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Elevated colony losses have continued to be an issue for Canadian beekeepers 

for more than a decade. Numerous studies have identified unmanaged Apis 

mellifera colony infestation by the Varroa destructor mite as a main cause of 

the problem. V. destructor spread externally of the hive through a phoretic 

stage in their life cycle. Consequently, their movement outside the hive is 

influenced by honey bee flight behaviours, which can range to multiple 

kilometers from the originating hive in any direction. V. destructor are therefore 

of regional concern as neighboring colonies and yards share nearby forage 

which can serve as fomites. Additionally, mites can be  transmitted through 

bee behaviours such as robbing and drifting, thus impacting surrounding 

colonies. Understanding the distribution of mites across a population is key 

for surveillance and equitable allocation of resources. Spatial patterns of V. 

destructor infestations in Southern Ontario, Canada, were investigated using 

a combination of cluster analysis, scan statistics, and geostatistical modelling, 

using 5 years of provincial apiary inspection data, from 2015 to 2019. A 

collection of disease clusters of V. destructor infestations was identified and 

found to be stable over multiple years with several other individual clusters 

occurring sporadically throughout Southern Ontario during the same study 

period. Universal kriging was applied to the V. destructor data in combination 

with regional colony density, and land use data as covariates, producing an 

isopleth map of the prevalence risk for V. destructor infestation. No substantial 

link between V. destructor infestation and environmental factors was found. 

This study highlights the need for more data and investigation to determine 

the cause of the identified clusters and areas of elevated risk. These results 

are hypothesis-generating but simultaneously provide information for 

government agencies, industry organizations, and beekeepers into the spatial 

distribution of V. destructor at a macro scale.

KEYWORDS

Varroa destructor, spatial scan analysis, disease cluster detection, universal kriging, 
epidemiology, geostatistical modelling, Apis mellifera

TYPE Original Research
PUBLISHED 15 November 2022
DOI 10.3389/fevo.2022.1027297

OPEN ACCESS

EDITED BY

Geoffrey Williams,  
Auburn University,  
United States

REVIEWED BY

Michael Lattorff,  
University of Nairobi,  
Kenya
Alison J. Gray,  
University of Strathclyde,  
United Kingdom

*CORRESPONDENCE

Kurtis Edward Sobkowich
sobkowik@uoguelph.ca

SPECIALTY SECTION

This article was submitted to 
Ecophysiology,  
a section of the journal  
Frontiers in Ecology and Evolution

RECEIVED 24 August 2022
ACCEPTED 31 October 2022
PUBLISHED 15 November 2022

CITATION

Sobkowich KE, Berke O, Bernardo TM, 
Pearl DL and Kozak P (2022) Spatial analysis 
of Varroa destructor and the relationship 
with surrounding landscape types in 
Southern Ontario.
Front. Ecol. Evol. 10:1027297.
doi: 10.3389/fevo.2022.1027297

COPYRIGHT

© 2022 Sobkowich, Berke, Bernardo, Pearl 
and Kozak. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.1027297%EF%BB%BF&domain=pdf&date_stamp=2022-11-15
https://www.frontiersin.org/articles/10.3389/fevo.2022.1027297/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.1027297/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.1027297/full
https://www.frontiersin.org/articles/10.3389/fevo.2022.1027297/full
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.1027297
mailto:sobkowik@uoguelph.ca
https://doi.org/10.3389/fevo.2022.1027297
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Sobkowich et al. 10.3389/fevo.2022.1027297

Frontiers in Ecology and Evolution 02 frontiersin.org

Introduction

Between 2015 and 2019, Ontario beekeepers reported an 
average overwinter colony loss of 30.5% (Canadian Association of 
Professional Apiculturalists, n.d.). Other Canadian provinces 
reported similarly high losses, with an average of 25.7% overwinter 
colony loss in 2019 across all 10 provinces. This amount of loss is 
beyond the accepted level of 5–15% (Vidal-Naquet, 2018). 
Elevated levels of colony loss have been experienced consistently 
since the Canadian Association of Professional Apiculturists 
(CAPA) began reporting on the issue of “colony collapse disorder” 
in 2007 (Canadian Association of Professional Apiculturalists, 
n.d.). Despite the high percentage of colony loss, beekeepers in 
Canada have managed to maintain a consistent population of 
colonies in the past 5 years (Agriculture and Agri-Food Canada, 
2019). This paradox demonstrates the effectiveness of modern 
advancements in beekeeping, allowing for beekeepers to 
compensate continuing large losses through techniques such as 
colony splitting, and commercialization of queen and nucleus 
colonies, but the issue of long-term colony health still remains.

