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Examining vegetation aboveground biomass (AGB) changes is important to 

understanding wetland carbon sequestration. Here, we combined the field-

measured AGB data (458 samples) from 2009 to 2021, moderate resolution 

imaging spectroradiometer reflectance products, and climatic data to reveal 

the AGB variations of marshes in Northeast China by comparing various 

models driven by different indicators. The results indicated that random forest 

model driven by six vegetation indices, land surface temperature, and land 

surface water index achieved accurate marsh AGB estimation with R2 being 

0.78 and relative error being 16.71%. The mean marsh AGB in Northeast China 

from 2000 to 2021 was 682.89 ± 31.69 g·m−2, which generally increased from 

north to south in space. Temporally, annual marsh AGB declined slowly at a 

rate of 3.45 g·m−2·year−1 during the past 21 years driven mainly by the decrease 

in summer mean temperature that was characterized by a significantly positive 

correlation between them. Nevertheless, we  highlighted that the temporal 

changes of marsh AGB spatially varied in response to inconsistent climate 

change, thus place-based measures are required for sustainable management 

of marshes.
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Introduction

As an important carbon pool in the Earth’s surface system, wetlands play an important 
role in global carbon cycle (Mitra et al., 2005; Batjes, 2014; Dargie et al., 2017). Wetland 
vegetation aboveground biomass (AGB) is regarded as a critical indicator of wetland 
ecosystem carbon sequestration capacity (Chopping et al., 2008; Shen et al., 2020; Temmink 
et al., 2022). Marsh is the most widely distributed vegetated wetland type and majorly 
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contributes to terrestrial ecosystem carbon storage (Rocha and 
Goulden, 2009). Under the background of global change, the 
research on carbon sequestration capacity of marsh vegetation has 
become one of the important contents of global carbon cycle (Ewe 
et al., 2006; Cook et al., 2009; Byrd et al., 2018). Understanding the 
spatial pattern and temporal changes of marsh AGB in response 
to climate change relies on accurate spatial prediction and is of 
great significance for studies of terrestrial carbon sequestration.

Estimation of marsh AGB at large scales relying on a valid 
spatiotemporal prediction model has attracted tremendous efforts 
(Byrd et  al., 2018; Shen et  al., 2021). Previous studies have 
indicated a good correlation between marsh AGB and the 
vegetation index such as normalized difference vegetation index 
(NDVI) and enhanced vegetation index (EVI; Neba et al., 2014; 
Lu et al., 2022), therefore, vegetation index and power function 
model was often used to estimate marsh AGB (Gao et al., 2013; 
Wang et al., 2021). Whereas, marsh is non-zonal ecosystem with 
various vegetation types and discontinuous distribution, and its 
spectral information is clearly affected by surface water (Wan 
et al., 2019). Therefore, it is necessary to consider multiple factors 
comprehensively for estimating marsh AGB avoiding the 
uncertainty associated with using single vegetation index. 
Although multiple linear regression driven by multiple variables 
can effectively describe the linear relationship between marsh 
AGB and remotely sensed variables (O'Shea et al., 2021; Zhao 
et  al., 2022), the results are unsatisfactory when faced with 
complex relationships between factors. In recent years, 
sophisticated machine-learning models have been widely used 
and indicated good results in spatially predicting ecological 
parameters (Ren et al., 2020; Li et al., 2022). Machine-learning 
algorithm, i.e., random forest, can fully consider the complex 
relationships and influences from different variables to achieve a 
better estimation of marsh AGB (Grimm et al., 2008; Wiesmeier 
et al., 2011). There are often differences in the accuracy of different 
models, mainly caused by different model mechanisms, 
incomplete specification of processes, and key inputs and 
parameters (Breiman, 2001; Ren et  al., 2020). Therefore, it is 
necessary to compare different models to select the best model to 
simulate marsh AGB.

