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Tropical dry forests are increasingly threatened by human activities. In

Northeast Brazil, the Caatinga, an area of tropical dry forests surrounded

by wetlands, is considered globally unique among these habitats. In

this region, the stingless bee Plebeia flavocincta is found in a variety

of environmental, ecological, and demographic conditions. We aimed to

characterize P. flavocincta populations within its natural range through wing

geometric morphometrics and mitochondrial DNA (mtDNA) analyses. The

characterization of population variability can clarify whether the species

is morphologically and genetically diverse and whether populations are

morphologically and genetically structured. We analyzed 673 samples by

wing morphometry and 75 by cytochrome-b assays. Our results revealed

P. flavocincta is genetically and morphologically diverse and populations

are morphologically and genetically structured. Despite the differentiation

between the two most morphologically distant populations, we verified

a large overlap of morphological variation between all populations. The

genetic analysis showed that the haplotypes were geographically structured

into six clusters, four of which were located in coastal areas, and the

remaining two in the drier inland region. The characterization of P. flavocincta
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populations is an important step toward decision-making in programs for the

protection, management, and sustainable use of this stingless bee in local

breeding efforts.

KEYWORDS

dry forest, Caatinga, stingless bee, geometric morphometry, mitochondrial DNA,
population variability

Introduction

Arid and semiarid regions cover more than 30% of Earth’s
land surface (Okin et al., 2006). Within these regions, tropical
dry forests are estimated to cover more than one million square
kilometers, with more than half in South America (54%), but
most are under threat (Miles et al., 2006). In Northeast Brazil,
tropical dry forests, locally known as the “Caatinga,” are globally
unique, presenting high levels of endemism (Silva et al., 2017;
Fernandes et al., 2020). In this region, the local biota is subjected
to long periods of high heat and irregular water availability
for several months each year. In recent decades, this region
of Brazil has undergone a rapid and extensive environmental
change caused by the over exploitation of its natural resources
(Silva et al., 2017), which are naturally limited due to the region’s
climatic conditions (Krol and Bronstert, 2007). Furthermore,
future climate projections show large temperature increases and
rainfall reductions, suggesting the occurrence of more frequent
and intense droughts and a tendency toward desertification in
this region (Marengo et al., 2017). Studies aiming to analyze the
genetic and phenotypic variability of populations are urgently
needed as they can assess the degree of inbreeding, gene
flow, and genetic diversity among and within populations
(Keyghobadi et al., 2005; Wagner, 2012; Carvalho et al., 2019).
Given the increasing loss and modification of natural habitats, in
the long term, loss of genetic variation is expected to affect the
ability of populations to respond to changing selection pressures
(Cheptou et al., 2017).

Changes in natural habitats and species composition
can impact ecosystem services and compromise their long-
term continuity (González-Varo et al., 2013). One important
ecosystem service is pollination, as this service facilitates
reproduction in the vast majority of flowering plant species
(Potts et al., 2016). Pollination success is closely related to
the presence and availability of pollinators (Campbell et al.,
2018). Most species of tropical flowering plants depend on
insects and other animals as pollinators (Ollerton et al., 2011).
Among pollinating animals, bees are considered the most
important (Freitas et al., 2009; Ollerton, 2017). Many bee species
native to the seasonally dry tropical forests of northeast Brazil,
notably species of stingless bees (Meliponini tribe) (Michener,
2013), are exploited for honey production by local beekeepers
(Jaffé et al., 2015).

Plebeia flavocincta (Cockerell 1912) is a small (∼4.5 mm)
stingless bee with a distribution that is restricted to Northeast
Brazil. Its distribution covers both coastal areas and seasonally
dry tropical forests (Maia et al., 2020). In this region, the
species occurs in a variety of environmental, ecological, and
climatic conditions. P. flavocincta can nest in exotic trees and
urban areas (Ribeiro and Taura, 2019) and is also considered
a docile species, which facilitates its rearing in hives for honey,
geopropolis, and pollen (Maia et al., 2015). In addition, it can be
used as a pollinator in greenhouses to increase crop production
(Imperatriz-Fonseca et al., 2017).