First reported in Canada in 1989 (McElheran, 1990), the 
parasitic mite, Varroa destructor, has continued to be one of the 
greatest threats to beekeeping in Canada and has spread to most 
beekeeping regions across the country (Currie et  al., 2015). 
V. destructor (commonly, and henceforth, referred to as Varroa or 
Varroa mites) is a phoretic mite, which feeds on adult honey bees 
for survival, and acts as a parasite to honey bee larva during 
developmental stages (Rosenkranz et al., 2010). Varroa mites also 
serve as a vector for several viruses, including deformed wing 
virus, and black queen cell virus (Tentcheva et al., 2004). Clinically, 
the infestation of a honey bee colony by Varroa mites, and the 
associated symptoms, is referred to as varroosis. Varroosis has 
been found to be most detrimental when co-prevalent with other 
parasites and abiotic stressors (Roberts et  al., 2017), but left 
untreated, is capable of decimating entire honey bee colonies. 
Varroa mites have been considered by numerous researchers as 
the greatest contributor to weakened colonies and overwinter 
colony losses (Guzmán-Novoa et al., 2010; Van Der Zee et al., 
2015; Barroso-Arévalo, et al., 2019).

Varroa mites are an endemic and treatable issue in beekeeping 
in Canada and around the majority of the world. Therefore, the 
effects of an infestation can usually be mitigated when detected 
early. However, the presence of Varroa may go undetected due to 
sampling error or an absence of testing. If detected, chemical and 
non-chemical treatment options are available. Some chemical 
treatment regimens for Varroa may be detrimental to the colony’s 
health if administered incorrectly, though not all have been shown 
to have negative effects (Giovenazzo and Dubreuil, 2011). Varroa 
mites have also demonstrated resistance to various chemical 
treatment options due to improper administration or rotation 
(Rawn et  al., 2019). Non-chemical treatment options against 
Varroa infestations exist but have been shown to be less effective 
at reducing Varroa load (Haber et al., 2019). Flaws in both Varroa 
detection and Varroa treatment could influence the regional 

Varroa abundance, as neighboring yards may contract Varroa as 
a result of bees robbing from a weakened colony possessing a high 
Varroa load (Peck and Seeley, 2019), or other means of 
transmission. Because no treatment is 100% effective, and the 
eradication of mites is not possible, integrated pest management 
(IPM) strategies are important to keep mite levels below critical 
thresholds. Adequate knowledge on the pest of interest and their 
distributions across the population is key for effective surveillance 
and IPM.

The phoretic nature of Varroa mites and the flight behaviour  
of honey bees, implies that the presence of Varroa is a landscape-
wide issue and is not localized to single bee yard outbreaks unless 
geographically isolated. Increased Varroa load in a single yard may 
result in subsequent transmission to nearby colonies as Varroa is 
transmitted by means of robbing, drifting (if colonies within yards 
are not adequately spaced), or through fomites in the environment 
(Peck et  al., 2016; Peck and Seeley, 2019). Therefore, regional 
population levels of Varroa should be considered when making 
management decisions. Insufficient Varroa detection and 
treatment suggest a need to switch from reactive to proactive 
population medicine for Varroa management, for which enhanced 
surveillance is necessary.