Climate change and anthropogenic disturbances are the main 
forces to the inter-annual change in marsh AGB. Warming climate 
can increase marsh AGB via promoting vegetation productivity, 
while increasing precipitation can promote vegetation growth and 
increase marsh AGB (Shen et  al., 2021). Understanding the 
impacts of different climatic and anthropogenic factors on marsh 
AGB is critical to predict how marsh AGB change. Currently, there 
is still a lack of systematic studies on the response of marsh AGB 
to climate change on an annual scale or in different periods.

Northeast China has the largest area of marshes in China, 
which are important for protecting species diversity and regulating 
the regional climate and hydrology (Mao et al., 2014). Northeast 
China is also a climate change sensitive region in middle-and 
high-latitudes (Mao et  al., 2020). This region has experienced 
increased precipitation and warmer temperature over the past few 

decades (Yao et  al., 2018; Li et  al., 2021). Specifically, the 
temperature increase in winter is significantly higher than that in 
summer, and changes in precipitation and temperature have been 
spatially heterogeneous (Zhao et al., 2021). Previous estimates 
based on site-scale measurements have revealed the spatial pattern 
and storage of marsh AGB (Suo et al., 2010; Li et al., 2011; Zhao 
et al., 2022). However, our knowledge about the long-term marsh 
AGB variations in response to climate change needs to be furtherly 
enhanced. Examining the spatial and temporal changes of marsh 
AGB and its relationship with climatic variables will benefit to 
understanding regional marsh responses to global change and 
carbon cycle.

The main purpose of this paper is to estimate the spatial and 
temporal distribution of marsh AGB in Northeast China, and 
quantify the responses of marsh AGB to climate change. The 
specific objectives of this study are to: (1) develop an optimal 
marsh AGB prediction model based on the field-measured data 
and moderate resolution imaging spectroradiometer (MODIS) 
data by comparing liner regression and machine-learning models, 
(2) examine the spatial pattern and annual changes of marsh AGB 
from 2000 to 2021, and (3) explore the impacts of climate change 
to marsh AGB.

Materials and methods

Study area

Northeast China covering Heilongjiang, Jilin, and Liaoning 
Provinces, as well as the eastern parts of the Inner Mongolia 
Autonomous Region extends from 115°32′E to 135°09′E and from 
38°42′N to 53°35′N (Figure 1). Northeast China locates on the 
corridor of migratory birds in East Asia-Australia (Kirby et al., 
2008; Gu et al., 2021). Marshes are widely distributed in this area, 
with a total area of 76.7 × 103 km2 in 2015 (Mao et al., 2018). A 
total of 18 wetland sites with international importance (Ramsar 
sites) distribute in this region. Northeast China includes three 
climatic divisions: semi-arid region, semi-humid region, and 
humid region. Spatially, temperature in this region increased 
gradually from north to south, with a mean annual value of −4°C 
to 12°C. Precipitation varies significantly within and between 
years, with 70% to 80% of total precipitation occurring between 
mid-June and mid-August. Precipitation decreases from 1,100 mm 
in the southeast to 250 mm in the northwest (Yao et al., 2018).

Data

Marsh distribution dataset and field samples of 
AGB

The marsh distribution dataset was extracted from the 
Landsat OLI images with a spatial resolution of 30 m in 2015 
using the hybrid object-based and hierarchical classification 
approach (Mao et  al., 2020). The dataset achieved reliable 

https://doi.org/10.3389/fevo.2022.1043811
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ren et al. 10.3389/fevo.2022.1043811

Frontiers in Ecology and Evolution 03 frontiersin.org

classification with an overall accuracy of 95.1% and thus has 
been used in many research (Yang et al., 2020; Zhang et al., 
2021). For a comparative analysis of the spatial differences in 
marsh AGB, the study area was divided into six geographic 
regions referencing the study (Mao et al., 2019) including the 
Greater Khingan Mountains Region, Sanjiang Plain, Changbai 
Mountains Region, Lesser Khingan Mountains Region, Liao 
River Plain, and Songnen Plain (Figure 1).

