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The improvement of carbon emission e�ciency is guided by high-quality

economic development, and the organic integration of ecology and economy

is an important goal of putting sustainable economic development into

action. Based on China’s provincial panel data from 2008 to 2019, this article

constructs a digital economy development index from the perspective of the

digital economy and analyzes its impacts on carbon emission e�ciency. The

conclusion is that the development of the digital economy has significantly

improved carbon emission e�ciency. Through the analysis of the spatial

spillover e�ect, it is found that regional carbon emission e�ciency has a spatial

correlation, but the development of the digital economy has no significant

impact on the carbon emission e�ciency of neighboring regions. Industrial

structure adjustment, the energy structure, and technological progress are

further analyzed as three mechanisms a�ecting carbon emission e�ciency.

It is found that the quality of industrial structure adjustment significantly

promotes the improvement of carbon emission e�ciency, while the energy

structure significantly inhibits its improvement, and the range of industrial

structure adjustment and technological progress have no significant impact

on carbon emission e�ciency. Based on the threshold e�ect, carbon emission

e�ciency be promoted only when the energy structure is in the interval unit

(0.1288, 0.2441) and technological progress is >1.0591. Based on the above

conclusion, we put forward corresponding policy suggestions.

KEYWORDS

digital economy, carbon emission e�ciency, energy structure, technological

progress, industrial structure adjustment

Introduction

Economic development has greatly improved people’s living standards, which is
a need for human progress and civilization, as well as an inevitable result of social
development. However, in the process of modernization, the considerable consumption
of coal, oil, gas, and other energy sources inevitably leads to considerable carbon
emissions. This sustained growth of carbon emissions is not only a need for sustainable
economic development in developing countries but also determines the right of
subsistence and the pursuit of a better material life for citizens in developing countries.
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However, with the intense interest game and political contest at
the Copenhagen Conference in 2009, carbon emissions and the
low-carbon economy have gradually triggered a debate around
the world. In particular, China, as the largest developing country
in the world, has become the world’s largest carbon emitter,
as its total carbon emissions are equivalent to those of the
United States and the European Union combined. Although
its per capita carbon emissions are far lower than those of
the United States and Australia, it is still criticized by other
countries. However, in the process of modernization, many
developing countries, including China, will continue to expand
their consumption of steel, cement, and fossil energy, and
their carbon emissions will continue to increase for some time
to come.

The development model characterized by high carbon
has brought a huge leap forward for China’s economic take-
off, bringing China’s per capita GDP above $10,000, but the
strong carbon lock-in effect has also imposed a heavy cost
on China’s ecological environment. Such carbon emissions
led to very serious air pollution, particularly in some parts
where environmental pollutant discharge capacity exceeds local
ecological capacity. Environmental pollution problems have
become increasingly sharp, especially serious fog weather in
recent years, which has become the key to environmental
pollution and triggered the further reflection of society as a
whole. As China’s economic growth turns from a high-speed
stage to a high-quality one, China’s huge population base,
unbalanced regional development and poverty problems, and
employment structural contradictions, such as long-standing
still are the most difficult tasks facing the Chinese government;
in this difficult process, carbon emissions caused by the
strong carbon lock-in effect and economic development will
continue to grow. Meanwhile, the Chinese government has
proposed the goals of carbon emissions peaking by 2030 and
carbon neutrality by 2060. Under the constraints of the dual-
carbon goals of “carbon peaking” and “carbon neutrality,” local
governments will be faced with the problem of balancing
economic development with green and low-carbon development
for a long time.

Nowadays, climate change is increasingly becoming
a core environmental issue. The important purpose of
digital economy development is to change the habits and
motivations of producers, consumers, and investors, and to
obtain as many useful products or services as possible with
as low-carbon emissions or related environmental costs,
so as to improve carbon emission efficiency. Therefore,
carbon emission efficiency is integrated with economic and
ecological sustainability, and it is an important goal that puts
sustainable development into practice. Compared with simple
economic efficiency indicators, it has the advantage of high
comprehensiveness, representativeness, and clear directionality,
so as to promote governments around the world to focus on the
goal of carbon neutrality.

Given this, this article first constructs the indicator structure
of the digital economy from five dimensions proposed by
previous scholars and then calculates the carbon emission
efficiency of China’s provinces. Next, it empirically examines the
relationship between the digital economy and carbon emission
efficiency, and on this basis, discusses the heterogeneity and
mechanism of the digital economy’s impact on carbon emission
efficiency. The possible marginal contributions of this article are
as follows: First, from a research perspective, unlike most studies
that only focus on the impact of digital economy development
on high-quality development, productivity, inclusive growth,
employment, and other economic factors, this article focuses
on the impact of the digital economy on carbon emission
efficiency from the perspective of possible environmental
effects of the digital economy. Second, in terms of research
content, this article takes into account the impacts of spatial
differences and digital economy characteristics on benchmark
regression results, and then studies the heterogeneous impact
of the digital economy on carbon emission efficiency from
the perspective of regional heterogeneity and the digital
economy’s dimensional heterogeneity, and also discusses the
mechanism of the digital economy’s impact on regional carbon
emission efficiency from the perspective of industrial structure
adjustment, the energy structure, and technological progress.
Third, in a practical sense, it provides empirical support for
further strengthening the construction of the digital economy
and provides a scientific basis for China to achieve the dual-
carbon goals.

Literature review

Severe environmental problems make countries increasingly
aware of coping with global climate change, and scholars have
carried out in-depth discussions on carbon emissions intensity,
carbon emissions rate, and green economic growth from various
aspects and perspectives.

Technological innovation and carbon
emissions

In terms of research on technological innovation and carbon
emissions, many studies have pointed out that technological
innovation or progress is not only a positive measure to
save energy and reduce emissions but also an important
way to solve carbon dioxide emissions and climate warming
(Camarero et al., 2013). For example, Wang et al. (2016) believe
that increasing R&D investment in green technology will not
only reduce energy consumption per unit of GDP but also
significantly reduce total carbon emissions and per capita carbon
emissions in both developed and developing countries. Basu
and Fernald (2008) discuss the impact path of technological
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progress on carbon emissions. For developed countries,
technological progress reduces household energy consumption,
but for industry, it will expand energy consumption. Nie
et al. (2021) believe that the government’s expansion of R&D
expenditure can alleviate enterprises’ emission behavior to a
certain extent. Meanwhile, ordered environmental regulation
can force enterprises to reduce carbon emissions in the
short term, but in the long run, it may increase enterprises’
behavior of emissions theft or excess. Wu et al. (2021) believe
that regional technological innovation makes a significant
difference in the ecological environment. The higher the level
of economic development, the more technological innovation
can bring about the improvement of carbon emission efficiency;
on the contrary, the less developed the economy, the less
significant the improvement of carbon emission efficiency
will be.

Moreover, some scholars hold different views on the positive
role of technological innovation in reducing carbon emissions,
i.e., technological innovation may have long-term and short-
term phased or cyclical impacts on carbon emissions. For
example, Craig et al. (2018) study the driving factors of
carbon emission efficiency based on population, capital, and
technology models, and find that technological progress has
no significant impact on improving carbon emission efficiency,
which is mainly influenced by multiple factors such as city
size, human capital, and foreign-funded enterprises. Sturgeon
(2021) shows that technological progress has an inhibitory
effect on carbon emission efficiency only in the long term,
but has no significant impact in the short term. Zhu et al.
(2009) find that technological progress has a rebound effect
on carbon emission efficiency through the decomposition
of total factor productivity, mainly because technological
progress can promote economic growth and increase energy
consumption, but in the short term, technical capacity often
fails to deal with the increase of carbon emissions, leading
to the reduction of carbon emission efficiency. In addition,
some studies show that the impact of technological progress
on carbon emissions reduction is random and volatile. Ferreira
et al. (2018) decompose the factors affecting carbon emissions
through the log-average Dirichlet exponential decomposition
(LMDI) theory and point out that scientific and technological
progress brought by R&D investment has certain randomness
to carbon emissions brought by energy consumption. By
studying China’s carbon emissions, Li D. et al. (2022) suggest
that although the technological innovation effect of carbon
emissions is generally positive, there is a large fluctuation,
and the role of science and technology in reducing carbon
emissions is still insufficient. Camarero et al. (2013) find
that technological progress has a significant threshold effect
on reducing carbon intensity by studying the effect of
technological progress on carbon emissions intensity in different
European countries.

Digital economy and industrial structure

With the change in economic development patterns, the
digital economy, which is driven by data elements, is booming
and attracting the attention of people from all walks of life.
For example, Nunes (2016) points out that although the
vigorous development of the digital economy has brought
about the deep integration of traditional industries, there
are significant differences in the penetration of the digital
economy into different industries, and more technology-
intensive industries have a higher demand for digital technology.
Liu et al. (2022a) believe that the digital economy promotes
the rapid transformation of old and new drivers, drives the
transformation and upgrading of industries to the middle
and high ends, and results in a series of innovations in the
connotation, space, and field of industrial development. Jiang
et al. (2022) point out that the digital economy promotes
the construction of digital infrastructure, brings application
innovation of digital technology, optimizes the allocation
efficiency of factor resources, and promotes the deep integration
of industrial development and technology. Sun et al. (2019)
hold that the deep integration of the digital economy and
traditional industries has spawned more new industries or new
forms of business, and led to the diversification of industries.
Liu et al. (2020) conclude through an empirical analysis
of the spatial spillover effect that both the development of
information technology and the transformation and upgrading
of the manufacturing industry are characterized by spatial
aggregation, and that information technology plays a role in
promoting the development of industrial enterprises from the
low end to the high end. Zhang et al. (2019) empirically
analyze the impact of digital economy development on urban
ecological efficiency and point out that there is path dependence
on digital economy development → industrial structure

upgrading → ecological efficiency improvement, and the
development of the digital economy reduces pollutant emissions
through the transformation and upgrading of the industrial
structure. Sun et al. (2022) comparatively analyze the drivers
of digital economy development in different countries in
manufacturing transformation and upgrading and point out
that the digital economy significantly promotes the development
stage of manufacturing transformation from a lower level
to a higher level, and there is a long-term dynamic non-
reciprocal interaction between digital economy development
and manufacturing transformation and upgrading. Centobelli
et al. (2018) construct an economic growth model by building
more departments, where the digital economy is divided
into the supply and demand sides, and set up a digital
industrial department and a digital convergence network,
suggesting that figures do not curry favor with the simple
push between industrialization and industrial digitalization, and
digital industrial department and the department of digital
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convergence is not balanced. Chitra (2007) and Chiou et al.
(2011) analyze the impact of the digital economy on the
speed of industrial transformation and the sophistication and
rationalization of the industrial structure and conclude that the
digital economy can significantly improve the speed of industrial
transformation and has a backward advantage of increasing
marginal return on industrial structure transformation.