Geospatial epidemiological studies can address all aspects of 
the epidemiologic triad: agent, host, and environmental risk 
factors of disease (Berke, 2005). Clustering tendencies can indicate 
if the disease agent’s prevalence is spatially related, while the 
detection of clusters can give an indication of whether the host’s 
susceptibility and behaviours are influencing the distribution of 
disease. Furthermore, spatial regression and trend analysis can 
help identify which environmental risk factors may be contributing 
to the prevalence of the disease. This approach can therefore 
provide insight into all major aspects of Varroa distribution and 
spread mechanics at a population level. To date, few spatial 
epidemiological studies have investigated the prevalence of 
Varroa, and none have been identified in the literature for Ontario 
or Canada. In one geospatial study of varroosis in New Zealand, 
Stevenson et al. (2005) identified clusters of Varroa infestations, as 
well as a spatial dependence structure that decays over distance 
from an infected yard. Similar patterns may exist in Ontario and 
should be investigated.

Previous studies have explored the impacts of surrounding 
landscape on the health of managed honey bees, but found no 
association with Varroa (Dolezal et al., 2016). However, this study 
by Dolezal et al. (2016) investigated only two landscape categories: 
high cultivation and low/no cultivation. Further investigation into 
more landscape classifications is therefore warranted to confirm 
that this choice of binary classification is not suppressing a true 
association. Surrounding land-use may influence mite loads due 
to variations in diversity and quantity of available forage, as well 
as potential for mite transfer from feral bee colonies in natural 
landscapes or managed bees in higher colony density areas. The 
diet of honey bees has previously been linked to health issues such 
as immunocompetence (Alaux et  al., 2010) and surrounding 
land-use type has been shown to impact the quantity and quality 
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of forage and food accumulation, and bee health in general 
(Sponsler and Johnson, 2015; Dolezal et al., 2016). Landscapes 
with higher colony densities, could possess greater mite prevalence 
because of the increase in density of susceptible colonies for mite 
transfer to occur, a theory accepted in human epidemiology where 
population density is related to disease transmission (Tarwater 
and Martin, 2001), but not yet accepted in bee research.

Honey bee colonies surrounded by natural landscapes are 
more likely to forage on a more diverse diet and have access to 
ample food sources but simultaneously may interact more with 
feral colonies, potentially spreading and contracting mites more 
frequently. Bees located in heavily cultivated landscapes are less 
likely to interact with untreated feral colonies but have access to 
a less diverse diet and may spread mites between other managed 
colonies because of the increased density observed in areas of 
farmland in Ontario (Sobkowich et  al., 2021). Various 
environmental stressors (e.g., pesticides found in areas of 
cultivated land) may also play a role in the susceptibility of a 
colony towards Varroa mites (Morfin et al., 2019). In locations 
where colonies exist beside a large body of water, the immediate 
foraging landscape is effectively reduced and may lead to less 
available forage resulting in a greater competition for nectar 
sources, which may contribute to mite spread due to shared 
forage or increased robbing (Peck et al., 2016; Peck and Seeley, 
2019). In contrast, bees in an urban setting may experience 
similar issues of reduced forage quantity but may face less 
competition because of decreased colony density (Sobkowich 
et  al., 2021). These scenarios are the justification for a five-
category landscape classification system to be evaluated for an 
association with Varroa prevalence. These five landscape 
categories are: natural land, primary agricultural forage, 
secondary agricultural forage, urban/developed land, and water 
bodies (Table 1).

Geostatistical kriging allows for spatial prediction of 
prevalence even in  locations or areas where the sample size is 
otherwise too small. Kriging can be used to predict the prevalence 
over the entire study area which can inform policy decisions, aid 
in the efficient allocation of resources, and provide a basis for a 
risk-based sampling model for future inspections (Carrat and 
Valleron, 1992; Berke, 2004). Universal kriging is based on a 
spatial general linear model (GLM) to study the impact of 
potential risk factors, such as land-use types derived from satellite 
imagery (as applied in this study) in the presence of 
spatial dependence.

The goal of this study is to explore the spatial distribution of 
Varroa infestations in managed honey bee colonies of Southern 
Ontario, using a population-level epidemiologic approach, over 
a 5-year study period. This study has three main objectives to 
achieve this goal: (1) explore the spatial distribution of Varroa 
and the tendency for spatial clustering of varroosis cases; (2) 
locate high-risk clusters of varroosis; and (3) use geostatistical 
modelling to determine the effects of the five various land-use 
types on Varroa infestation to estimate and map the 
prevalence-risk.