We totally collected 458 sample plots in August from 2009 to 
2021, as shown in Figure  1. All those sample plots were 
investigated with three repeats (0.5 m × 0.5 m) to get the mean 
value (1 m × 1 m) of the AGB. Fully considered the distribution of 
marshes, community types, and the accessibility of traffic, the 
sampling points were designed to evenly distributed as far as 
possible in order to represent the marshes in the whole study area. 
We recorded the geographic coordinates, elevation, and vegetation 
type for each plot. Marsh community types include Phragmites 
australis, Deyeuxia angustifolia, Carex spp., Carex tato, Carex 
lasiocarpa, Carex appendiculata, and Manna grass. The in-situ 
AGB samples were taken into the laboratory, oven-dried at 65°C, 
and then weighed to the nearest 0.01 g.

MODIS data
In this study, we  used MODIS reflectance products 

(MOD09A1, MOD11A2, and MOD113A1) from 1 June 2000 to 1 
October 2021 archived in the Google Earth Engine (GEE) cloud 
platform. Five vegetation indices were selected to perform 
regression analysis. NDVI, EVI, weighted difference vegetation 
index (WDVI), ratio vegetation index (RVI), and modified soil 
adjusted vegetation index (MSAVI) were calculated, as shown in 
Table 1.

Land surface temperature (LST) is related to growing duration 
and physiological activity of the top canopy leaves (Sims et al., 
2008), while land surface water index (LSWI) is a representative 
parameter of land surface water content (Xiao et al., 2004). In 
some ecological process models that estimate net primary 
productivity or gross primary productivity, LST and LSWI were 
used to calculate the coefficient of temperature and water stress 
restriction, respectively (Kalfas et al., 2011). Therefore, LST and 
LSWI were used to characterize the hydrothermal condition. LST 
dataset (MOD11A2) was stored on grid as the average values of 
clear sky LST during 8-day periods. We  calculated LSWI 
as follows:

A C

B

FIGURE 1

Location of Northeast China (A), spatial distribution of marshes and filed sampling sites of aboveground biomass (AGB) in Northeast China (B), and 
number of sampling sites in different years (C).
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We used the mean values during the growing season (May 1 
to September 30) as the yearly data. We also calculated the annual 
NDVI Max as a simulation variable due to its good performance 
in simulating vegetation biomass (Wang et al., 2021).

Climatic data
Mean annual temperature, annual precipitation, seasonal 

average temperature, seasonal precipitation, monthly average 
temperature, and average precipitation were obtained from 
meteorological records during 1999–2021. These data were 
downloaded from the National Tibetan Plateau Data Center.1

Methods

AGB inversion models
We established multiple models (single-factor power 

function model, multiple linear regression models, and random 
forest models) with different combinations of input indicators, 
and selected the optimal model by comparing R2, relative error 
and root mean square error (RMSE). A 10-fold cross-validation 
method was used to evaluate the performance of the models. In 
this method, the whole dataset was randomly split into 10 folds, 
each of which contained 10% of the data. One fold of data was 
used as test data, while the other nine folds were used as training 
data. Then, another fold of data was used as test data and the 
remaining ones as training data, and so on and so ninth for a 
total of 10 times. Averages of 10 sets of R2, relative error, and 
RMSE were used as the model R2, relative error, and RMSE, 
respectively.

Single-factor power function model has been widely used to 
estimate AGB (Wang et al., 2021). The power function equation 
model is expressed as follows:

1 http://data.tpdc.ac.cn/

 Y x= b b
1

2

the above expression represents the true relationship between 
variables Y and x, where Y is the dependent variable marsh AGB, 
x is the independent remote sensing variable, b1  is the coefficient, 
and b2  is the power.