Industrial restructuring and carbon
emissions

In industrial structure and carbon emission-related research,
the evolution or change in the industrial structure will have
a profound impact on carbon emissions and the ecological
environment. Chen et al. (2013) point out from a microscopic
perspective that industrial structure adjustment is a complex
system evolution process among various industries and
components within the industry. In this process, industrial
structure adjustment reduces resource mismatch, improves the
internal operation efficiency of the industry as a whole, and
reduces carbon emissions on the whole. Drake et al. (2016)
suggest that the impacts of different peak carbon emissions
scenarios on the industrial structure, among which energy-
consuming industries have the most significant impact on
the energy output structure, and environmental protection
policies ordered by the government are the most effective
way to promote industrial adjustment. Esenduran et al. (2017)
analyze the coupling between carbon emission efficiency and
the industrial structure and point out that regional carbon
emission efficiency and the industrial structure of different
levels of economic development have great differences in the
spatio-temporal pattern. The more developed the region is,
the higher the coupling coordination level between carbon
emission efficiency and the industrial structure is. In addition,
the higher the internal coupling coordination between industries
is, the lower the carbon emissions intensity is. Kannan et
al. (2012) control the impact of energy structure, economic
development, and industrial structure on carbon emissions in
the urbanization stage. The results show that upgrading the
industrial structure can significantly reduce carbon emissions
intensity in the process of urbanization. Luken and Rompaey
(2008) point out that there is not a complete linear change
between the industrial structure and carbon emissions intensity,
both of which are inverted “U-shaped.” As the investment
in clean industries increases, carbon emissions from energy
consumption of enterprises with high energy consumption
will gradually decrease. Liu et al. (2015) analyze the impact
of the industrial structure on carbon emissions from both
horizontal and vertical dimensions and conclude that the
higher the proportion of secondary industries in the economic
structure, the higher the carbon emissions intensity is, and

the higher the contribution rate to the carbon emissions
intensity of the whole society is. However, by implementing
industrial transformation and changing the energy consumption
structure, carbon emissions can be reduced in the short
term. Özdemir and Denizel (2012) divide China’s economic
structure into 16 industries and analyze the relationship between
green productivity and industrial structure change. The study
shows that industrial factors are negatively correlated with
green productivity and technical efficiency at the industrial
level of the light industry, and positively correlated with
technological progress. In carbon emissions reduction, policies
and regulations are formulated according to the characteristics
and development trends of each industry.

Through a review of existing literature, it is found that the
following deficiencies exist in relevant studies. First, existing
studies mainly focus on the impact of the industrial structure
on carbon emissions, especially the effect of the industrial
structure on carbon emissions, and rarely analyze the efficiency
of carbon emissions from the perspective of the quality and
extent of industrial structure adjustment. Second, most literature
mainly focus on carbon emission or ecological environment
evaluation, while there are few studies on carbon emission
efficiency. This article enriches existing literature by considering
carbon emission efficiency from the perspective of energy
input and output. Third, few scholars analyze the behavior
of carbon emission efficiency from the perspective of digital
economy development and the influence mechanism of the
energy structure and technological progress.

Research design and data sources

Development of the digital economy

Index selection

There is still no unified standard for assessing the
development level of the digital economy, although the digital
economy has not only been widely used in production and
life but has also penetrated various industries due to its rapid
development. Considering the difficulty of data acquisition
and the maximum acquisition of data within the research
period, by referring to existing literature and understanding the
development system of the digital economy (Nunes, 2016; Jiang
et al., 2022), we select the following four primary indicators
and 18 secondary indicators to calculate the comprehensive
development index of the digital economy. The specific
indicators are shown in Table 1. The index source range is
30 provincial-level units selected from 2007 to 2019 (Hong
Kong, Macao, and Taiwan are temporarily excluded based on
data availability), including the National Bureau of Statistics,
State Information Center, China Academy of Information and
Communication Technology, etc. It also includes the China
Information Industry Yearbook, China Information Industry
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Statistical Yearbook, China Information Yearbook, Statistical
Report on the Development of the Internet in China, White
Paper on the Development and Employment of China’s Digital
Economy, etc.

Data processing and indicator weight

After the selection of digital economy indicators, it is
necessary to assign weight to different indicators. There
are two main methods to assign weight: The first is the
subjective value method, which means that relevant people
who master knowledge, experience, or the importance of each
indicator perform comparison sorting and assignment, and
the disadvantage of this method is that the importance of
the selected indicator is determined subjectively so that the
information inside the selected indicator is not manifested, and
the final weights are subjective, without a scientific basis, and the
evaluation results may be distorted. The second is the objective
weighting method. Based on the objective original data, the
information reflected by the data is closely related to each other,
or evaluated by the amount of information in the selected
indicator. The weights calculated by the objective weighting
method can better reflect the relevant distribution of the data.
Compared with the subjective weighting method, the objective
weighting method can avoid the shortcoming of subjectivity
and get more objective evaluation results. The objective weight
method includes entropy and principal component analysis.
Among them, factor analysis makes an overall calculation based
on a weighted average, but does not reflect the differences
between different regions, while entropy can reflect the amount
of information transmitted by the selected indicator and its
proportion in the total amount of information, and further
weight assignment is based on this. To ensure the objectivity and
accuracy of the results, entropy is used to calculate the results.

The standardized value of the original data is calculated.
Since different indicators are selected, the units between
the indicators are not the same, so the purpose of data
standardization is to eliminate the impact of the disunity
of units.

For the standardization of positive indicators:

Dij =
Xij −min(Xij)

max
(

Xij
)

−min(Xij)
(1)

For the standardization of negative indicators:

Dij =
max

(

Xij
)

− X
ij

max
(

Xij
)

−min(Xij)
(2)

In the formula, Dij represents the standardized value of the
j-th indicator in the i-th year; Xij represents the data of the j-
th indicator in the i-th year; max

(

Xij
)

represents the maximum
value of the sample in the i-th year; min(Xij) represents the
minimum value of the sample in the i-th year.

The proportion Cij of the indicator value of the i -th plan
under the j-th indicator is calculated as follows:

Cij =
Xij

∑m
i=1 Xij

(3)

In the formula, Cij represents the proportion of the i scheme
indicator value under indicator j; Xij represents the j scheme
indicator value of the j indicator; m represents the number of
all indices under the j indicator.

The entropy value ej of the j-th indicator is calculated
as follows:

ej = −k
∑m

i=1
Cij lnCij (4)

In the formula, ej represents the entropy value of the j-
th indicator; m represents the number of selected indicators,
k = 1/ ln(tn), where t represents the number of years and n

represents the number of provinces.
The coefficient of variance for the j-th indicator is calculated

as follows:

gi = 1−ej (5)

The weight of the j-th indicator is calculated as follows:

wj=gi/
∑m

j= 1
gi (6)

Finally, after determining the weight, the digital economy
development level of each region can be calculated by the
formula (7). By substituting the standardization of the original
data into the formula, the comprehensive score (Si) of
the digital economy development level of each region can
be obtained.

Si =
∑n

j=1
wjXij (7)

Carbon emission e�ciency

Input–output indicators of carbon emissions

Input indicators: (1) Capital input is measured by capital
stock. Capital stock calculation method: Kit = (1− δ) ×

Kit−1 + Eit , where Kit represents the capital stock in the
t period of the i region. δ represents the depreciation rate,
referring to the study of Kannan et al. (2012), Wu et al.
(2021) and the depreciation rate (δ) is set to be 10%. The
gross fixed capital formation of each province is adjusted to
the comparable price of 2000 as the base period, and the
missing data are estimated by the perpetual inventory method.
The capital stock in 2000 is based on the continuous growth
model: Ki2000 = Ei2000/(δ + gi). gi represents the average
growth rate of fixed asset investment in each province in China
from 2000 to 2019 (Zhu et al., 2009; Xu et al., 2022); (2)
labor input is measured by the total number of employees in
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TABLE 1 Development indicators of the digital economy.

Primary Primary indicator

weight

Secondary indicators Secondary

indicator weight

Digital economy 0.53727 Number of Internet broadband access ports per capita 0.10745

infrastructure Number of websites per 100 people 0.10350

Long-distance cable length per unit area 0.22091

Proportion of digital TV users 0.10541

Digital economy 0.33231 Mobile phone penetration 0.04402

applications Internet Penetration 0.0611

Per capita e-commerce sales 0.00815

Number of computers per 100 employees in an enterprise 0.06312

Ratio of enterprises in e-commerce transactions 0.08921

Ratio of enterprises in e-commerce transactions 0.06671

Innovation 0.04826 R&D expenditure of industrial enterprises above designated size 0.0067

capability of the R&D personnel in industrial enterprises above designated size 0.0258

digital economy Number of students in regular institutions of higher learning 0.00225

Number of patent applications granted 0.01351

Development of

digital industry

0.08216 Information transmission, software and information technology

services revenue as a share of GDP

0.02298

Total telecom business as a share of GDP 0.02168

Software business revenue as a percentage of GDP 0.0375

the three major industries at the end of each province; (3)
energy input is measured by the total energy consumption of
each region.