Materials and methods

Data on Varroa destructor were received from the Ontario 
Ministry of Agriculture, Food and Rural Affairs (OMAFRA). The 
data were collected by trained inspectors. Inspections occur 
mainly for three reasons: regulatory inspections, confirmation of 
Varroa status of commercialized queens or nucleus colonies, or to 
address beekeeper concern of poor colony health. Varroa 
inspection data are based on the standard alcohol wash method 
(Dietemann et al., 2013) and reported as a total count per 300 
bees. These counts were converted to a value of mites per 100 bees, 
referred to subsequently as the “Varroa rate.” Inspected colonies 
were recorded with their GPS location, date of inspection, and the 
observed Varroa rate. Geographic coordinates of yard locations 
were truncated down to two decimal places (approximately 
1.11 km spatial resolution) to maintain the privacy of exact yard 
locations. The cleaned dataset contained 3,786 colony-level 
observations in Southern Ontario between 2015 and 2019. 
Regional colony density values were derived from OMAFRA 
registry data from the 2018 beekeeping season, aggregated by 
census consolidated subdivision (CCS; Statistics Canada, 2018) to 
maintain beekeeper privacy. The 2018 registry dataset was the 
most recent and complete at the time of analysis. Each inspection 
location was assigned a colony density value based on the CCS 
region that the inspection occurred within.

Land usage data were acquired from the Government of 
Canada, and the Agriculture and Agri-Food division, through 
their Annual Crop Inventory program (Government of  

TABLE 1 Definitions and examples of the five land-usage categories 
considered.

Land-usage 
category

Definition Examples

Primary agricultural 

forage

Human cultivated land 

possessing crops 

commonly visited by 

honey bees for pollination 

and forage.

Apples, blueberries, 

canola, stone fruits, etc. A 

complete list can 

be found in Pollinator 

Partnership Canada 

(2017).

Secondary agricultural 

forage

Human cultivated land 

possessing crops that are 

foraged by honey bees in 

times of necessity.

Barley, oats, sod, winter 

wheat, etc.

Natural land Land existing in its natural 

state without, or with 

minimal, human 

interference.

Conservation areas, 

grasslands forests, 

shrublands, etc.

Developed land Land where substantial 

human interference has 

taken place to alter the 

state.

Exposed land, 

greenhouses, residential 

areas, urban centers, etc.

Water Areas covered by a body 

of water.

Lakes, rivers, etc.
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Canada, 2020). The data were in raster file format, produced by 
optical and radar-based satellites. The raster file contained land 
use information at a spatial resolution of 30 m with a reported 
accuracy of 85%. Seventy-two distinct land-use types were used 
to define the provincial landscape of Ontario using optical and 
radar-based satellite imagery. These 72 categories were then 
aggregated into the 5 categories of interest for this study: natural 
land, developed land, primary agricultural forage, secondary 
agricultural forage, and water. Agricultural land was deemed as 
primary forage if included in the Pollinator Partnership Canada 
Guide for Planting Forage for Honeybees (Pollinator Partnership 
Canada, 2017). All other cultivated land types were deemed as 
secondary agricultural forage. A more detailed definition for each 
of the 5 land-use categories is presented in Table 1.

Spatial distribution of Varroa in Southern 
Ontario and determination of Varroa 
mite clustering

A sampled Varroa rate of greater than or equal to 3 mites per 
100 bees was considered a case colony, as outlined by the 
OMAFRA treatment threshold guidelines (Kozak et al., 2021). 
Further reference to cases in this study is with respect to a colony 
found to have a Varroa rate at or above the threshold of 3 mites 
per 100 bees. Locations of cases and controls were plotted to a map 
of the province for data exploration.

As proposed by Diggle and Chetwynd (1991), the D-function 
was applied to assess spatial clustering of cases. Estimation of the 
D-function further provides an approximation for the spatial 
range at which clustering may be occurring. A confidence band 
derived from the standard errors was used to determine the 
presence of spatial clustering.