Multiple linear regression model is used to fit the curvilinear 
correlation between vegetation index and AGB, using an 
exponential model or high-order equation (Zhao et al., 2022). 
Although the model fitting accuracy has been improved, due to 
the basis of the algorithm itself, there will be large errors in the 
inversion results for uneven areas of vegetation coverage. The 
polynomial equation is the basic model of AGB, and the formula 
is as follows:

 Y x x x uk i= + + +¼+ +b b b b0 1 1 2 2

where Y  is the dependent variable vegetation AGB, xi  (i = 1, 
2, … n) is the independent remote sensing variable, k is the 
number of explanatory variables, bk  (j = 1, 2, … k) is the 
regression coefficient, and u is the error coefficient. The above 
formula is also known as the random expression of the population 
regression function.

The random forest regression is a machine-learning algorithm 
that takes an ensemble learning approach for prediction (Breiman, 
2001). The algorithm generates the final results by averaging the 
class allocation probabilities of all produced trees. The trees are 
created by replacing a subset of training samples and randomly 
selecting variables in the R environment (v.4.0.2). It can estimate 
the importance of predictor variables and run efficiently on large 
databases (Akpa et al., 2016). When training the random forest 
model, we  adjust the parameters of the model (mtry = 3, 
ntree = 500) to achieve the best model accuracy.

Correlation analysis
To explore potential impacts of climate change on the marsh 

AGB, Pearson’s correlation coefficient (R) between marsh AGB 
and annual, seasonal, and monthly temperature and precipitation 

TABLE 1 Vegetation indices and calculation formulas.

Name of vegetation indices Calculation formula

NDVI ( ) ( )NDVI /nir red nir redR R R R= - +

EVI ( ) ( )( )EVI 2.5 / 2.5nir red nir redR R R R= - -

WDVI WDVI 1.06nir redR R= -

RVI RVI /nir redR R=

MSAVI
( ) ( )MSAVI 0.5 2 1 2 1 82

nir nir nir redR R R Ré ù
= ´ + - + - -ê ú

ë û

https://doi.org/10.3389/fevo.2022.1043811
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://data.tpdc.ac.cn/


Ren et al. 10.3389/fevo.2022.1043811

Frontiers in Ecology and Evolution 05 frontiersin.org

in Northeast China were calculated according to the 
following formula:
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x x y y
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where n is the number of years studied, i.e., 22 years, Rxy  is 
the correlation coefficient between variable x and y; xi  is the value 
of AGB for year i; yi  is the value of climate factors for year i ; x  
and y are the average value of the AGB and the climate factors, 
respectively.

It is worth noting that marsh AGB is the largest in August 
in Northeast China, and the climatic conditions in winter will 
not affect the AGB of that year. But winter temperatures and 
snow may affect vegetation growth the following year (Wahren 
et al., 2005; Heidi et al., 2009). Therefore, we performed the 
correlation analysis between the temperature and precipitation 
in winter and the marsh AGB in the following year.

Data processing and analysis
In order to examine the spatial pattern and annual 

variations of marsh AGB, we made five steps to achieve our 
objects (Figure 2). First, we used the MODIS reflectance and 
equation to calculate the raster dataset of vegetation index 

FIGURE 2

Flowchart for quantifying marsh AGB.
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and LSWI from 2000 to 2021. Second, we  completed data 
cleaning, preprocessing, and quality control before data 
analysis. The raster dataset of MODIS and meteorological 
factors was resampled to 30 m resolution using the nearest 
neighbor method, to match with the raster grids of marshes. 
Third, we extracted the raster dataset of the corresponding 
year based on the coordinates of the field samples. Forth, 
we  established and evaluated different regression models 
based on remote sensing and field observation data. Then 
we  selected the optimal model for estimating marsh AGB 
based on the accuracy evaluation results. Moreover, 
we  investigated the impact of climate change on marsh 
AGB. The downloading and processing of raster data were 
achieved on the GEE cloud platform, and the model 
establishment was performed in the R software (v. 4.0.2).