Several studies on pollinators such as bees have
demonstrated that tools such as geometric morphometrics
and mitochondrial DNA (mtDNA) analysis are robust for
detecting subtle variations in populations (Bonatti et al., 2014;
Rattanawannee et al., 2017). The geometric morphometry of
the wings is useful for detecting small morphological variations
that are imperceptible by traditional morphometry (Francoy
et al., 2011; Nogueira et al., 2019). The CytB mtDNA gene
is useful not only in identifying cryptic bee species but also
in assessing intraspecific distribution patterns (Françoso and
Arias, 2013; Santos-Júnior et al., 2015, 2019). The application
of complementary methods to analyze population variability
has shown promising results in understanding the distribution
of species and in resolving taxonomic problems (Bonatti et al.,
2014; Francoy et al., 2016; Galaschi-Teixeira et al., 2018).

Considering that organisms living in regions with high
ecological variation tend to present corresponding levels of
biological variation, we aimed to characterize P. flavocincta
populations within their natural range through wing geometric
morphometry and mtDNA analysis. The characterization
of population variability can clarify whether the species
is morphologically and genetically diverse and whether
populations are morphologically and genetically structured.

Materials and methods

Study area

Within its extension, Northeast Brazil is divided into four
biomes (Amazon, Cerrado, Caatinga, and Atlantic Forest). The
annual accumulated precipitation does not exceed 700 mm
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in some areas of the seasonally dry tropical forest, which is
frequently affected by long periods of drought (Alvares et al.,
2013). In contrast, there are areas in the coastal region where
the annual rainfall is more than 1500 mm, and the climate is
predominantly a tropical humid climate (Awange et al., 2016;
Oliveira et al., 2017).

We collected samples in coastal areas and areas of seasonally
dry tropical forest (Caatinga) (Figure 1). The coastal areas
contain a wide variety of vegetation native to the coastal region,
including deciduous seasonal forest, semideciduous seasonal
forest, dense ombrophilous forest, open ombrophilous forest,
mixed ombrophilous forest, and associated ecosystems such as
sandbanks (restingas), mangroves, and altitude fields (Oliveira-
Souza et al., 2018). The Caatinga areas include species typical
of shrub communities, with vegetation approximately 8 m in
height and predominantly consisting of sparsely distributed
small trees and shrubs, in addition to herbaceous patches that
develop only during the rainy season (Tavares-Dasmasceno
et al., 2017).

We collected workers of P. flavocincta from natural nests
in 18 locations within their natural range. For the study of
the geometric morphometry of the wings, due to differences in

the number of nests studied between the localities, we grouped
some nearby localities (∼100 km) into microregions (Table 1)
according to the Instituto Brasileiro de Geografia e Estatística
(IBGE) (Instituto Brasileiro de Geografia e Estatística, 2017).
This also reduced the quantity of localities and increased the
number of samples per region, increasing the robustness of the
analyses.

Morphometric analysis of wings

We collected at least 10 workers of P. flavocincta from
71 nests. To analyze the venation pattern of the wings, the
right forewing was removed with the aid of tweezers and later
mounted between the blade and a coverslip with a brush. Images
of these wings were captured by a digital camera attached
to a stereomicroscope (Olympus) and stored on a computer.
Subsequently, a “.tps” file was created with the images of the
wings using tpsUtil software version 1.40 (Rohlf, 2008b), and
13 anatomical landmarks were manually marked at the vein
junctions of the cells of each wing using tpsDig software version
2.12 (Rohlf, 2008a) (Figure 2). The images were aligned by

FIGURE 1

Plebeia flavocincta sampling locations across Northeast Brazil over a map with the two main biomes of the region (Caatinga and Atlantic Forest)
showing the two methods used (wing morphometry and molecular analysis). Only one type of analysis was used in some locations.
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TABLE 1 Quantity of studied nests of Plebeia flavocincta (Apidae: Meliponini) at 18 locations (15 nests wing geometric morphometry analysis and
16 nests for mitochondrial DNA analysis).