Detection of high-risk clusters of Varroa 
mite prevalence

Clusters of Varroa case locations were detected using the 
spatial scan statistic implemented in the SaTScan software 
(Kulldorff and Information Managemnet Services Inc., 2009). The 
scan statistic was applied for each of the 5 study years individually, 
and the results were then overlayed onto a map to check for 
temporal stability of Varroa case clusters across beekeeping 
seasons. The spatial scan analysis used the Bernoulli model 
(Kulldorff, 1997), with a purely spatial method to detect regions 
of high rates. A circular scanning window was used, with a 
maximum cluster size of 20% of the population at risk. A 
maximum of 20% was used in place of the standard 50% 
maximum to uphold biological relevance, owing to the scale of the 
study area (the distribution of colonies) in relation to the typical 
movement and flight ranges of bees. This reduced maximum 
cluster size has been used previously by researchers looking to 
account for low levels of data, spatial discontinuity or to look 

specifically for smaller clusters (Ma et al., 2016). The standard 
Monte-Carlo method, with 999 replications, was used as a means 
to estimate the value of p for detected clusters. All non-overlapping 
clusters identified at a 5% significance level were highlighted on a 
map of Southern Ontario. The 95% confidence intervals of the 
standardized morbidity ratios were estimated using the 
Vandenbroucke method (Vandenbroucke, 1982).

Spatial regression modelling of Varroa 
prevalence using environmental 
covariates

For spatial regression modelling, the Ontario land use data 
were merged with the Varroa rate data using a buffer analysis in 
QGIS software (QGIS Development Team, 2020). A Lambert 
azimuthal equal-area projection was applied to preserve the 
study’s area size and minimize distance distortions. The locations 
of bee yards inspected for Varroa from all five study years were 
used as centroids for a buffer analysis. Buffers with a 3 km radius 
approximating the average foraging range of honey bees around 
their hives (Visscher and Seeley, 1982; Pollinator Partnership 
Canada, 2017) were used to link the land-use raster data to the 
inspection data. A summary of the percentage of each of the five 
land use categories within each buffer was calculated and merged 
with the Varroa inspection data. The five land use categories and 
regional colony density values were considered as covariates in the 
model building process. For spatial modelling, counts of the 
number of mites for each inspection were used (mites per 100 bees 
sampled). Repeat inspection observations at the same geographical 
location were addressed by averaging the counts.

The generalized linear model component of regression-
kriging was fit by comparing the results of regression models for 
each covariate. A Gaussian family GLM model was used to model 
the continuous Varroa rate, and an iteratively reweighted least 
squares approach was used to fit the GLM model. The Akaike 
information criterium (AIC) from each regression model was 
used as an indication of greatest model fit. Simple and multiple 
regression models were considered using the land-use types, and 
colony density as covariates. The covariate(s) with the lowest AIC 
value was selected. This model would then be put forward in the 
regression-kriging model building process. Because this study is 
hypothesis generating, p-values were considered as exploratory 
metrics only (Matthews et  al., 2017). Estimated regression 
coefficients (β) for the simple regression models with their 95% 
Wald confidence intervals were presented in a forest plot to 
visualize the magnitude and direction of their potential effect on 
Varroa prevalence.

Universal (regression) kriging is a two-part process which 
combines a generalized regression model of the dependent 
variable with kriging interpolation of the residuals over a 
geographic area. The regression model, to estimate the influence 
of an independent variable(s), is fit first using ordinary least 
squares, then the covariance function of the residuals is used to 
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derive generalized least squares coefficients from which the 
residuals can be re-estimated iteratively (Hengl et al., 2007). The 
variogram is then modelled for the residuals and kriging is 
performed to predict the regression model residuals over the study 
area. The predicted residuals are then combined with the 
regression output, using a spatially continuous raster of the 
independent variable(s), to produce a continuous prediction of the 
Varroa rate. Residuals from the final selected GLM model were 
obtained and the corresponding variogram of residuals was 
estimated through weighted least squares estimation (WLSE) 
using initial nugget, sill, and range parameters from visual 
inspection of the empirical variogram. A spherical variogram 
model was used to represent the GLM residual variogram. 
Following the fit of the regression model, and variogram model, 
universal kriging was applied to predict the prevalence of Varroa 
mites onto a grid covering the entire study area for mapping.

