Si − wi0)

2) (1.10)

Wherewi0 (i= 1, 2, 3) is the optimal trait values. r0, r1, xi0, ei,
li, fi, di0, and mi are all positive. The growth rate r is maximum
at SR = w40, where the growth of the resource is best adapted
to its environment. The attack rate xi is maximum at Si = wi0

and SR = w40 when the body length of cod matches with the
prey fish. The mortality di of a fish in age class i is minimum
at Si = wi0.

TABLE 1 Parameters used in the eco-evolutionary model.

Par. Description Value Par. Description Value

α Density dependence coefficient 0.35 r0 Maximal intrinsic rate 1.726

hi Handling time 0.06; 0.04; 0.03 wi0 Optimal trait value of Si 2.3; 2.5; 2.7

δi Instantaneous rate of
reproductive energy invested
into offspring

0.073; 0.099; 0.2 xi0 Maximal attack rate 15.58; 23.37; 31.16

ai Conversion costs 1.326 ei Scale coefficient 1

gi Conversion efficiency 0.7; 0.924; 0.675 Vi Genetic variation of Si V1 varies [0, 1]; 0.6;
0.65

bi Egg supply rate 0.3; 0.4; 0.5 li Scale coefficient 1; 1.5; 1.2

τi Maturation time 2.5; 2.7; 3.5 di0 Minimal instantaneous rate of
mortality

0.8; 2.5; 3.6

ki Growth rate 0.5; 0.3; 0.2 mi Scale coefficient 0.03; 0.04; 0.05

dJi Density-independent egg
mortality

0.24 r1 Scale coefficient 0.165

dJD Mortality related to egg density
dependence

10 w40 Optimal trait value of SR 2.1

W1 Asymptotic mass 40 fi Scale coefficient 1

W2 Individual egg mass 0.29 V4 Genetic variation of SR 0.67
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For eco-evolutionary model (Thompson, 2005), most of
the parameter values were derived from the previous research
(McCann, 1998) while the remaining set of parameters were
obtained based on the reasonable guess values from parameter
space presented in Supplementary Figure 3. All parameters
can be found in Table 1. Similar to early theoretical work
(McPeek, 2017; Cortez, 2018), we mainly explore how the
speed of evolution in terms of the magnitude of genetic
variation (Vi) affects the stability of the eco-evolutionary model
(Thompson, 2005). We studied the dynamical properties of the
eco-evolutionary model using numerical simulation method.
Bifurcation diagrams and LE spectrum can be utilized to find the
conditions under which the eco-evolutionary model produced
chaotic dynamics (positive LEs). Moreover, we calculated both
the ACF and LE of both empirical and theoretical time series to
compare model predictions with field data. All simulations were
carried out using MATLAB 7.0 (MathWorks, 2004).

Results

Empirical results

The natural time series of body length suggests that chaotic
dynamics may be presented in this fish species (Figure 1). First,
we obtain the time delay τ = 2 (Figures 1D–F) and embedding
dimension m = 11 (the rate of change of lnC(m, D) with lnD
does not change with the increase of m; Figures 1G–I) for
the age class I, II, and III, respectively. Then, by combining
τ = 2 with m = 11, we obtain both of the LE values are greater
than zero (Figures 1G–I). So, time series of the body length
in the fish population exist in the chaotic region. Moreover,
a similar result is obtained when the environmental noise of
time series is filtered out (Supplementary Figure 2), all the
LE values are larger than 0 (Supplementary Figures 2C,F,I),
indicating dynamical chaos. So, the body length dynamics of the
fish population present an intrinsic chaotic property.

Theoretical predictions of
eco-evolutionary model

As revealed by a theoretical simulation (Figure 2), the eco-
evolutionary model can give rise to a rich set of potential
dynamics. When the genetic variation of body length in the age
class I, V1, is small (V1 = 0.03, LE = −0.0016; Figure 2A),
the dynamics of body length S1 approaches a simple, regular
oscillation (period-2 oscillation). After an increase in the
magnitude of genetic variation in body length S1, V1 (V1 = 0.27,
LE = −0.0012; Figure 2B), the dynamics of body length S1

presents a doubling-periodic oscillation. Further, when V1 is
increased even more, the dynamics of body length S1 appears
to enter a chaotic regime (V1 = 0.5, LE = 0.0643; Figure 2C)

as suggested by the Lyapunov exponent (Figure 2F). Finally,
periodic dynamics (regular oscillation) is observed when V1 is
increased even further (V1 = 0.764, LE=−0.001; Figure 2D).