Regions Locations/Cities–states Longitude Latitude Quantity of
nests

Apodi Apodi–RN
Mossoró—RN*

Assu–RN

−37.866780
−37.403069
−35.567149

−5.561771
−5.061826
−6.746903

1
2*
1

Brejo paraibano Bananeiras–PB
Guarabira–PB

−35.567149
−38.914809

−6.746903
−4.454705

2
1

Cariri Moreilândia—PE
Moreilândia—PE**

−39.470183
−39.470183

−7.464117
−7.464117

6
1**

Ibiapaba Poranga–CE
Ubajara—CE*

−40.955152
−40.955152

−3.828606
−3.828606

2
1*

CE coastal Fortaleza—CE −38.573277 −3.743222 27

PE coastal Cabo do Santo Agostinho—PE
Bonito—PE**

−34.99078
−35.71422

−8.21607
−8.49966

2
1**

RN coastal Galinhos—RN* −36.209979 −5.356518 1*

Maciço Capistrano–CE
Mulungu—CE
Baturité—CE**

Guaramiranga—CE**

−38.89741
−38.991879
−38.892712
−38.931290

−4.42515
−4.298528
−4.321246
−4.261273

5
1

4**
5**

Potengi Jandaíra–RN
São Paulo do Potengi—RN

São Paulo do Potengi—RN**

−36.121033
−35.819224
−35.819224

−5.359424
−5.843521
−5.843521

11
8

2**

States: CE, Ceará; PB, Paraíba; PE, Pernambuco; RN, Rio Grande do Norte.
*Used only in geometric morphometric analyses.
**Used for molecular analysis only. Closer locations (∼100 km) were grouped into “regions”.

Procrustes (Bookstein, 1992) and the average configuration of
the wings of bees from the same nest were used as a comparative
parameter. We performed principal component analysis (PCA)
as an exploratory analysis to characterize shape variation
using the relative Cartesian coordinates of each landmark after
alignment. Next, we performed canonical variate analysis (CVA)
to determine the characteristic structure that best distinguished
the groups. We analyzed groups by assigning colonies to
geographic origins (Table 1). These analyses were performed
using the program MorphoJ version 2.0 (Klingenberg, 2011). To
verify if the most morphologically similar populations were also
the closest geographically, we also calculated the Mahalanobis
distances for all pairs using the pooled within-group covariance
matrix for all the groups jointly and correlated them with the
geographical distances between the populations using a Mantel
test. To graphically visualize the morphological proximities
between populations, we created a morphological proximity
dendrogram using MEGA version 5 (Tamura et al., 2011).

Molecular analyses

For mtDNA analysis, we used P. flavocincta individuals
from 75 nests (one individual per nest) from 16 locations
within the natural range (Table 1). The laboratory procedures
described below were carried out at the Instituto Tecnológico
Vale Desenvolvimento Sustentável, Belém, Brazil.

Deoxyribonucleic acid extraction,
amplification, and sequencing

Genomic DNA was extracted from one worker per colony
using the DNeasy Blood & Tissue Kit (Qiagen) following the
manufacturer’s instructions. The Cytochrome B (CytB) region
of mtDNA was amplified using the MtD26/MtD28 primer pair
(Simon et al., 1994). PCR was performed with a final reaction
volume of 25 µl comprising 5–7 µl of template DNA, 5 µl
of PCR buffer (5 ×), 2 µl of dNTPs (2 mM), 2.4 µl of
MgCl2 (25 mM), 0.5 µl of each primer (10 mM), 2 µl of
TBT (trehalose, bovine serum albumin, and polysorbate-20),
and 0.2 µl of Go Taq Flex Polymerase (Promega 5 U/µl).
Ultrapure water q.s.p. was used to reach a final volume of
25 µl. All PCR amplifications were performed according to
Françoso et al. (2016) on a Mastercycler Pro. For amplification
with the primers described by Simon et al. (1994), we used
the same PCR cycling conditions for the barcode region of
DNA. The PCR products were run on a 1.2% agarose gel
and visualized with a UV light transilluminator. Subsequently,
the amplicons were purified as described in Vasconcelos et al.
(2021), and the sequencing reactions were performed with the
same primers (forward and reverse) used in the amplification
and the amplicons and the reagents of the BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems) according to
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FIGURE 2

Plebeia flavocincta (A) and its wing (B) showing the 13 anatomical landmarks used (Photos: UMM).

the manufacturer’s instructions. Sequencing was performed with
an ABI3730 DNA Analyzer (Applied Biosystem).