All analyses, unless otherwise stated, were performed using 
the open-source software R (R Core Team, 2020). The package 
“gstat: Spatial and Spatio-Temporal Geostatistical Modelling, 
Prediction and Simulation” was used to perform kriging (Pebesma, 
2004; Gräler and Pebesma, 2016).

Results

A total of 3,786 observations were collected over the 5-year 
study period from 2015 to 2019 at 1,082 unique locations. The 
annual number of observations declined from 1,030 in 2015, to a 
total of 939, 757, 551, and 509 inspections conducted in 2016 to 
2019, respectively. The observed annual prevalence of V. destructor 
cases (≥ 3 mites per 100 bees) varied during the 5-year study 
period around an average of 13.6% of colonies sampled. From 
2015 to 2019, the prevalence estimates of Varroa cases in Ontario 
were 21.1% (95% CI [18.6, 23.7%]), 8.9% (95% CI [7.2, 11.0%]), 
16.3% (95% CI [13.7, 19.1%]), 4.2% (95% CI [2.7, 6.2%]) and 
15.2% (95% CI [12.1, 18.5%]) respectively. 95% confidence 
intervals were derived using Z-scores and the observed mean and 
standard deviation. Complete descriptive statistics of the 
dependent and independent variables used in regression 
modelling is presented in Table 2.

Spatial distribution of Varroa in Southern 
Ontario and determination of Varroa 
mite clustering

Producing a point map of the locations of cases (colonies 
infected by ≥3 mites per 100 bees) and controls illustrates that the 
locations of inspections in Southern Ontario during the study 
period are geographically diverse. Furthermore, sample sites are 
representative of the provincial colony density, with a greater 
apparent number of inspections in the Niagara Peninsula and 
fewer observations in the northeast. Cases appear to be present 
across the entire study area (Figure 1).

Plots of the D-function for each of the study years, and the 
entire study period combined, indicate the presence of spatial 
clustering of cases, as illustrated by crossing the 95% confidence 
limit (Figure  2). The distance at which spatial clustering was 
detected is not consistent over the study period, with 2015 
demonstrating the largest range of clustering at approximately 
100 km. Subsequent years to 2015 demonstrated noticeably lesser 
degrees of spatial clustering with 2018 indicating negligible amounts 
of clustering present. The 2016, 2017, and 2019 years of data all 
showed relatively equal results of clustering at an approximate range 
of 10 km. When the data from the 5-year study period were 
combined, spatial clustering of Varroa cases was detected by the 
D-function at a range of approximately 25 km (Figure 2).

Detection of high-risk clusters of Varroa 
mite prevalence

At least one and up to three spatial clusters of Varroa cases 
were detected for each year in the study period (Table 3).

Figure 3 shows the locations of high-risk clusters detected in 
each year of the study period combined to a single map of the 
province. The map gives an indication of a temporal stability of 
clusters in the northwestern quadrant of Southern Ontario, with 
some satellite clusters occurring sporadically elsewhere 
throughout the study area. All observed clusters presented a 
standardized morbidity ratio (SMR) of greater than 2 with a 
maximum observed SMR of 12.19 (95% CI: 3.85, 25.23; Table 3).

TABLE 2 Descriptive statistics of the dependent and independent variables used.

Variable Obs.i Mean Std. Dev. Min. Max.