Output indicators: (1) expected output is the actual GDP
output of each province, and is adjusted to 2000 as the
base period; (2) unexpected output is measured by the total
carbon emissions of each province. As the International Energy
Administration (IEA) and other foreign institutions have good
estimation methods for carbon dioxide emissions of various
countries or regions, carbon emissions of specific internal
regions of the country have not been calculated or given
specific values. Based on the research methods of Chiou et al.
(2011) and Esenduran et al. (2017), this article estimates
the carbon dioxide produced by fossil fuels through the
following formula:

CO2 =
∑n

i=1
(CO2)i =

44

12

∑n

i=1
Ei ×CFi ×CCi ×COFi (8)

In formula (8), i represents the consumption type
of fossil energy, CFi represents the average low heating
value of various primary energy sources, CCi represents
the carbon content of energy, COFi represents the carbon
oxidation factor. Ei represents the energy consumption
(physical quantity), 44 represents the molecular weight of
carbon dioxide, and 12 represents the molecular weight of
carbon. Since carbon dioxide is mainly from fossil fuels,

based on the studies of Heryadi and Hartono (2016), Bian
et al. (2017), and Nie et al. (2021), eight kinds of energy are
selected: natural gas, fuel oil, diesel oil, kerosene, gasoline,
crude oil, coking coal, and coal. The parameters of eight
kinds of energy under formula (8) are given in Table 2.
The above data are from the China Statistical Yearbook
and China Energy Statistical Yearbook, China Science and
technology Statistical Yearbook, and China Industrial Economy
Statistical Yearbook.

Research methods

In order to incorporate environment, energy, and output
into the measurement system, according to research methods
such as Gaspareniene et al. (2018) and Schiederig et al. (2012),
it is assumed that the production system has n decision-making
units. There are m kinds of resource inputs, the expected
output is µ1 (µ1 can include multiple types of expected
output) and the undesired output is µ2 (µ2 also includes
multiple undesired outputs), and the corresponding vectors are
expressed as x ∈ Rm, yg ∈ Rµ1 , y

g ∈ Rµ2 , the matrix is
defined as X = (xij) ∈ Rm×n, where X is a possible set
satisfying bounded and closed sets; Yg = (y

g
ij) ∈ Rµ1×n,

where Yg represents the expected output set; Yb = (ybij) ∈

Rµ2×n, where Yb represents the undesired output set, and
X > 0 , Yg > 0, Yb > 0. The specific model can be
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TABLE 2 Conversion table of carbon emissions coe�cients of main

energy sources.

Energy

categories

Low

calorific

value

(KJ/KG)

Carbon

emissions

factor

(TC/TJ)

Carbon

oxidation

rate

Converted

carbon

emissions

coefficient

Diesel oil 42,652 20.2 0.98 3.10

Coke 28,435 29.5 0.93 2.86

Coal 20,908 26.4 0.94 1.90

Kerosene 43,070 19.5 0.98 3.02

Gasoline 43,070 18.9 0.98 2.93

Fuel oil 41,816 21.1 0.98 3.17

Natural gas 38,931 15.3 0.99 2.16

Crude oil 41,816 20.1 0.98 3.02

transformed into:

P =

{(

x, , yg , yb
)
∣

∣

∣
x ≥ Xλ, yg ≤ ygλ, yb ≥ Ybλ, λ ≥ 0

}

(9)

In formula (9), λ ∈ Rn is the weight vector, λ ≥ 0 means
constant return to scale (CRS), and if the formula satisfies both
λ ≥ 0 and

∑

λ = 1, it means variable return to scale. x ≥ Xλ

indicates that the actual expected output is less than the expected
output of the production frontier, and yb ≥ Ybλ indicates that
the actual unexpected output is greater than the expected output
of the production frontier. Camarero et al. (2013) point out that
if the results obtained under the assumption of constant return
to scale and variable return to scale are different, the assumption
of a variable return to scale should be selected. The analysis of
carbon emission efficiency in this article is based on variable
return to scale.

Since this article considers the problem of unexpected
output, the traditional radial method cannot consider the impact
of the “relaxation variable” on the efficiency value, as well as
the change in efficiency resulting from the change in expected
output and unexpected output. To solve this problem, Tone
(2001) proposed a slack-based measure (SBM) model based
on input and output slack variables, and further proposed the
goal constraint problem under the condition of unexpected
output. Assuming that there is a specific decision-making unit
DMU (x0, y

g
0, y

b
0), based on the constraints of carbon emissions

intensity, the following objective planning is constructed:

ρ∗ = min
1− 1

m

∑m
i=1

µ−
i

xi0

1+ 1
µ1+µ2

(
∑µ1

r=1
µ
g
r

yr0
+

∑µ2
r=1

µb
r

yr0
)

(10)

s.t



















x0 = Xλ + µ−

y
g
0 = Ygλ − µg

yb0 = Ybλ + µb

µ− ≥ 0 µg ≥ 0 µb ≥ 0 α ≥ 0

Formula (10) is an efficiency model based on the CRS
hypothesis. µb, µg , and µ− represent the relaxation of
undesirable output, expected output, and input, respectively.
The objective function ρ∗ is strictly decreasing about µb, µg ,
and µ−. When µb= µg = µ− = 0 (ρ∗ = 1), the
function is stored in the optimal solution. If 0 ≤ ρ∗ ≤ 1, it
indicates that there is an efficiency loss in the decision-making
unit, i.e., inefficiency, and corresponding improvement can be
made in the input and output. The extent of improvement is
determined by the ratio of the relaxation variable to their input
and output. Based on the above analysis methods, we use the
MAXDEA software to calculate the carbon emission efficiency
of 30 provinces.

Control variables

The selection principle of control variables is mainly
based on the factors that may have a significant impact
on carbon emissions and are uncontrollable. Based on
existing studies, considering the availability of data and the
representativeness of variable indicators, the most influential
indicators of the economy, technological innovation, and system
are selected as important endogenous variables affecting carbon
emission efficiency.

• Economic development level (pgdp). On the one
hand, economic development means greater energy
consumption, more carbon emissions, and lower carbon
emission efficiency (Li D. et al., 2022; Sun et al., 2022). On
the other hand, with the improvement of the economic
development level, the upgrading of the industrial
structure and the use of clean facilities, energy utilization,
and pollutant treatment capacity have been improved (Sun
et al., 2019). The regional per capita GDP is used to express
the regional economic development level.

• Urbanization level (urb). There is usually an “inverted
U” feature between urbanization and carbon emission
(Tayibnapis et al., 2018; Wu et al., 2021), because when
urban development is at a lower level, the industrial
structure of the town may weaken carbon emission
efficiency. On the contrary, when urban development is at
a higher level, the industrial structure will change to an
advanced level and the changes in the energy structure will
improve carbon emission efficiency (Liu et al., 2022a). It is
expressed by urban residents and the total population of
the region.

• Open to the outside world (ope). Opening up has made
many contributions to China’s economic development,
but also led to a large amount of energy consumption
and substantial carbon emissions, especially the expansion
of foreign trade brought by labor-intensive industries,
which has brought the burden of energy conservation
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and emission reduction. In addition, due to technology
spillover, the technological progress brought by opening up
to the outside world can further reduce carbon emissions
and improve energy efficiency (Li J. et al., 2022). The ratio
of total foreign investment to GDP is used to measure the
degree of opening up to the outside world.

• R&D investment (inno). The technological progress
brought by R&D investment will improve production
capacity, promote the utilization of clean energy, improve
the efficiency of energy utilization, and then improve the
efficiency of carbon emissions (Tayibnapis et al., 2018; Jiang
et al., 2022). Considering the effectiveness and availability
of data, this article selects the ratio of R&D expenditure to
GDP to measure R&D investment.

• Environmental regulation (poll). Known as environmental
awareness or sewage cost, it refers to the investment
made by the government to control the intensity of
environmental pollution control. It is also the social cost
that the region needs to pay for the negative externalities
arising from economic development. It is measured by the
ratio of regional pollution control investment to GDP.

• Infrastructure construction (roa). Infrastructure has a
systematic connotation and includes not only physical
infrastructure networks, means of transportation, and
equipment, but also specific transportation activities. The
construction and expansion of infrastructure promote the
increase of the whole socio-economic activity (Zhang et al.,
2015; Li and Xu, 2020), which directly increases energy
consumption and carbon emissions intensity, which is
expressed by per capita road area.

Benchmark model

To explore the impact of digital economy development on
carbon emission efficiency, the following benchmarking model
is first constructed:

lncarbit = β lndigeit + α1lnpgdpit + α2lnurbit + α3lnopeit

+ α4lninnoit + α5lnroait + α6lnpollit + αit + uit

(11)

where, i represents region, t represents time, lncarb represents
carbon emission efficiency, lndige represents digital economy
development index, lnpgdp represents economic development
level, lnurb represents urbanization level, lnope represents
opening up to the outside world, lninno represents R&D
investment, lngov represents government regulation, lnpoll

represents environmental regulation, lnroa represents
infrastructure construction, αit represents individual effect, and
uit represents error term.