The sequences obtained were analyzed using the SeqA 6
program (Applied Biosystems) and later edited, checked, and
aligned using Geneious Prime 2019.2.3 software (Biomatters).
For alignment, MUSCLE (Edgar, 2004) was used. DnaSP v.5.10
software (Librado and Rozas, 2009) was used to separate
the haplotypes into their respective groups and determine
the number of haplotypes (h) and haplotypic diversity (Hd).
The haplotype network was built using NETWORK v. 4.6
(Polzin and Daneshmand, 2003), using the median joining
algorithm (Bandelt et al., 1999). The mean number of inter- and
intrapopulation variable sites was calculated using the MEGA
program version 5 (Tamura et al., 2011). To verify significant
correlations between the genetic distances and geographic
distances of the studied locations, a Mantel test was performed
with the aid of TFPGA software (Miller, 1997).

Population differentiation was detected using Bayesian
clustering algorithms in the program GENELAND ver. 4.0.0
(Guillot et al., 2005). First, we performed two runs of 1,000,000
Markov chain Monte Carlo (MCMC) iterations with a thinning
interval of 100 and a maximum number of populations of 10
(K = 10). We used correlated allele frequencies and geographic
coordinates to parameterize all runs. We inferred K as the modal
number of genetic groups estimated among the best of the
1,000,000 iterations for the two runs. Then, we performed two
independent runs with K fixed to the number of populations
previously inferred.

Demographic inference

A Bayesian Skyline Plot (BSP) reconstruction was
implemented to evaluate population size dynamics over
time using the BEAST 2.6.6 program (Bouckaert et al., 2014).

A CytB substitution rate of 1.9% per lineage per million years
per generation (1 year) was adopted [see (Miranda et al., 2017)].
The evolutionary model was inferred by BEAST Model Test
(all reversible). The following parameters were employed: a
strict clock, 20 million generations, parameter sampling every
1,000 generations of the MCMC analysis, and a 10% burn-in.
Convergence between runs and the performance of the analysis
were checked using Tracer 1.7.1 and the plots were constructed
with the aid of the same program (Rambaut et al., 2018).

Results

Morphological characterization of
populations through geometric
morphometry

Our data revealed at least 22 measurements of relative
deformations in the geometric morphometry of the wings,
according to the Procrustes residuals generated for PCA
(Figure 3). Among such measures, the first 14 explained 91.46%
of the variability in the entire data set, with PC1 and PC2
explaining 22.15 and 13.92% of the variation in the sample,
respectively. In the scatter plot of PCA results (Figure 3),
the horizontal axis (PC1) shows differentiation with large
overlapped variation space among these groups. Axis 2 (PC2)
showed that there are no differences between the pairs of
populations since they completely overlapped.

Canonical variate analysis using the covariance matrix of
all groups showed eight axes that maximized the separation of
these populations (Table 2). Among the eight axes, the first
two axes (CV1 and CV2) explained 55.71% of the variation in
the data set. The characteristic distribution of points that best
showed the separation of P. flavocincta groups can be seen in the
scatter plot (Figure 4). Although separation was found between
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FIGURE 3

Principal component analysis of the 13 anatomical landmarks marked at the wing rib junctions of Plebeia flavocincta.

the RN coastal, Ibiapaba, and Maciço, there was an overlap of
morphological variation of the other pairs between them.

Considering the squared Mahalanobis distances (Table 3)
and Procrustes distances between populations (Table 4), the
greatest morphological proximity (shortest distance) occurred
between the Cariri and Potengi populations, while the greatest
distance was observed between the RN coastal and PE coastal
populations. The RN coastal population and, primarily, PE
coastal population showed the greatest distances from the
populations of all other locations (Table 3). The Mantel test
based on the Mahalanobis distances and geographic distances
showed no correlation between morphological and geographic
distances (r = 0.060, p = 0.321).

Based on the squared Mahalanobis distances, a dendrogram
of morphological proximity between the studied groups was

TABLE 2 Variation of the axes of canonical variables.

Eigenvalues % Variance Cumulative %

1 1.17170061 34,251 34,251

2 0.73394925 21,455 55,706

3 0.60173182 17,590 73,296

4 0.29937535 8,751 82,047

5 0.22207204 6,492 88,538

6 0.18532538 5,417 93,956

7 0.11066935 3,235 97,191

8 0.09609670 2,809 100,000

constructed (Figure 5), in which the coastal populations were
morphologically farther apart and formed groups that were
more external and isolated from each other than populations
from inland areas.