Results

Model establishment and evaluation

Table  2 presents the results of the single-factor power 
function model, the multiple linear regression model, and 
random forest model. As revealed, the random forest model 
driving by vegetation indices, LSWI, and LST achieved the 
best performance of predicting AGB with R2 of 0.78, relative 
error of 16.71%, and RMSE of 163.18. The accuracies of the 
models based on single vegetation index were low. The 
accuracies of the multi-factor model were significantly higher 
than that of the single-factor model. Among the models with 
the same factors, the accuracy of the random forest model 
was significantly higher than that of the multiple linear 
regression model. After adding the LST and LSWI, the 
accuracy of the multiple linear regression model and random 
forest model was significantly increased, resulting in the R2 of 
0.67 and 0.78, respectively. Therefore, random forest model 
driving by vegetation indices, LSWI, and LST was selected in 
this study to estimate marsh AGB in Northeast China.

Spatiotemporal variations of marsh AGB

It was estimated that averaged marsh AGB from 2000 to 
2021 was about 682.89 ± 31.69 g·m−2 (Figure 3). There was an 
obvious spatial heterogeneity for the mean annual marsh 
AGB in Northeast China (Figure 4). In general, marsh AGB 
exhibited a decreasing trend with increase of latitude. The 
highest values of marsh AGB were mainly found in the Liao 
River Plain, while low marsh AGB values, about 600 g·m−2, 
were primarily observed in the Greater Khingan Mountains 
Region and Lesser Khingan Mountains Region. From 2000 to 
2021, the mean marsh AGB in Northeast China decreased 
slowly at a rate of 3.45 g·m−2·year−1. Annual changes of marsh 
AGB in Northeast China had obvious spatial heterogeneities. 
There were 71.16% of marsh AGB in Northeast China with a 
downward trend (Figure 4).

The influence of climate change on 
marsh AGB

The correlation analysis suggested that marsh AGB had a 
significant positive correlation (r = 0.69, p < 0.01) with annual 
average temperature, and a positive correlation (r = 0.34, 
p < 0.05) with annual precipitation in Northeast China 
(Table  3). Marsh AGB in different seasons was positively 
correlated with the corresponding seasonal average 
temperature with significance at 95% level. In addition, marsh 
AGB was positively correlated (r = 0.26, p < 0.05) with summer 
precipitation (Table 3).

The correlations of marsh AGB with monthly precipitation 
and monthly average temperature are shown in Table 4. There was 
a significantly positive correlation between temperature and 
marsh AGB in different months, and the correlation was larger in 
months from June to August (r = 0.67, 0.69, 0.68, respectively, 
p < 0.01). Moreover, marsh AGB had a positive correlation with 
precipitation in May and July (Table 4).

TABLE 2 Regressive results for estimating marsh aboveground biomass (AGB).

Factor type Regression type R2 Significance (p) Relative error RMSE

NDVImax y = 2,861.13x5.78 0.51 0.01 35.94% 362.12

NDVImean y = 9,364.48x6.08 0.33 0.01 41.57% 482.56

RVI y = 25.64x1.95 0.46 0.01 39.53% 365.48

WDVI y = 29,187.95x2.45 0.32 0.01 42.31% 448.09

EVI y = 9,959.34x3.02 0.34 0.01 42.11% 430.15

MSAVI y = 7,271.74x2.43 0.27 0.01 46.67% 452.15

Six vegetation indices Multiple linear regression 0.59 0.01 28.56% 308.07

Six vegetation indices, LSWI, and LST Multiple linear regression 0.67 0.01 22.33% 205.97

Six vegetation indices Random forest model 0.63 0.01 25.15% 232.32

Six vegetation indices, LSWI, and LST Random forest model 0.78 0.01 16.71% 163.18
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Spatially, we found that the 44.39% of marsh AGB exhibited a 
significant positive correlation with temperature in Northeast 
China (Figure 5). In areas with higher latitudes, such as the Greater 
Khingan Mountains Region, Lesser Khingan Mountains Region, 

and Songnen Plain, the correlation was more remarkable. There 
was no significant correlation between marsh AGB changes and 
precipitation changes. Compared with precipitation, the correlation 
between marsh AGB and temperature was more significant.