Spatial econometric model

Due to economic development, industrial transformation,
energy structure, technology spillover, population flow,
interregional trade transactions, market division and
cooperation, and other factors, the distribution of carbon
emissions among different regions will be affected. Carbon
emissions have strong temporal and spatial characteristics
in both time and space. Moreover, the application of digital
technology realizes the efficient utilization and open sharing
of data resources, breaks the geographical distance between
economic entities, eliminates the constraints of geographical
physical space, and strengthens the process of learning and
knowledge socialization among subjects. Therefore, carbon
emissions not only reflect the impact of other factors in
the region but also will be more affected by the dynamic
changes in the spatial pattern of other regional factors.
Therefore, if the correlation of spatial factors is ignored, an
error in analysis results may arise. Given this, based on the
benchmark regression model, this article also considers the
spatial econometric model. Economists represented by Anselin
(1988) put forward the spatial error model (SEM), spatial
auto-regression (SAC), and spatial Dobbin models (SDMs).
Currently, the spatial transmission mechanisms assumed by
these spatial econometric models are different. LeSage and
Pace (2009) deeply demonstrate the application conditions of
various spatial models in economics, and the representative
economic meanings are also different. First, the most basic
spatial econometric model is constructed:

Y = ρWY + βX + θWX + ε (12)

ε = λwε + µ, µ ∼ (0, σ 2I)

where Y represents the observed value of the dependent variable
(explained variable); X represents the observed value of the
independent variable (exogenous explanatory variable); the β

parameter reflects the effect of the independent variable X

on the dependent variable Y ; ε represents the random error
term vector; µ represents the normal distribution random
error vector; w represents the spatial weight coefficient matrix;
wε is the interaction effect between the interference terms of
different spatial observation units; λ represents the spatial error
coefficient (or spatial autocorrelation coefficient), the value of
λ reflects the strength of the spatial dependence between the
random error terms (ε), and the value range is (−1, 1).

When θ = 0, the spatial Durbin model can be reduced to a
spatial autoregressive (SAR) model.

When ρ = 0, the spatial Durbin model can be simplified to
the spatial error model (SEM).

When θ = 0, ρ = 0, the spatial Durbin model
degenerates to the standard least squares regression method (or
linear regression).
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In addition, if the spatial Doberman model is selected, due
to its spatial lag term, the interpretation of parameters becomes
more complex and it is difficult to explain the explained variables
clearly. It should be derived from the perspective of partial
differential of the SDM model, and the impact of independent
variables on dependent variables should be decomposed into
direct and indirect effects, so as to better describe the spatial
impact. The SDM model can be transformed into the following
vector form:

Y = (1− ρW)−1 (βX + θWX)+ (1− ρW)−1 ε (13)

The partial differential matrix of explained variable Y to
variable k in the explanatory variables (xit ,i = 1, 2, · · · ,N, i
represents the i-th spatial observation unit) at time t is:

[

∂y

∂x1k
, · · · ,

∂y

∂xNk
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1y1
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(14)

Formula (14): The mean of the diagonal elements of the
matrix represents the direct utility; the mean of the sums of
the non-main diagonal elements of all rows (or columns) is the
indirect effect, and the change in a certain explanatory variable
of a space individual has on itself or the direct and indirect effects
brought by different space individuals are different. Through
the above analysis, we construct a common spatial econometric
model, then select an appropriate model for empirical analysis
according to the test of the spatial econometric model, and
construct the following basic spatial econometric model.

lncarbit = γwlncarbit + β1 lndigeit + β2 wlndigeit

+ αit

∑n

i=1
Controlit+ξitw

∑n

i=1
Controlit+γt + µit

+ εit , εit ∼
(

0, σ 2I
)

(15)

Formula (15): The explanatory variable and the
explained variable are the same as the above formula,
Control represents the control variable, w represents
the spatial weight matrix, and w is defined as wij =
{

1, region i is adjacent to region j

0, region i is not adjacent to region j
wlncarbit is the spatial

lag term of the dependent variable, reflecting the spatial
correlation between the dependent variables. wlndigeit and
w

∑n
i=1 Controlit reflect the spatial effect of exogenous

explanatory variables, and β2 and ξit reflect the spatial
autocorrelation coefficients of exogenous explanatory variables.
γt represents the time effect, µit represents the individual effect,
and εit represents the disturbance term.

Results

This section first uses the benchmark regression results
for analysis, and then further tests the spatial effect of carbon
emission efficiency based on the benchmark regression results.
The impact of progress on carbon emission efficiency is the
main research topic of the carbon neutrality improvement path.
Finally, a robustness test is carried out for possible endogeneity
and measurement errors.

Benchmark results

Before analyzing the spatial effect of the development of the
digital economy on carbon emission efficiency, we first choose
the benchmark panel regression. This article uses Stata15 to
adopt a stepwise regression method. To maintain the robustness
of the explained variables, we choose to gradually add control
variables for regression. The results are shown in Table 3.

From the regression results of the benchmark panel in
Table 3, it can be seen that without considering the control
variables [model (1)], the regression coefficient of digital
economy development on carbon emission efficiency is positive
(0.5316), which has a significant positive promotion effect.
It shows that the development of the digital economy has
effectively improved carbon emission efficiency. After gradually
adding control variables, it can be seen that although the
regression coefficient of digital economy development on carbon
emission efficiency is gradually decreasing, its significance
and direction have not changed. In this regard, we believe
that with the wide application of the Internet or information
technology in the economy and society, the generation of a large
amount of real-time online data, and the rapid development of
computing, storage and network technologies, cloud computing,
big data, artificial intelligence, 5G communication, biological
identification, blockchain, mobile payment, virtual reality, and
other products and services, the extensive application of these
advanced information technologies in production and life has
abandoned the original physical data carriers, and also changed
the original energy consumption mode. It not only saves
transaction costs but also reduces energy demand with less
resource consumption, and promotes the formation of a new
concept of energy consumption, ultimately improving energy
use efficiency, and achieving an overall improvement in carbon
emission efficiency. Through the regression results of the control
variables, it can be seen that the level of economic development
and the level of regional R&D investment has significantly
promoted the improvement of carbon emission efficiency at a
significance level of 5%. The transformation from “quantity” to
“quality,” especially supply-side structural reform, has promoted
the green and low-carbon development of industries and
improved the energy utilization rate. Second, it is obvious that
the level of regional R&D investment can improve carbon
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TABLE 3 Benchmark panel regression.

Variable (1) (2) (3) (4) (5) (6) (7)

lndige 0.5316*** (8.62) 0.3258*** (4.17) 0.01244*** (8.01) 0.0447*** (2.25) 0.0441*** (2.28) 0.0821*** (3.42) 0.0501*** (3.28)

lnpgdp 0.0853*** (4.15) 0.0307*** (7.16) 0.0343*** (3.35) 0.0167 (1.59) 0.0197* (1.90) 0.0136** (2.23)

lnurb 1.2416*** (7.75) −0.6562*** (−5.53) −0.7858*** (−6.66) −0.8647*** (−7.15) −0.5122** (−3.28)

lnope −0.3463*** (−17.14) −0.3167*** (−10.45) −0.3135*** (−15.38) −0.2748*** (−12.50)

lninno 1.0743*** (4.98) 0.9180*** (4.13) 1.0379*** (5.06)

lnroa −0.0605*** (−2.63) −0.0146** (−2.52)

lnpoll 0.0652 (1.14)

Time fixed Control Control Control Control Control Control Control

Region fixed Control Control Control Control Control Control Control

R-sqr 0.178 0.258 0.551 0.568 0.598 0.605 0.629

*, **, and *** are 10%, 5%, and 1% significant, respectively.

emission efficiency. Regional R&D investment has improved
the application of clean energy practical technologies or the
efficiency of energy utilization.

In addition, the urbanization process, opening up to the
outside world, and transportation construction all significantly
inhibit the improvement of carbon emission efficiency at a
significance level of 5%. First, the process of urbanization
is always accompanied by the inevitable trend of population
and industrial spatial agglomeration. One view holds that
in the early stage of the urbanization process, although the
spatial agglomeration of population increases the pressure
on the environment, the scale of population agglomeration
affects the efficiency of carbon emissions. The disadvantages
are less than the scale benefits of population growth for
carbon efficiency. However, when the urbanization process
reaches a certain limit, the disadvantages of urban population
increase, especially industrialization clustering around cities
and towns, begin to appear, and there is a lack of necessary
environmental regulations and energy saving and emissions
reduction measures. The effect will be smaller than the
adverse effect it brings, that is, the scale effect of urbanization
at this time is smaller than the crowding effect, which
means that the urbanization process will aggravate production
and living carbon emissions, and reduce carbon emission
efficiency. Second, opening up to the outside world has
restrained the improvement of carbon emission efficiency.
The most important reason is that foreign-invested enterprises
in China are mainly labor-intensive or capital-intensive
enterprises, which usually have the characteristics of high
energy consumption and high-carbon emissions, resulting
in the decline of carbon emission efficiency. Third, for
transportation construction, although the improvement of
transportation infrastructure can improve the level of economic
development, it also brings industrial agglomeration, the
expansion of residents’ travel range, and the increase in carbon
emissions intensity.

Spatial e�ect results

Spatial correlation test

Since economists adopted the method of spatial or
systematic correlation in the 20th century, it is only possible that
there has been a problem of spatial correlation between them
since economists adopted the method of econometric analysis.
If we choose the spatial measurement method to solve the
problem, whether there is a spatial correlation or not, we must
first test the spatial correlation. If there is a spatial correlation
between the variables, the spatial econometric model can solve
this problemwell. If there is no spatial correlation, the traditional
method is used for analysis.

Through the spatial correlation test of carbon emission
efficiency in Figure 1, it can be seen that the Moran test values
are hovering between 0.2 and 0.38, and the Z statistics are more
than 2. Except for 2013, the carbon emission efficiency values
in other years have passed the significance test, indicating that
the carbon emission efficiency values of different regions do
not show complete randomness, showing a very obvious spatial
positive correlation.