Genetic characterization of
populations through mitochondrial
DNA

Eighteen haplotypes were found (Figure 6 and Table 5),
with Hap-15 being the most frequent (23 colonies). Haplotypes
Hap-01, Hap-02, Hap-04, Hap-06, Hap-10, Hap-12, Hap-14, and
Hap-18 were less frequent, occurring in only one colony each.
Hap-3 was shared by four locations. The haplotype diversity
index (Hd) was 0.85. Some localities had a single haplotype
that was not shared with any other locality. The clustering
approach implemented in Geneland consistently detected six
genetic clusters (subpopulations) (Figure 7). These results
suggest separation of the four populations along the coast and
two other populations in inland areas of Northeast Brazil.

Population size dynamics over time

The BSP did not reveal any substantial fluctuations in
the effective population size (Ne) in P. flavocincta in the last
200,000 years (Figure 8).
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FIGURE 4

Canonical variate analysis of the 13 anatomical landmarks marked at the wing rib junctions of Plebeia flavocincta.

TABLE 3 Squared Mahalanobis distances between the centroids of the analyzed regions.

Apodi Brejo paraibano Cariri Ibiapaba CE coastal PE coastal RN coastal Maciço

Brejo paraibano 3.6623 – – – – – – –

Cariri 3.7194 3.2577 – – – – – –

Ibiapaba 3.4016 4.3514 3.9473 – – – – –

CE coastal 2.6878 3.3091 2.8877 4.072 – – – –

PE coastal 6.4442 5.3412 5.3071 6.3069 5.3604 – – –

RN coastal 4.2777 4.8725 4.7915 5.552 3.9578 6.5056 – –

Maciço 3.5673 3.4377 3.1618 3.9368 3.1223 6.2237 5.7602 –

Potengi 2.5196 2.9141 2.3606 2.9302 2.3698 5.5125 4.1269 3.2518

States: CE, Ceará; PE, Pernambuco; RN, Rio Grande do Norte.

TABLE 4 Procrustes distances between regions obtained from the anatomical landmarks of the wings of Plebeia flavocincta.

Apodi Brejo paraibano Cariri Ibiapaba CE coastal PE coastal RN coastal Maciço

Brejo paraibano 0.0169 – – – – – – –

Cariri 0.0146 0.0130 – – – – – –

Ibiapaba 0.0150 0.0176 0.0167 – – – – –

CE coastal 0.0095 0.0162 0.0124 0.0183 – – – –

PE coastal 0.0282 0.0240 0.0206 0.0277 0.0228 – – –

RN coastal 0.0193 0.0256 0.0208 0.0256 0.0183 0.0304 – –

Maciço 0.0172 0.0149 0.0168 0.0182 0.0164 0.0277 0.0308 –

Potengi 0.0122 0.0113 0.0087 0.0142 0.0109 0.0223 0.0188 0.0163

States: CE, Ceará; PE, Pernambuco; RN, Rio Grande do Norte.
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FIGURE 5

Morphological proximity dendrogram based on the neighbor-joining method calculated from the Mahalanobis distances between the groups
(regions) studied.

FIGURE 6

Haplotype network showing shared haplotypes of the observed populations obtained using the Median Joining algorithm.

Discussion

Both the morphometric and molecular analyses were useful
for inferring structure among the studied populations. Although

there was substantial overlap between methods, results from
the morphometric analysis showed that the most geographically
distant population, on the coast of PE coastal, corresponded to
the most differentiated population. Despite the discrimination

Frontiers in Ecology and Evolution 08 frontiersin.org

https://doi.org/10.3389/fevo.2022.1057624
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1057624 November 25, 2022 Time: 8:33 # 9

Maia et al. 10.3389/fevo.2022.1057624

TABLE 5 Locations where each haplotype of Plebeia flavocincta was
originally found.