FIGURE 3

Temporal variation of marsh AGB in Northeast China from 2000 to 2021.

A B

FIGURE 4

(A) Spatial patterns of averaged marsh AGB (g·m−2) and (B) variation trend of marsh AGB (g·m−2·year−1) from 2000 to 2021.
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TABLE 4 Correlation coefficients between marsh AGB and monthly climatic variables.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temperature 0.52** 0.64** 0.61** 0.65** 0.65** 0.67** 0.69** 0.68** 0.66** 0.64** 0.63** 0.60**

Precipitation 0.16 0.22 0.19 0.15 0.27* 0.23 0.32* 0.24 0.01 0.02 0.18 0.16

Significant at *p < 0.05 and **p < 0.01 levels.

A B

FIGURE 5

Correlation between marsh AGB and climatic variables in Northeast China from 2000 to 2021. (A) Spatial correlation with annual average 
temperature (p < 0.05) and (B) correlation with annual average temperature (p < 0.05).

Discussion

Estimation of annual marsh AGB in 
Northeast China

Accurate estimation of marsh AGB is of great significance for 
assessing carbon cycle of wetland ecosystem. Our results 
demonstrated that the random forest model combining vegetation 
indices, LST, and LSWI was feasible in estimating marsh AGB in 
Northeast China. The differences in the models mainly come from 
two sources. First, the relationship between AGB and various 
spectral indices or environmental factors is complex, and a simple 

linear relationship cannot reflect this relationship well (Temmink 
et al., 2022). The random forest model can describe the nonlinear 
relationship between marsh AGB and environmental factors and 
reduce the error of the model (Breiman, 2001). Another source of 
error is that the images of different marsh vegetation types are 
quite different, so the estimation accuracy of the single vegetation 
index model for the whole area is low (Shen et al., 2021; Zhao 
et  al., 2022). Therefore, combining vegetation index and 
environmental variables (LST and LSWI), the estimation accuracy 
of marsh AGB using the random forest model has been 
significantly improved compared with the multiple linear 
regression and single-factor power function model (Table 2).

TABLE 3 Correlation coefficients between marsh AGB and seasonal climatic variables in Northeast China.

Spring Summer Autumn Winter Annual

Temperature 0.65** 0.68** 0.64** 0.61** 0.69**

Precipitation 0.20 0.26* 0.06 0.18 0.34*

Significant at *p < 0.05 and **p < 0.01 levels.
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Effects of climatic changes on annual 
marsh AGB

Our results found that the marsh AGB distribution has 
obvious spatial heterogeneity and generally decreases with 
increasing latitude in Northeast China (Figure 4), and the 
temperature was considered the main force controlling the 
obvious spatial variation of marsh AGB. Temperature is one 
of the most important factors influencing the growth and 
development of vegetation. Warmer temperatures could delay 
the marsh vegetation growth season and increase the marsh 
AGB (Wang et al., 2021). The marsh AGB in the Liao River 
Plain was significantly higher than that in the Greater 
Khingan Mountains Region and the Lesser Khingan 
Mountains Region, which may be  related to the high 
temperature and relatively favorable environmental 
conditions for vegetation growth in the Liao River Plain (Suo 
et  al., 2010). We  found that marsh AGB was positively 
correlated with precipitation in summer, and there was a 
significant positive correlation in May and July. This may 
be  due to the fact that May was the start of the marsh 
vegetation growing season, and July was the fast-growing 
season for marsh vegetation. The precipitation mainly has a 
positive influence on marsh AGB (Liu et al., 2015). There are 
differences in precipitation in different regions, which further 
influenced the spatial distribution of marsh AGB.