Since chaos may occur purely due to ecological dynamics,
we did a bifurcation analysis assuming ecological dynamics only
(i.e., assuming V1 = V2 = V3 = V4 = 0). Under these purely
ecological conditions, the single-parameter bifurcation shows
that the ecological process may not produce chaotic dynamics
(Supplementary Figure 3), and the dynamics of population
biomass C1 is merely represented as a stable equilibrium.

Comparison between theoretical
predictions and empirical data

Both theoretical predictions and empirical results show
that the dynamics of a phenotypic trait, such as body length,
can show chaotic properties. However, if the dynamics of our
theoretical model is indeed a plausible representation of the
empirical data, other dynamical properties of their respective
time series should also be similar.

In this regard, the ACF analysis indeed indicates dynamical
similarities among natural (Figure 3A) and theoretical
(Figure 3B) time series. Both theoretical data and empirical
data show two major peak lags: short (about 7 years) and long
periods (about 24 years). However, due to the limited length
of empirical data (in total 59 data points), the long period
may be not significant (Figure 3A). Moreover, a predictable
period (years) of the chaotic timeseries is 1/LE (S3) (i.e.,
1/0.1309 = 7.64 years in body length S3; Figure 1I), which
is close to 7 years (calculated by the ACF). Therefore, these
results illustrate the eco-evolutionary model can depict the real
dynamics of body length in a single fish system.

Discussion

The predictability of long-term evolution has puzzled
ecologists for decades (Green, 1991; Kauffman and Johnsen,
1991; Ferriere and Fox, 1995). Although recent theoretical
work has analyzed the chaotic properties of eco-evolutionary
dynamics (Dercole et al., 2010; Schreiber et al., 2011; Doebeli
and Ispolatov, 2014; Gilpin and Feldman, 2017; Rego-Costa
et al., 2018), eco-evolutionary chaos has not been shown in
empirical data. In this study, we combined an eco-evolutionary
model with analyzes of empirical data to uncover chaotic
dynamics of body length of a single fish population. Our
work may prove the eco-evolutionary chaos in the natural
ecological system.

Our work may be treated as a supplementary method to
study fish species. In this study, we provided a new mechanism,
that is, the genetic variation of phenotypic trait determines
chaotic dynamics of body length. The new mechanism revealed
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FIGURE 1

Phase space reconstruction of single time series of body length. (A–C) Empirical data of body length; (D–F) Attractor reconstruction (τ = 2;
based on the C–C method) of empirical data with noise; (G–I) Lyapunov exponent (LE) of body length: D is the neighborhood radius, m is the
embedding dimension, and C is the correlation integral, which is influenced by both D and m. In each rectangle, m varies from 5 to 12 (from top
line to bottom line, m = 11 can be obtained for each case when the rate of change of lnC(m, D) with lnD does not change with the increase of
m). Body length S1 (age class I: age 3–5), S2 (age class II: age 6–9), and S3 (age class III: age 10–12) are the mean of each age class. The original
data is shown in Supplementary Figure 1.

in our work is different from recent studies (Eikeset et al.,
2016; Andersen, 2019), which showed many mechanisms could
influence population dynamics (stable or oscillatory state)
of fish species, such as the change of age structure, life-
history parameters, and fishing. Actually, our work involved
with above factors. First of all, for different study methods
(attractor reconstruction and eco-evolutionary model), different
age classes (age 3–12) were divided into three broader age
classes, and each class has the different maximal attack rate and
reproductive rate (Table 1). Moreover, life-history parameters
(i.e., individual growth rate ki and reproduction rate bi in
Table 1) indeed influence population dynamics (non-chaos in
Supplementary Figure 3) of fish species when we neglected the
evolutionary dynamics (V1 = V2 = V3 = V4 = 0). Finally,
although we do not introduce human harvest (fishing) into the
eco-evolutionary model, we infer that fishing will impact the
demography and recruitment of a fish stock. Therefore, it is
worth trying to analyze how each ecological parameter influence
population dynamics of fish. The simulation result showed that
non-chaos emerges when we do not consider phenotypic trait
evolution in the mechanistic model (Supplementary Figure 3).

In short, in this work, the free-equation approach (attractor
reconstruction) proved chaos in trait dynamics, and then
a plausible interpretation mechanism (regulating the genetic
variation of phenotypic trait may result in chaotic dynamics
of body length in the eco-evolutionary model) for chaos in
body length of fish was suggested, that is, rapid evolution
in phenotypic trait may result in chaos in both ecological
(population density/biomass) and evolutionary (phenotypic
trait) processes.