Dependent

Varroa destructor Rate 1,082 0.863 2.65 0 51

Independent

Regional Colony Density 1,370,880 2.17 2.82 0.01 14.7

Developed Land (%) 1,370,880 0.09 0.12 0.01 0.95

Forageable Land (%) 1,370,880 0.35 0.13 0.002 0.76

Non-Forageable Land (%) 1,370,880 0.23 0.17 0 0.84

Natural Land (%) 1,370,880 0.27 0.18 0.01 0.98

Water Coverage (%) 1,370,880 0.02 0.07 0 0.69

iindependent variable observation counts represent the grid resolution of the raster.
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Spatial regression modelling of Varroa 
prevalence using environmental 
covariates

For regression modelling, the annual data were aggregated 
over time. Preliminary simple GLMs indicated no evidence of 
an association between Varroa rate and any of the five land-use 
types. The estimated regression coefficients (β) for the 5 
land-use variables all possessed large confidence intervals at the 
95% level, and p-values larger than 0.5. Regional colony density 
provided minimal evidence for a small negative association, 
with an estimated regression coefficient of β = −0.05 (95% CI: 
−0.11, 0.01, p = 0.09), indicating a decrease in Varroa rate by 
0.05 for an increase of 1 colony per square kilometer. The degree 
of northing also indicated some evidence for a positive 
association with Varroa rate [β = 1.5; 95% CI: (−0.23, 3.23); 
p = 0.09] but sufficient evidence of an association was not found 
for easting, indicating little evidence of a large-scale spatial 
trend across the study area. A forest plot of the results from the 
preliminary simple regression models is presented in Figure 4. 
The model with regional colony density as the sole independent 
covariate produced the lowest AIC and was put forward in the 
regression kriging process. Multiple regression modelling, by 

backwards model selection, did not result in a better 
fitting model.

The variogram estimated from the final GLM model residuals 
is presented in Figure  5. A spherical variogram model with 
parameters: nugget = 2.98, partial sill = 4.17, and range = 27.58 km 
sufficiently represents the spatial correlation structure of the 
residuals of the GLM model (Figure 5).

The predicted values of the Varroa rate derived from the spatial 
regression model ranged from 0 to 15.9 (μ: 0.11), compared to the 
observed Varroa prevalence range of 0 to 51 (μ: 0.86). Model fit was 
assessed using leave-one-out cross-validation; no evidence for lack 
of fit was indicated by the histogram of residuals or map of 
residuals. The RMSE = 2.7 appears large compared to the Varroa 
prevalence but this is an effect of a few outliers (MAE = 0.007). 
Predicted values from the model for the whole study area are 
presented as an isopleth map in Figure 6. The map indicates a 
heterogenous spread of Varroa across the study area with several 
areas of increased risk. The locations with the greatest estimated 
risk both reside in the mid-north-east region of Southern Ontario 
near the municipalities of Peterborough and Bancroft. Several 
other areas across the study area showed high Varroa rates 
compared to their surroundings. Most of Southern Ontario was 
predicted to have an overall low rate of Varroa mites (Figure 6).

FIGURE 1

Point map of Southern Ontario indicating Varroa destructor counts above threshold (≥3 mites per 100 bees) as cases in red circles and controls in 
blue triangles, 2015–2019.
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FIGURE 2

D-Functions for inspected colony locations in Southern Ontario with V. destructor counts equaling or exceeding 3 mites per 100 bees for each of the 
study years and the 5-year study period combined. Upper and lower 95% confidence limits derived from MCMC are indicated by the dotted lines.

TABLE 3 Results from spatial scan analysis for clusters of high-risk of Varroa destructor cases in Southern Ontario (2015–2019).

High-risk clusters

Year Cluster Coordinates Radius (km) Standardized 
morbidity ratio SMR (95% CI) P-Value

2015 1 (773.9, −587.9) 71.80 2.25 (1.75, 2.81) 0.001

2 (338.1, −806.7) 28.80 3.95 (2.41, 5.86) 0.001

3 (402.1, −918.5) 2.20 4.58 (1.95, 8.29) 0.018

2016 1 (370.1, −852.1) 16.89 12.19 (3.85, 25.23) 0.002

2 (730.0, −698.7) 33.09 4.33 (2.15, 7.27) 0.019

2017 1 (326.3, −771.3) 13.61 7.14 (3.67, 11.76) 0.001

2 (401.0, −757.1) 50.50 2.57 (1.52, 3.90) 0.046

2018 1 (429.3, −792.9) 48.96 9.58 (5.07, 15.46) 0.001

2019 1 (315.8, −920.2) 11.27 6.28 (3.77, 9.41) 0.001

2 (675.7, −775.1) 48.19 4.38 (2.45, 6.89) 0.001

Discussion

This is the first study to comprehensively assess the spatial 
distribution of Varroa destructor in managed Ontario bee colonies 
at a population level. This study provides insight into all three 

aspects of the epidemiological triad: host, agent, and 
environmental risk factors for Varroa prevalence.