Several studies have demonstrated that changes in temperature 
and precipitation have important effects on marsh AGB (Suo et al., 
2010; Li et al., 2011; Wang et al., 2021). According to our results, 
temperature change is the main reason affecting the spatial variation 
of marsh AGB (Figure 5). Wang et al. (2014) also demonstrated that 
the marsh productivity had a positive correlation with temperature in 
most marshes. Most of the marshes in Northeast China are distributed 
in northern temperate zone and it is generally believed that low 
temperature limits vegetation growth (Bai et al., 2008; Mowll et al., 
2015). The vegetation growth in Northeast China was concentrated 
from May to August, and the marsh AGB reached the maximum 
around August. Therefore, summer temperature had primary impact 
on marsh AGB, especially from June to August (Table 4). In the 
context of global warming, there are differences in temperature 
changes in different seasons in Northeast China (Xue et al., 2021). 
From 2000 to 2021, the winter and spring temperature in Northeast 
China increased significantly, while about 70% of the area showed a 
decreasing trend in summer temperature (Figures 6, 7). Therefore, 
we argue that the decline of annual marsh AGB is primarily correlated 
to the decreasing summer temperature in Northeast China.

Uncertainty and future work

Although this study provided a comprehensive estimation 
of marsh AGB in Northeast China, some limitations still 

FIGURE 6

Climate change observations of 22 years of marsh area reveal a significant difference with season and temperature.
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existed. Firstly, although we randomly obtain three quadrats 
in each sample plot, there may still be  errors in the AGB 
representing the marsh pixels. Secondly, due to the relatively 
low spatial resolution, the vegetation index data probably 
could not accurately reflect the actual status of vegetation 
within a 250 m × 250 m area, which might lead to some 
uncertainties. Thirdly, changes in the area of marshes might 
cause certain errors (Mao et al., 2022). Marshes have been 
dynamically changing from 2000 to 2021, which might bring 
some differences in the average and total estimates of marsh 
AGB (Wang et al., 2011; Mao et al., 2018). In order to estimate 
the biomass of regional marsh vegetation more accurately, 
we  need to further strengthen the work of high-precision 
remote sensing mapping and ground verification of 
marsh vegetation.

In this study, we  only focused on the response of the 
marsh AGB variations to temperature and precipitation. 
However, some other climate factors should also 
be considered to affect marsh AGB such as evapotranspiration, 
wind, and solar radiation (Robert et al., 2012; Morecroft et al., 
2019). Moreover, anthropogenic activities were also important 
factors affecting marsh AGB (Mao et al., 2018), which should 
be  considered in the future to further assess the spatial–
temporal variation of marsh AGB in Northeast China. In 
recent years, the government has strengthened the protection 
of marshes and continuously increased the area of marsh 
reserves, while marsh degradation and cropland occupation 
have also occurred in the area, which reduced the marsh area 
(Mao et  al., 2019), but they were ignored in this study. 
We  suggest that the marshes with special changes should 

be analyzed separately in the future in order to evaluate the 
total marsh AGB changes more accurately in Northeast China.

Conclusion

In this study, we  examined the spatiotemporal changes of 
marsh AGB in Northeast China in response to climate change 
combining MODIS reflectance products and field-measured AGB 
data. Results showed that the accuracy of marsh AGB estimated 
by the random forest model based on vegetation indices, LST, and 
LSWI was higher than that of the single-factor model and the 
multivariate linear model (R2 = 0.78). We estimated that the annual 
average marsh AGB was about 5.24 × 107 t in Northeast China 
from 2000 to 2021. The average value of AGB was 
682.89 ± 31.69 g·m−2, and reduced at a rate of 3.45 g·m−2·year−1 
from 2000 to 2021. The marsh vegetation AGB has a marked 
correlation with the summer temperature. We should pay more 
attention to the impact of temperature changes in different seasons 
on the marsh AGB of vegetation in Northeast China. This study 
provides methods and ideas for the accurate estimation of marsh 
AGB, and lays a foundation for the estimation of marsh vegetation 
carbon storage.
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FIGURE 7

Variations of summer mean temperature and precipitation in Northeast China marshes from 2000 to 2021.
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