The road to eco-evolutionary chaos

Early theoretical work found that regulating the magnitude
of genetic variation in phenotypic trait can result in periodic
oscillations (McPeek, 2017; Cortez, 2018) and chaotic dynamics
(Dercole et al., 2010; Gilpin and Feldman, 2017). However,
empirical evidence for eco-evolutionary chaos in natural
ecosystems is lacking. In this study, we first use the phase
space reconstruction method to present the evidence for
potential chaos in fish body length. In our eco-evolutionary
model, similar to recent theoretical approaches (Cortez, 2018;
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FIGURE 2

Eco-evolutionary dynamical simulations. (A–D) Space phase diagrams; (E) Bifurcation diagram; (F) Lyapunov exponent (LE) spectrum. Model
parameters are presented in Table 1 and V1 varies in [0, 1]: Panels (A) V1 = 0.03, (B) V1 = 0.27, (C) V1 = 0.5, and (D) V1 = 0.764. The simulation
time is 1,000 and initial value of Eq. (1) is (0.1, 0.1, 0.03, 0.02, 0.03, 0.01, 0.01, 2.2, 2.4, 2.8, and 3).

Yamamichi and Letten, 2021), we only analyze how system
stability varies with the genetic variation (V1). Our results
show the increase of V1 can generate chaotic dynamics in both
phenotypic trait and biomass (LE > 0; Figure 2F). However,
when we do not consider trait evolution (Vi = 0) in the
model, population dynamics of the fish population may not
present chaos. Then the ACF of both empirical data and
simulation data of the eco-evolutionary model show that the
predictable period (years) of body length in fish population
is about 7 years. Therefore, the eco-evolutionary model can
approximately depict and predict the intrinsic dynamic behavior
of empirical data.

Moreover, recent theoretical research showed that ecological
process (population density/biomass) will produce population
oscillation if evolutionary process (phenotypic trait) has the
oscillatory dynamics (McPeek, 2017; Cortez, 2018). In our study,
we first present chaotic dynamics (irregular periodic oscillation)
of the body length (attractor reconstruction), while comparative
analyses of the ACF reveal broadly consistent results between
experimental data and theoretical models. Therefore, we infer
that the eco-evolutionary chaos may be driven by body length
evolution (changes in genetic variation of body length) in the
cod population.

In the eco-evolutionary model, the chaotic evolutionary
trajectories (LE > 0; Figure 3F) are intrinsically unpredictable,
and strongly dependent on the magnitude of genetic variation
in phenotypic trait (V1). The change switches between the
non-chaotic (LE < 0) and chaotic dynamics (i.e., the “edge
of chaos”) was discussed in earlier work (Ferriere and Fox,
1995; Turchin and Ellner, 2000; Benincà et al., 2015), which
may balance the resource-fish system near the “evolutionary
sliding” (Dercole et al., 2006). This maybe provide an
evolutionary explanation for chaotic dynamics in the nature
(Turchin, 2003). Our work identifies eco-evolutionary chaos
in a natural ecological system. This empirical finding supports
the theory that eco-evolutionary feedbacks can produce
chaotic dynamics.

Rapid evolution in body length of fish
is limited predictability

The rapid evolution of fish population has caused
widespread discussion (Olsen et al., 2004; Jørgensen
et al., 2007; Eikeset et al., 2016). In this study, we infer
that the change of the body length (chaotic dynamics of
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FIGURE 3

Chaotic dynamics is observed for the northeast Arctic cod (Gadus morhua) based on empirical data and simulation data analyzes.
(A) Autocorrelation function (ACF) of empirical data; (B) ACF of simulation data; body length class I (S1), class II (S2), and class III (S3). Blue line
denotes significance threshold and the value in the middle of two blue lines can be considered not significantly different from 0.

phenotypic trait) is due to evolution. Moreover, the body
length evolution has a limited predictability due to its
chaotic property.

In the cod population, we checked for chaotic dynamics
(positive LE) of body length based on both empirical data and
eco-evolutionary model analyses. We found the LE of empirical
data [LE(S3)= 0.1309], which means predictable periods (1/LE)
of empirical data (i.e., 7.64 years in body length S3) is also close
to 7 years (calculated by the ACF). The eco-evolutionary model
can approximately depict and predict the intrinsic dynamic
behavior of empirical data, that is, the limited predictable
period of rapid evolution (Vi > 0) in body length of fish is
approach to 7 years. Fish population growth is closely bound
up with our daily life, considering the effectively predictable
time of body length can help us make a suitable strategy for
fishery conservation.
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