After determining the spatial correlation of the explained
variables, it is necessary to select an appropriate model for
analysis. According to the main classification of the three spatial
econometric models, whether the spatial fixed, time fixed, or
double fixed effect is selected, these three fixed effects can only
be screened by different test methods. The spatial error model
(SEM) or the spatial lag (SAR) model is selected according to
the LM test. If the LM-error test is passed, but the LM-lag test
is failed, the SEM model is selected; if the test result is the
opposite, the SAR model is selected. If the two test results are
not significant, the Robust-LM-lag and Robust-LM-err tests need
to be further passed. If the Robust-LM-err test is passed, but the
other test is failed, the SEMmodel is selected, otherwise, the SAR
model is selected. If all Lagrangian significance tests are failed,
the spatial Doberman model needs to be used for measurement.
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FIGURE 1

Spatial correlation test.

In addition, whether the Hausman test selects a fixed effect
or a random effect, if a fixed effect is selected for panel data, the
fixed effect is divided into a time-fixed effect and a space-fixed
effect. These two fixed effects are determined by the LR test. In
case the effect test is passed, the double fixed effect is selected for
analysis. The relevant test results are shown in Table 4. Through
the above-mentioned spatial econometric model selection test,
it can be seen that the use of the spatial Durbin model (SDM)
under the double fixed effect to analyze the development of the
digital economy is most suitable for carbon emission efficiency.

Spatial spillover e�ect

According to Table 5, the SDM model is used to analyze the
spatial spillover regression results of carbon emission efficiency.
The goodness of fit of the regression coefficient is 0.679, slightly
higher than that of ordinary panel regression (0.629), indicating
that the Durbinmodel has a better fitting effect than the ordinary
panel model. Specifically, the significance and direction of the
core explanatory variable (digital economy development) on
carbon emission efficiency and the ordinary panel regression
coefficient have not changed. The regression coefficient of
(0.1551) is significantly larger than that of the ordinary panel
model (0.0501), which also indicates that ordinary panel
regression without considering the spatial model underestimates
the positive effect of digital economy development on carbon
emission efficiency. By comparing the results of spatial panel
regression and ordinary panel regression of control variables, it
is found that only the significance of opening up to the outside

world and environmental regulation has changed. Since control
variables are not the focus of this article, the above-mentioned
benchmark model prevails and is not repeated here. In addition,
it is also found that the significance of the spatial lag term of
the digital economy development and other control variables is
not high, but since the regression coefficient of the spatial model
lag term often cannot fully reflect the impact of the independent
variable on the dependent variable, the spatial spillover effect can
be obtained by combining the spatial spillover effect, which is
broken down into direct effects, indirect effects and total effects
for an explanation.

From the decomposition of the influencing factors of the
spatial Durbin model, it can be seen that the direct effect
of the development of the digital economy has significantly
promoted the improvement of carbon emission efficiency in
the region, but the indirect spillover effect of the development
of the digital economy is not significant, indicating that the
development of the digital economy will not improve the near
future. However, from the overall effect, the development of the
digital economy has significantly promoted the improvement
of the carbon emission efficiency of the entire region. By
controlling the decomposition of variable effects, it can also be
seen that the level of economic development and regional R&D
investment only improves local carbon emission efficiency but
does not improve the carbon emission efficiency of neighboring
regions. In addition, although urbanization and transportation
convenience directly inhibit carbon emission efficiency, the
improvement of carbon emission efficiency has no significant
impact on the carbon emission efficiency of neighboring regions,
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but from the overall effect, the two promote the improvement
of carbon emission efficiency. In a word, looking at the control
variables of carbon emission efficiency, the level of influence on
carbon emission efficiency has both the influence of local factors
and spillover effects from other regions, but the influence of this

TABLE 4 Selection and test of a spatial econometric model.

Testing Statistics P-value Test

method result

SEM or SAR

model

selection

LM-lag 12.616 0.000 The null hypothesis

is rejected, and

there are spatial lag

terms and error

terms.

Robust-LM-lag 114.808 0.000

LM-error 1,249.053 0.000

Robust-LM-err 1,289.587 0.000

SDMmodel

fixed effect test

Spatial-LR 54.259 0.000 The null hypothesis

is rejected, and the

double fixed effect

is used.

Time-LR 1,198.677 0.000

SDMmodel

degradation

test

LR-lag 66.105 0.000 The null hypothesis

is rejected, and

SDM cannot

degenerate into

SAR or SEM.

LR-err 76.784 0.000

SDM random

effect test

Hausman 77.207 0.000 The null hypothesis

is rejected, and the

use of a random

effect model is

rejected.

*, **, and *** are 10%, 5%, and 1% significant, respectively.

region is significantly greater than the effect of spatial spillovers
on carbon emission efficiency.

Influence mechanism of carbon
emission e�ciency

In the process of the development of human society,
with a new round of scientific and technological revolution
and industrial transformation in the ascendant, technological
progress and industrial transformation always go hand in
hand. The industry often surpasses the traditional industry and
gradually becomes the leading industry in the industrial system,
which promotes the accelerated evolution of the industrial
structure to a higher level, presents new characteristics, and
provides a way for transformation and upgrading. In this
process, the industrial structure and technological progress,
energy consumption, and energy. There is a strong correlation
between utilization efficiencies (Figure 2).

The consensus of all sectors of society is that adjusting
the industrial structure, changing the energy structure, and
technological progress are important implementation paths to
reduce carbon emissions, improve carbon emission efficiency
and carbon neutralization (Zhou et al., 2011; Tseng and
Hung, 2014; Zhang et al., 2015). First, the adjustment of the
industrial structure mainly affects the development of the digital
economy through two aspects; first, the digital industrialization
(or information industry) provides technologies, services, or
solutions for the development of the digital economy to
promote the development of the digital economy. Second,
the application of digital technologies through industrial
digitization, including but not limited to the industrial Internet,
artificial intelligence, the Internet of Things, and the platform
economy brings about the deep integration of industries and
the digital economy, which significantly promotes the R&D
and technology application of the digital economy. Second,

TABLE 5 Spatial e�ects of carbon emission e�ciency.

Variable SDM Spatial spillover Direct effect Indirect effect Total effect

lndige 0.1551*** (3.48) W × lndige 0.1535 (1.55) 0.1563*** (3.43) 0.1454 (1.51) 0.3017*** (2.65)

lnpgdp 0.0514*** (6.27) W × lnpgdp −0.0283* (−1.92) 0.0511*** (6.34) −0.0271* (−1.91) 0.0240* (1.82)

lnurb −0.4767*** (−3.53) W × lnurb 0.0020 (0.99) −0.4861*** (−3.73) 0.0067 (1.03) 0.4928** (2.09)

lnope 0.0367* (1.88) W × lnope 0.0887*** (2.32) 0.0362* (1.87) 0.0855** (2.28) 0.1216*** (3.12)

lninno 0.1563*** (4.13) W × lninno 0.2032*** (2.66) 0.1569*** (4.32) 0.2066** (2.60) 0.0497 (0.59)

lnroa −0.0850** (−2.29) W × lnroa −0.0205 (−0.56) −0.0829** (−2.26) −0.0226 (−0.58) −0.1054** (−1.98)

lnpoll −0.0104 (−1.06) W × lnpoll 0.0017 (0.19) −0.0105 (−1.01) 0.0025 (0.12) −0.0080 (−0.35)

Time fixed Control Control Control Control Control Control

Region fixed Control Control Control Control Control Control

R-sqr 0.679

*, **, and *** are 10%, 5%, and 1% significant, respectively.
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FIGURE 2

The impact mechanism of carbon emission.

the adjustment range and quality of the industrial structure
determine the impact on the total energy consumption and
energy use intensity and indirectly affect the carbon emissions
intensity. Finally, the impact of technological progress on carbon
emissions. First, technological progress is the internal driving
force for the transformation of production and life. Its impact
on the digital economy lies in the continuous exploration
of new technologies, the transformation of technologies into
productive forces, and their application in actual production. It
enables social productive forces to enter a new stage and bring
about changes in economic paradigms. Second, the impact of
technological progress on the structure of energy consumption.
On the one hand, technological progress has improved the
energy conversion efficiency or replaced the original high-energy
consumption and high-emission machinery and equipment,
which has fundamentally improved the energy structure and
reduced energy consumption. On the other hand, because
technological progress can promote economic growth and bring
more energy demand to the whole society, it may have a
negative impact on energy utilization efficiency, that is, there is
a rebound effect.

Indicator construction

Adjustment range of industrial structure

For the calculation of the index of industrial structure
change, refer to the methods of Findeisen and Jens (2008). The
adjustment range of industrial structure (adj) is reflected by
measuring the intensity of the total employment of industrial

enterprises and the reconfiguration of the total employment in
the region.

adjit =

{[
∑n

i=1|e (i, t + 1) − e (i, t)| − |e (t + 1) − e (t)|
]}

e (t )

(16)

Among them, e (i, t + 1) and e (i, t), respectively, represent
the number of employees in the secondary industry of industry i
in period t + 1 and period t, and e (t + 1) and e (t) , respectively,
represent the total number of employees in industry i in period
t + 1 and period T. The index reflects the range of cross-industry
allocation of the labor force. Only when the employment of
all industries in the region increases or decreases in the same
proportion as the total employment, adj is equal to 0.