Haplotypes Cities–states

Hap_1 Apodi–RN

Hap_2 Mulungu–CE

Hap_3 Baturité–CE; Capistrano–CE; Guaramiranga–CE; Poranga–CE

Hap_4 Capistrano–CE

Hap_5 Bananeiras–PB, Guarabira–PB

Hap_6 Poranga–CE

Hap_7 Assu—RN; Moreilândia–PE

Hap_8 Moreilândia — PE

Hap_9 São Paulo do Potengi — RN

Hap_10 São Paulo do Potengi–RN

Hap_11 Jandaíra–RN

Hap_12 Galinhos–RN

Hap_13 Jandaíra–RN

Hap_14 Baturité–CE

Hap_15 Fortaleza—CE; Guaramiranga–CE

Hap_16 Fortaleza–CE

Hap_17 Cabo do Santo Agostinho–PE

Hap_18 Bonito–PE

States: CE, Ceará; PB, Paraíba; PE, Pernambuco; RN, Rio Grande do Norte.

between the two most geographically distant populations (in this
case, PE coastal and Ibiapaba), we could verify the occurrence
of an overlap of morphological variation between them, formed

by the other populations. Moreover, the genetic analysis showed
that the haplotypes were geographically structured in six
clusters, with four of them located in coastal areas and two
others in inland areas.

Geographically closer populations, such as those on the
coast, were more morphologically distinct from each other. On
the other hand, some more geographically distant populations
within the Caatinga areas were morphologically similar. An
explanation for this finding may be the large extent of the
northeast, with areas of large thermal fluctuations, variability
in vegetation cover, with deforested areas and mountain
ranges acting as dispersion barriers (Jaffé et al., 2019). Isolated
mountain ranges and high plateaus (up to 1000 m) are spread
across the Caatinga areas. On the borders of the State of
Ceará, for example, there are mountain ranges that can prevent
dispersion and promote local adaptation of populations. In
addition, coastal areas have variable amounts of forest cover that
extends over a wide latitudinal and longitudinal strip, which
has favored high levels of diversity and endemism of both the
fauna and flora (Ribeiro et al., 2009). A latitudinal effect on
the distribution of genetic variation has already been observed
for Melipona subnitida Ducke, 1910, a species of stingless bee
that has an area of occurrence similar to that of P. flavocincta
(Jaffé et al., 2019). Still, the isolation of populations in the coastal
region of the Northeast may be a reflection of the fragmentation
of the Atlantic Forest. Another plausible explanation is that gene

FIGURE 7

Map of the locations where P. flavocincta samples were collected in Northeast Brazil for genetic analysis. The colors indicate the six different
populations identified by Geneland software (K = 6).
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FIGURE 8

Coalescent Bayesian Skyline Plot (BSP) used to infer demographic history of Plebeia flavocincta population. Black horizontal line shows median
BSP estimate and gray area shows upper and lower 95% highest posterior density limits.

flow was facilitated in Caatinga areas, probably by the transport
of colonies originating from meliponiculture practices (Jaffé
et al., 2016). Many species of stingless bees are commercially
reared for multiple purposes, such as honey production, crop
pollination and recreation. However, due to this process, hives
can be moved for great distances (Santos et al., 2022). In
this sense, the differentiation of the coastal population of the
Northeast may be related to the fact that these bees are less
intensively managed than those in the Caatinga areas, since
beekeeping practices can play an important role in the formation
of genetic differentiation between bee species (Jaffé et al.,
2016).

The number of haplotypes and haplotype diversity index
(Hd) obtained for P. flavocincta were higher than those observed
for other stingless bees, such as Mourella caerulea (Friese
1900) (Hd = 0.74) with six haplotypes (Galaschi-Teixeira et al.,
2018); M. subnitida (Hd = 0.79) 11 haplotypes (Bonatti et al.,
2014); Partamona helleri (Friese, 1900) (Hd = 0.55) with 10
haplotypes (Brito and Arias, 2010); and P. remota (Holmberg,
1903) (Hd = 0.54) with 15 haplotypes (Francisco and Arias,
2010). The presence of unique mitochondrial haplotypes may
be associated with the process of colonization of new areas
by one or a few colonies of stingless bees (Miranda et al.,
2016). This pattern of unique haplotypes has already been
observed in M. subnitida (Bonatti et al., 2014; Barbosa et al.,