Quality of industrial structure adjustment

The quality of the adjustment of the industrial structure
is that the adjustment of the industrial structure causes the
original market factors to be transferred from sectors with lower
productivity to sectors with higher productivity and technical
complexity (Wang et al., 2020). That is to say, the quality of
industrial structure adjustment has two connotations in essence:
one is the change in the ratio of input factors; the other is the
improvement of labor productivity. Its calculation method is;

quaijt =
∑n

j=1
Sijt × Fijt (17)

Among them, i, j, and t represent the region, industry, and
time, respectively; Sijt represents the ratio of the added value of
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j industry to the total added value of the industry in the time
i area; Fijt represents the labor productivity of j industry in i

region. The higher the labor productivity in a region, the greater
the proportion of all industries, and the greater the quality of its
industrial structure adjustment qua.

Measurement of technological progress

For the measurement of technological progress, the
measured green total factor productivity (GTFP) is often
decomposed to obtain pure efficiency, technical efficiency, and
scale efficiency. The technological progress index is measured by
the technical efficiency index, drawing on the research indicators
of Liu et al. (2020) and Wang and Liu (2017). The input
and output indicators are respectively; the expected output is
the real GDP of the region, and the nominal GDP of each
year in the region is adjusted to the real GDP based on 2007
after excluding the factors of price and inflation. Unexpected
outputs are three industrial wastes, including three indicators
of industrial wastewater, sulfur dioxide, and industrial soot
emissions. The factor input is capital, labor, and energy. Capital
input refers to the practice of Liu et al. (2020) and uses the
perpetual inventory method to calculate the total fixed capital
formation in each year with 2,000 as the base period to obtain
the capital stock data. The labor input uses the number of
employees in urban units at the end of each year in the
region. The energy input uses standard coal converted from
eight main energy sources, including coal, coke, crude oil,
gasoline, kerosene, diesel, fuel oil, and natural gas. Regarding
the calculation of GTFP, this article adopts the widely used
Malmquist–Luenberger index based on the SBMmodel. Finally,
the total factor productivity is calculated and decomposed
by MAXDEA software, and the technological progress index
is separated.

Energy structure

Energy consumption is the direct cause of carbon emission
intensity, so the impact of changes in energy structure on carbon
emission efficiency has always been the focus of attention from
all walks of life. Some scholars measure the energy structure
by converting various energy sources into the ratio of standard
coal to the total consumption of all energy sources, while
Kannan et al. (2012) and Zhang et al. (2015) believe that the
ratio of output value to GDP brought by coal consumption
in the industry is more suitable. The specific formula is
as follows:

enesit =

∑m
j=1HCIitj

GDPit
(18)

Among them, enesit represents the proportion of coal
in the energy consumption structure of region i in year

t, GDPit represents the gross regional product of region
i in year t, HCIitj represents the output value of the j-
th high coal-consuming industry in the t-th year in region
i, and the number of high coal-consuming industries, m

represents the number of industries with high coal consumption,
which are electricity, heat production and supply, petroleum
processing, coking and nuclear fuel processing, ferrous metal
smelting and rolling, non-metallic mineral products, coal
mining, and washing, chemical raw materials and chemical
products manufacturing, non-ferrousmetal smelting and rolling
processing, paper and paper products industry, and other eight
categories of industries. This indicator directly measures the
proportion of the output of high coal-consuming industries
in GDP and reflects the energy consumption structure of the
regional economy.

Modeling

Based on the construction of methods 5.1.1–5.1.4, the effects
of industrial structure adjustment quality (qua) and adjustment
range (adj) on carbon emission efficiency are first investigated,
and the basic model is constructed as follows:

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

+ β3lnindit + β4w
∗lnindit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit + µit + εit (19)

Among them, i and t represent the region and time and ind

represents the adjustment of industrial structure (adjustment
range and adjustment quality, respectively). Other variables have
the same meaning as the above formula. Similarly, considering
the impact of energy structure (enes) and technological progress
(tec) on carbon emission efficiency, the following models are
constructed, respectively:

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

+β3lnenesit + β4w
∗lnenesit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit + µit + εit

(20)

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

+ β3lntecit + β4w
∗lntecit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit + µit + εit

(21)

Based on the above baseline model, this article also focuses
on the interaction effect of other variables and the development
of the digital economy, so as to analyze whether the existence
of interaction terms has synergistic or antagonistic effects on
carbon emission efficiency. Therefore, on the basis of models (7)
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and (8), the interaction terms of industrial structure adjustment,
energy structure, and technological progress multiplied by
digital economic development are introduced to construct the
model (22).

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

+ β3lnindit + β4w
∗lnindit + β5lnindit × lndigeit

+ β6w
∗lnindit × lndigeit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit+µit + εit (22)

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

β3lnenesit + β4w
∗lnenesit + β5lnenesit × lndigeit

+ β6w
∗lnenesit × lndigeit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit+µit + εit (23)

lncarbit = γw∗lncarbit + β1 lndigeit + β2 w
∗lndigeit

+ β3lntecit + β4w
∗lntecit + β5lntecit × lndigeit

+ β6w
∗lnenesit × lndigeit + αit

∑n

i=1
Controlit

+ ξitw
∗
∑n

i=1
Controlit+µit + εit (24)

Results

According to formulas (6)–(11), the regression results
in Tables 6, 7 are obtained. The impact of the quality and
range of industrial structure adjustment on carbon emission
efficiency are analyzed in Table 6. First, we analyze the impact
of industrial structure adjustment on carbon emission efficiency
after excluding the development variables of the digital economy
[Table 6 model (1)]. We can find that the adjustment range
of the industrial structure has no significant impact on
carbon emission efficiency. In the case of spatial spillover, the
adjustment range of industrial structure has no significant effect
on carbon emission efficiency. After adding the development
variables of the digital economy, we find that the adjustment
range of industrial structure, as well as the interactive term
between digital economy development and industrial structure
adjustment (lndige × lnadj), has no significant impact [Table 6
model (2)]. In this regard, it can be considered that although
the rapid development of the service industry has become a new
engine of economic growth, making the added value of China’s
tertiary industry exceed the secondary industry with high energy
consumption and high emissions since 2012, for the whole
society, the efficiency of carbon emissions has not improved the
input–output efficiency of carbon emissions intensity due to the
change in the adjustment range of industrial structure.

Second, considering the impact of the quality of industrial
structure adjustment on carbon emission efficiency, it can be
seen that the quality of industrial structure adjustment has a
significant positive effect on carbon emission efficiency [models
(3) and (4) in Table 6], indicating that industrial structure

adjustment The quality changes the input and output of the
original factors, the reduction of the factor input reduces the
carbon emissions of the undesired output, and the expected
output increases, which brings about the improvement of the
carbon emission efficiency. The results of the interaction term
of the quality of digital economy and industrial structure
adjustment (lndige × lnqua) and the interaction term of digital
economy development and industrial structure adjustment
(lndige××lnadj) show that the current synergy between digital
economy development and industrial structure adjustment does
not bring about carbon emission efficiency improvement. In
addition, it can also be found that the spatial spillover of the
quality of industrial structure adjustment has no significant
effect on the carbon emission efficiency of neighboring regions.
It can be seen that the impact of the quality of industrial
structure adjustment on carbon emission efficiency is mainly
through the behavior of the region. For neighboring regions,
the level of carbon emission efficiency will not change with
industries in other regions.

According to the impact of the energy structure on carbon
emission efficiency in Table 7 [models (1) and (2)], first, the
energy structure significantly inhibits the improvement of
carbon emission efficiency, which shows that although China’s
energy structure is constantly adjusting and reducing the
proportion of coal use, coal is still China’s largest energy source,
which has not changed, and the application technology of fossil
energy utilization is insufficient. It is only limited to the one-
time combustion and utilization of fossil energy. Obviously, the
current energy structure is not conducive to the improvement of
energy efficiency. Even in future, China will still be dominated by
fossil energy. Through the interaction term of digital economy
development and the energy structure (lndige × lntec), it is
found that they have no significant impact on carbon emission
efficiency. Although the development of the digital economy
can improve carbon emission efficiency, the only energy source
for the application of the digital economy is electric energy.
Currently, the power source is mainly thermal power generation
with coal consumption, and the energy structure with coal
consumption needs to emit high-intensity carbon dioxide, which
is bound to reduce carbon emission efficiency. Therefore, China’s
energy structure adjustment has a long way to go.

Second, through the impact of technological progress on
carbon emission efficiency [models (3) and (4) in Table 7], it
can be seen that technological progress also has no significant
impact on carbon emission efficiency. This conclusion is the
same as the research result of Bian et al. (2017). In this
regard, we believe that although technological progress can
reduce carbon dioxide emissions through the allocation of
production factors, thereby playing an important role in energy
conservation, emissions reduction, and carbon neutrality, the
main contribution to China’s current economic growth does
not come from technological progress. The main way is still
to rely on the continuous superposition of labor, capital, and
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TABLE 6 Impact of industrial structure adjustment on carbon emission e�ciency.

Variable Adjustment range Adjust quality Adjustment and quality

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

lndige 0.1615*** (3.63) 0.1184** (2.46) 0.1210** (2.51)

lnqua 0.1254*** (3.40) 0.0980** (2.49) 0.1240*** (3.36) 0.0959** (2.43)

lnadj 0.0011 (1.03) 0.0330 (1.20) 0.0227 (1.48) 0.0011 (1.36)

lndige× lnqua 0.1054*** (4.17) 0.1056*** (4.19)

lndige× lnadj 0.0096 (0.16) 0.0017 (1.38)

W × lndige 0.1445 (1.46) 0.0709* (1.66) 0.0647 (1.06)

W × lnqua 0.0422 (0.63) 0.0018 (1.03) 0.0480 (0.71) 0.0087 (1.12)

W × lnadj 0.0013 (1.21) 0.0068* (1.80) 0.0012 (1.11) 0.0014 (1.27)

W × lndige× lnqua 0.0244 (1.49) 0.0256 (1.15)

W × lndige× lnadj 0.0020 (1.45) 0.0014 (1.29)

Control variable Control Control Control Control Control Control

Time fixed Control Control Control Control Control Control

Region fixed Control Control Control Control Control Control

R-sqr 0.564 0.672 0.535 0.579 0.602 0.668

LogL 439.35 456.861 444.873 464.772 448.746 479.016

*, **, and *** are 10%, 5%, and 1% significant, respectively.

TABLE 7 Impact of energy structure and technological progress on carbon emission e�ciency.

Variable Energy structure Technical progress

Model (1) Model (2) Model (3) Model (4)

lndige 0.1379*** (3.04) 0.1610*** (3.61)

lnenes −0.2872** (−2.59) −0.2378** (−2.12)

lntec 0.0730 (1.04) 0.1250 (1.59)

lndige× lntec 0.1518*** (3.80)

lndige× lnenes 0.0402** (2.33)

W × lndige 0.1649 (1.59) 0.1570* (1.79)

W × lnenes −0.0825 (−0.33) 0.0465 (0.83)

W × lntec 0.0151 (0.11) 0.0604 (0.42)

W × lndige× lntec 0.1248 (1.53)

W × lndige× lnenes 0.0533 (1.44)

Control variable Control Control Control Control

Time fixed Control Control Control Control

Region fixed Control Control Control Control

R–sqr 0.557 0.599 0.316 0.673

LogL 442.066 433.180 439.159 446.135

*, **, and *** are 10%, 5%, and 1% significant, respectively.

energy factors to achieve the increase in economic scale. The
inertia caused by this long-term extensive economic growth
mode is unlikely to change in the short term. This also explains
why China’s technological progress has improved in recent
years but has not had a positive effect on carbon emission
efficiency. Through the interaction term (lndige× lntec) between
technological progress and digital economy development, it can
be seen that the interaction term between the two significantly

promotes the improvement of carbon emission efficiency. First,
the impact of technological progress on the development of
the digital economy lies in the continuous exploration of
new technologies and their application in actual production.
Second, the development of the digital economy is also an
internal driving force for reducing energy consumption and
improving energy efficiency. Therefore, for carbon emission
efficiency, although technological progress has not led to an
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increase in carbon emission efficiency, the development of the
digital economy brought about by technological progress can
significantly improve carbon emission efficiency.

Robustness test

Considering that there may be errors in model setting
and variable selection, which will affect the reliability of
regression results, to further test the impact of digital economy
development on carbon emission efficiency, Koronen et al.
(2020) have studied and adopted the Internet comprehensive
development index as the proxy variable of digital economy
development. Among them, the Internet investment indicators
include Internet penetration rate and the number of Internet-
related employees. The Internet penetration rate is represented
by the number of Internet agents per 100 people, and the number
of Internet-related employees by the ratio of computer service
and software employees to all employees. The Internet output
indicators include the total amount of telecommunication
services per capita and the number of mobile Internet users. The
number of mobile Internet users is expressed by the number
of mobile phones per 100 people. The processing method
of the Internet comprehensive development indicator is the
same as that of the digital economy development indicator.
The quality and range of industrial structure adjustment are
replaced with the indicators of industrial structure upgrading
and rationalization, respectively1, the energy structure with the
ratio of total coal consumption to the energy converted into
standard coal, and technological progress with green total factor
productivity (ML index). The robustness test results are shown
in Table 8.

From the robustness test estimation results in Table 8, it
can be seen that the significance and direction of the regression
results after replacing the digital economy development
indicator with the Internet comprehensive development
indicator under the conditions of the full sample have not
changed. The advanced industrial structure has a significant
positive impact on carbon emission efficiency, which shows
the rationality of replacing industrial adjustment quality
with the advanced industrial structure. It rationalizes the
industrial structure and also replaces the energy structure and
technological progress with the proportion of coal consumption
and green total factor productivity. This explanation is
not repeated.

According to the above mechanism analysis, it is found
that carbon emission efficiency is significantly inhibited by the
energy structure under the full sample condition. Based on
the regression results, it is believed that the current energy

1 Due to the limited space, the advanced and rationalized index

structure of the industrial structure will not be repeated here, and can

be obtained from the author if necessary.

consumption in China is still high. The coal consumption
structure has not completely changed. We guess when the
energy structure is lower than how much, and when we can
improve carbon emission efficiency. In addition, according
to theoretical analysis and previous research conclusions,
technological progress should have a positive effect on carbon
emission efficiency. However, the conclusions of empirical
regression are different from the expected results. We guess
that there may be a threshold effect. To further verify this
transmission, the threshold regression model is used to verify
whether the effect exists. In addition, since the quality of
industrial structure adjustment and the energy structure is based
on the adjustment range, and the industrial structure adjustment
range has no significant impact on carbon emission efficiency,
we will analyze the adjustment range of industrial structure as a
threshold variable here.

Threshold e�ect

For the estimation of traditional threshold variables, if the
threshold value of a variable is subjectively determined, then
the sample is divided into two samples or multiple sample
intervals according to the determined threshold value. The
subjectivity of this approach is very large, which makes the
regression conclusion unreliable. In this regard, according to
Hansen (1999), threshold method estimation and parameter
hypothesis testing are proposed, which objectively avoid many
disadvantages of sample division.

Assuming that the panel data set is
{

yit ,Xit , qit : 1 ≤ i ≤ n, 1 ≤ t ≤ T
}

, where i represents the
individual and t represents the time, the following one-level
threshold model can be considered:

yit = µi + β ′
1xit • I

(

qit ≤ γ
)

+ β ′
2xit • I

(

qit > γ
)

+ εit (25)

In formula (25), I represents an indicative function.
When the content in the parentheses is true, its value is 1;
Otherwise, it is 0; yit , xit , qit are the dependent variable and
the threshold variable, respectively, and qit can be a part of
Xit . β ′

1 and β ′
2 represent the regulation interval coefficient, and

ε represents the disturbance term that follows i.i.d and the
normal distribution.

On the basis of the one-threshold model, a double-to-
multiple threshold model is constructed.

yit = µi + β ′
1xit • I

(

qit ≤ γ1
)

+ β ′
2xit • I

(

γ1 < qit ≤ γ2
)

+ · · · + β ′
nxit • I

(

γn−1 < qit ≤ γn
)

+ β ′
n+1xit • I

(

qit > γn+1
)

+ εit (26)

For the above threshold model, dispersion transformation
needs to be performed before estimation, the residual sum of
squares is minimized in two steps, and then the non-linear least
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TABLE 8 Robustness test.

Variable Internet comprehensive Industrial Coal consumption Green total

development index structure percentage factor productivity

Advanced industrial Rationalization of

structure industrial structure

lninte 0.1511*** (3.36) 0.1123** (2.31) 0.1566*** (3.48) 0.1337** (2.22) 0.1512*** (3.16)

lnqua 0.0962** (2.43)

lnadj 0.0054** (2.12)

lneners −0.2367** (−2.11)

lngtech −0.0800 (−1.48)

lnpgdp 0.0507*** (3.08) 0.0441** (2.02) 0.0509*** (6.12) 0.0489*** (2.88) 0.0497* (1.85)

lnurb 0.4905*** (3.66) 0.3960*** (2.85) 0.4968*** (3.71) 0.4416** (2.26) 0.5050*** (3.15)

lnope 0.0360* (1.89) 0.0336* (1.72) 0.0378* (1.93) 0.0340* (1.77) 0.0351 (1.47)

lninno −0.1593*** (−4.19) −0.1452*** (−3.78) −0.1605*** (−4.23) −0.1618*** (−4.28) −0.1554*** (−4.08)

lnroa −0.0861** (−2.32) −0.0877** (−2.38) 0.0872** (2.35) −0.0703* (−1.83) −0.0858** (−2.31)

lnpoll −0.0101 (−1.03) 0.0114** (2.16) 0.0111 (1.13) −0.0096* (−1.89) −0.0105 (−1.07)

Time fixed Control Control Control Control Time fixed

Region fixed Control Control Control Control Region fixed

R-sqr 0.665 0.659 0.401 0.397 0.404

LogL 444.764 447.728 445.876 266.981 245.470

*, **, and *** are 10%, 5%, and 1% significant, respectively.

squares method is used for estimation. If there are two or more
threshold variables, on the basis of fixing the first threshold
variable, the second threshold variable is solved according to the
above idea, and then the first threshold variable is verified on
the basis of fixing the second threshold variable. Then, the third
threshold variable is sought, and so on until all threshold values
are found.

According to the test results of the threshold effect in Table 9,
the significance level of statistic F of the threshold value indicates
that there is a significant primary threshold for the adjustment
of the industrial structure, and there is a double-threshold
effect for technological progress and the energy structure. Under
the condition that there are different numbers of thresholds
mentioned above, we choose to divide different thresholds
into different intervals and then perform regression. To ensure
the impartiality of the regression results, this article adopts
the maximum likelihood estimation (MLE) method according
to the panel model test. The estimated results are shown
in Table 10.

According to the threshold values in Table 9, the different
regulatory intervals are divided into Table 10 by usingmaximum
likelihood estimation (MLE) method. The first is the threshold
regression results of the energy structure [models (1) and
(2)]. When the energy structure is lower than 0.128 unit,
the energy structure significantly inhibits the improvement of
carbon emission efficiency. When the energy structure crosses
the first-order threshold value of 0.1288 after reaching the
second-order threshold interval of 0.2441, the energy structure

has a significant positive impact on carbon emission efficiency.
When the energy structure threshold value is >0.2441, the
energy structure significantly inhibits the improvement of
carbon emission efficiency. This is because the fossil energy
structure accounts for lower total energy consumption at a lower
threshold, and the economic development level is also relatively
low due to underdeveloped industries. The main reason for
inhibiting the increase in carbon emissions is more from
other factors. When the energy structure crosses the first-order
threshold and enters the second-order threshold, the carbon
emissions resulting from energy consumption at this point can
be absorbed by the terrestrial ecosystem to achieve a dynamic
balance, but when the energy structure crosses the second-
order threshold, the energy structure is higher, and the carbon
emissions arising from excessive fossil energy consumption
cannot be absorbed, captured, and stored by the ecosystem,
resulting in a decline in carbon emission efficiency.