2019). Moreover, a study using thousands of genetic markers
of M. subnitida showed two very distinct populations at the
extremes of its distribution area and two populations with
greater variability in the central region, suggesting that the
species colonized the peripheral regions more recently, while
the populations from the central region had more time to
develop greater genetic variability (Jaffé et al., 2019). The low
dispersal capacity of daughter colonies during the swarming
process due to dependence on the mother colony, as well
as the queen’s philopatry, may help explain these patterns in
stingless bees (Engels and Imperatriz-Fonseca, 1990; Nogueira-
Neto, 1997). Other studies using population genetic approaches
with different species of stingless bees also found similar results
(Tavares et al., 2007; Francisco et al., 2008; Batalha-Filho et al.,
2010; Brito et al., 2013; Galaschi-Teixeira et al., 2018). Thus, the
presence of common haplotypes of P. flavocincta in different
and distant locations cannot be explained by current gene flow
via females, and the exclusivity of several observed haplotypes
can be considered an indicator of population structure. For
P. remota, the hypothesis of long-distance migration based on
queen philopatry was discarded in favor of human-mediated
“colony migration” as a leisure activity (Francisco and Arias,
2010).

Pleistocene climatic instability drove the historical
distribution of forest islands in the northeastern Brazilian
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Atlantic Forest (Silveira et al., 2019). In the wetter areas
on the northeast coast, P. flavocincta was likely isolated
in the remnants of the Atlantic Forest for long periods,
which limited gene flow and allowed the independent
accumulation of base substitutions in mtDNA, which may
have led to the current differentiation of the populations
in these areas. Additionally, according to paleodistribution
and palynological validation models, the potential historical
distribution of the Caatinga areas was much smaller during
the driest and coldest period of the Maximum Glacial, with
subsequent expansion with small fluctuations until reaching
the current area (Werneck et al., 2011). These fluctuations
in suitable habitats may have promoted some isolation
among populations. Similarly, models have suggested that
P. flavocincta followed these distributional dynamics in
the past, and an increase in climatically suitable areas on
the northeast coast is expected in the future (Maia et al.,
2020).

Our results also revealed patches of other populations within
the area attributed to the coastal population of Paraíba and
Pernambuco states, a result very similar to that found in areas
of climatic refuge (Maia et al., 2020). These areas can be
considered the ancestral areas of the populations located in
the northern portion of Northeast Brazil (states of Ceará and
Rio Grande do Norte). Therefore, this dynamic of expansion
of vegetation cover and areas of occurrence seems to explain
the current morphological and genetic patterns of the species.
However, the Pleistocene climatic changes do not seem to have
had a substantial influence on the demographic patterns of
the P. flavocincta, since the BSP did not reveal any substantial
fluctuations in the effective size of the populations. Although
there has been a fluctuation in the climatically suitable areas,
this does not have drastically affected the population dynamics.
Based on the already demonstrated climatic niche distribution
models (Maia et al., 2020), the populations of P. flavocincta
probably remained stable even with the decrease in their
climatically stable areas. This finding agrees with other studies
with stingless bees in the same region (Miranda et al., 2016,
2017).

Here we do not disregard the existence of sampling
bias caused by the difficulty in searching for natural nests.
In addition to sampling bias, the molecular marker used
here only tells the matrilineal history (CytB). However, the
present work is an important contribution considering the
few studies of population variability with stingless bees in
tropical dry forests and aims to help pave the way for
a deeper understanding of the evolutionary processes that
occur in semi-arid areas. Given its importance as a visitor
to native flora and the fact that it is an endemic bee of
a threatened dry forest, the present findings may be useful
for the development of conservation strategies aimed at P.
flavocincta populations. Future studies should prioritize new
collections in locations not yet sampled and test how the

landscape influences genetic diversity. They must also deepen
their ecological knowledge of the species to design conservation
programs. Studies involving conservation genetics to maintain
the genetic viability of natural populations of the species are also
urgently needed.

Conclusion

This is the first study to demonstrate the variability
of Plebeia flavocincta populations through the geographic
range of the species. We demonstrated that this small
pollinator species, occurring in varied environments such
as areas along humid coasts and in seasonally dry tropical
forests, has morphological and genetic variation to the point
of causing population structuring. This likely reflects local
adaptation and could be exploited to identify populations
more accurately. Furthermore, the observed exclusivity of
several haplotypes can be considered an indicator of the
gain of new areas and population restructuring. Further work
could investigate the ecological or behavioral implications
of these findings for this stingless bee species, especially
considering the risk of deforestation and climate change
in the Caatinga.
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