Through the analysis of the threshold effect of technological
progress, it is found that technological progress cannot bring
about the improvement of carbon emission efficiency under the
condition of low technological progress (first-order threshold
value), and when technological progress is between the first-
order threshold and the second-order threshold (0.9721,
1.0591), technological progress inhibits the improvement of
carbon emission efficiency. When technological progress crosses
the second-order threshold (1.0591), carbon emission efficiency
can be improved. This is because when technological progress
is at a low level, the contribution of economic growth is
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TABLE 9 Threshold e�ect test results.

Threshold variable Number of thresholds Threshold value F-value P-value Crit10% Crit5% Crit1%

enes One threshold 0.1288 33.21 0.020 23.1956 27.5159 39.675

Double threshold 0.2441 25.67 0.020 14.8826 19.8232 27.8678

Triple threshold 0.5153 8.37 0.645 42.3882 59.4528 69.6006

tec One threshold 0.9721 29.12 0.013 15.3667 19.1785 30.0813

Double threshold 1.0591 36.12 0.010 14.3578 19.6849 36.084

Triple threshold 1.0601 19.83 0.58 42.6629 50.0692 74.8199

adj One threshold 2.8155 32.1 0.006 13.7387 16.8162 28.3684

Double threshold 5.1533 12.88 0.440 40.2115 52.6778 70.5217

The P-value is the probability value obtained by repeatedly sampling 500 times using the bootstrap method, and this value is used to judge the significance level of the F statistic to pass the
threshold effect test.

TABLE 10 Threshold value and parameter estimation results.

Enes ≤ 0.1288 < enes ene > Tec ≤ 0.9721< tec 1.0591 Adj ≤ 2.8155 <

0.1288 ≤ 0.2441 0.2441 0.9721 ≤ 1.0591 < tec 2.8155 adj

(1) (2) (8) (3) (4) (5) (6) (7)

lndige 0.015** (2.61) 0.006*** (2.08) 0.002* (1.66) 0.094 (1.14) 0.011*** (3.91) 0.004*** (4.09) 0.148*** (3.75) 0.004*** (3.11)

lnqua 1.402*** (5.49) −0.020 (−1.59) 0.063 (1.12) −0.016* (−3.66) −0.022*** (−5.55) −0.031* (−1.58) 0.094 (1.21) −0.167*** (−4.08)

lnadj 0.002*** (2.76) −0.082*** (−2.41) 0.007 (0.55) −0.004 (−1.07) −0.002 (−1.22) −0.003** (−2.17) 0.006* (1.69) −0.009** (−2.51)

lneners −0.214** (−2.99) 0.170* (2.64) −0.096*** (−2.62) −1.036* (−1.67) −0.315*** (−5.67) −0.068** (−2.58) −0.218*** (−3.34) −0.123*** (−3.93)

lntec 0.030** (2.04) −0.001** (−2.03) 0.041** (2.33) 0.307 (1.40) −0.122*** (3.24) 0.238*** (2.52) −0.242 (−1.29) −0.093* (−1.90)

Control variable Control Control Control Control Control Control Control Control

Time fixed Control Control Control Control Control Control Control Control

Region fixed Control Control Control Control Control Control Control Control

LogL 33.449 456.079 111.781 476.666 533.654 74.490 30.2630 205.176

*, **, and *** are 10%, 5%, and 1% significant, respectively.

not the source. Due to technological progress, it is more
from the extensive consumption of natural resources, which
explains why the quality of industrial structure adjustment
is negative for carbon emission efficiency [model (3)]. When
technological progress crosses the second-order threshold value
(1.0591), on the one hand, technological progress improves
energy conversion efficiency and reduces energy consumption;
and on the other hand, promoting the use of clean energy
and improving the energy structure have all contributed to
the improvement of carbon emission efficiency. From the
perspective of industrial structure adjustment, there is a
first threshold for industrial structure adjustment. When the
industrial structure adjustment range is lower than the unit

value of 2.8155, the industrial structure adjustment range has
no significant impact on carbon emission efficiency. When the

industrial structure adjustment range is higher than the first
threshold value at 2.8155, the carbon emission efficiency is

significantly suppressed, indicating that the current industrial
adjustment in many regions of China is moving toward high-

carbon emissions. This is because industries in many regions are

still at a lower level in the value chain, and industrial structure
adjustment is making themmove to the middle end. The process
of industries moving from the low end to the middle end will
inevitably increase carbon emissions. The lack of economies of
scale in the input of energy and increased carbon emissions will
inevitably lead to a decline in carbon emission efficiency. It also
shows that China’s carbon peak has not yet arrived.

Conclusion and policy implications

Conclusion

Based on the panel data of 30 provincial-level units
in China from 2007 to 2019, this article first constructs
a comprehensive indicator of digital economy development
from four dimensions: digital economy infrastructure, digital
economy application, innovation capability, and industrial
development. Carbon emission efficiency is measured from the
perspective of the undesired output of economic development.
Finally, the impact of digital economy development on carbon
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emission efficiency is analyzed theoretically. The research
conclusions show that: first, the development of the digital
economy has significantly promoted the improvement of
carbon emission efficiency. Considering the spatial spillover
effect, it is found that the direct effect of digital economy
development has significantly promoted the improvement of
regional carbon emission efficiency, but has not improved the
carbon emission efficiency of neighboring regions. Second,
the impact mechanism shows that the extent of industrial
structure adjustment has no significant effect on carbon
emission efficiency, while the quality of industrial structure
adjustment has a significant positive impact on carbon emission
efficiency; the current energy structure significantly inhibits
carbon emission efficiency, while technological progress has
no significant effect on carbon emission efficiency. Third, the
analysis of the threshold effect shows that there is a double-
threshold effect in the energy structure and technological
progress, and there is a double threshold in the range of
industrial structure adjustment.

To conclude, this study contributes in the following aspects:
(1) Based on the current background, this article brings the

digital economy and regional carbon emission efficiency into
the same research framework, and systematically analyzes the
impact mechanism and promotion path of the digital economy
on carbon emission efficiency; (2) it focuses on the impact of
the development of the digital economy on carbon emission
efficiency, explores the spatial spillover effect between them,
and decomposes the spillover effect; (3) it considers the extent
and quality of industrial structure adjustment, technological
progress, and energy structure as the impact mechanism of
carbon emission efficiency, and analyzes the spatial effect;
(4) it generates unique insights based on the analysis; and
(5) it provides pertinent policy recommendations based on
the analysis.

Undoubtedly, this study has its limitations. (1) As the
concept of the digital economy has only been clearly defined in
recent years, there are still some differences in the measurement
system and methods of regional digital economy development
level by different scholars and institutions, and the design of
the digital economy indicator system still needs to be further
improved. (2) The research scale and time span of samples
can be further supplemented. As the digital economy, carbon
peaking, and carbon neutrality goals are focused on in recent
years, there is a lack of earlier and sub-provincial data tomeasure
the indicators.

Policy implications

Based on the analysis and findings, we propose the following
implementation paths to show how to improve carbon emission
efficiency and realize carbon neutrality.

First, build a digital industry development platform
to promote innovation in digital economy applications.
The development of the digital economy should adhere
to the market-based approach and break the limitations
of the digital economy in terms of capital and industry.
For this purpose, relevant enterprises need to change
their traditional business concepts, attach importance to
the long-term planning of industrial development, and
actively adjust regional enterprise organizations and business
processes. In addition, with digital innovation technology
at the core, strengthen theoretical research and technology
development in artificial intelligence, business intelligence,
machine learning, and other fields, actively promote the deep
integration of technologies such as cloud computing, the
Internet of Things, artificial intelligence, and truly realize
the innovation of the digital economy to improve carbon
emission efficiency.

Second, optimize the energy structure to develop low-
carbon energy, and promote the green transformation of
production models and the transformation of life. Since the
current energy consumption structure generates a lot of carbon
emissions, it reduces the efficiency of input and output and
hinders the realization of carbon neutrality. Therefore, when
adjusting and optimizing the energy structure, government
departments should focus on cooperation with international
organizations for development through the introduction,
digestion, and absorption. International advanced technology
is used to enhance independent innovation and develop
renewable energy (Liu et al., 2022b), such as new-generation
cellulosic ethanol, hydrogen fuel, nuclear energy, and other
new technologies, thereby improving the energy efficiency of
the entire production sector or lifestyle. The basic production
sector should realize industrialization and IT building by
promoting low-carbon energy, and achieve breakthroughs in
carbon capture and sequestration technology through energy
technology innovation.

Third, adapt to the needs of social development and
promote the development of modern service industries.
Modern service industries have the characteristics of low
resource consumption, low pollution intensity, and high added
value. Great importance should be attached to the development
of modern service industries oriented to production and
people’s livelihoods, especially for new industrialization and
non-material products with irrational structure, low levels,
and low competitiveness. Production industries (such as
information technology, scientific research, and comprehensive
technical services) have low-carbon emissions intensity, and
the development of these industries should be encouraged.
For some carbon-intensive industries, such as various
extractive industries and related mining industries (petroleum
processing, non-metallic mineral industry, chemical industry,
and metal products industry), their blind expansion should
be restricted.
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