Spatial clustering of Varroa infestations were detected using 
the D-function (case–control data) and similarly through the 
estimation of the variogram (Varroa count data). Both methods 
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presented results of clustering occurring up to a range of around 
25 km. In this context, clustering is indicative of the geographic 
extent to which Varroa mites are communicated between colonies 
of bees, be  it through natural contact and exchange during 
foraging or through the relocation of colonies throughout the 

season. The nature of mite exchange was not identified in 
this study.

The distance at which clustering was observed in individual 
years varied noticeably, ranging from 100 km in 2015 to 10 km in 
2016, 2017, and 2019. Only in 2018 was no spatial clustering 

FIGURE 3

Map of the detected high-risk clusters of V. destructor cases by year in Southern Ontario using the spatial scan statistic.

FIGURE 4

Forest plot of estimated beta coefficients from preliminary simple linear modelling of V. destructor rate in Southern Ontario managed honey bee 
colonies (2015–2019).
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observed. This discrepancy might be attributed to small sample 
sizes, or low Varroa case prevalence observed in 2018 (4.2%) 
compared to the 5-year average case prevalence (13.6%). Without 
an adequate representation of both cases and controls, in terms of 
numbers and spatial sampling intensity, there may be a lack of 

power to detect spatial clustering. When all inspection data were 
aggregated over the five-year study, effectively increasing the 
sample size and spatial representation of cases and controls, the 
D-function provided evidence of spatial clustering upwards of 
25 km (Figure 2). According to the geospatial epidemiologic triad, 
clustering can be thought of as a representation of agent factors, 
and the agent’s tendency to spread within localized areas, which is 
common for infectious diseases. Varroa mites are communicable 
between bees through the environment and within yards 
(Rosenkranz et al., 2010). This passing of mites between colonies 
is limited by the foraging range of the honey bees, and the number 
of contacts (with other bees, or colonies) in the vicinity of an 
infested colony (Rosenkranz et  al., 2010), and thus spatial 
clustering might occur in a semi-localized range, as observed of 
around 25 km. While a single bee may have a limited flight radius 
of up to 10 km (Beekman and Ratnieks, 2000), mites may 
be passed along a chain of colonies to reach further distances 
during the year. Furthermore, colonies and equipment may 
be moved even further distances during the beekeeping season, 
extending the possible range of transmission.

This finding of spatial clustering of Varroa mite infestations 
offers the basis for a Varroa notification system where beekeepers 
could be  notified if elevated mite levels are detected in the 
immediate vicinity of their colonies (25 km). Thus, allowing for 

FIGURE 5

Variogram of generalized linear model residuals (points), with 
spherical variogram model (solid blue line) and spatial correlation 
range (red dashed line) for sampled rates of V. destructor mites in 
managed honey bee colonies in Southern Ontario (2015–2019).

FIGURE 6

Isopleth map of predicted V. destructor rates for Southern Ontario derived from spatial regression modelling.
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more intensive monitoring of their colonies to detect an increase 
in mite load early, and allow for risks to be mitigated to prevent 
further spread and colony weakening.

Several high-risk clusters were identified in this study for all 
years studied. All but 3 of the 10 observed clusters were found to 
have a SMR with a lower 95% confidence limit of greater than 2, 
indicating at least a doubling of the rate of Varroa cases than 
expected. The specific locations of these clusters varied from year 
to year, but recurring patterns were seen as well. Most notable was 
the reoccurrence of clusters of cases in the northwestern quadrant 
of Southern Ontario for 4 of the 5 years studied (Figure 3). This 
grouping of observed clusters covers a large area but provides 
evidence to suggest that there is temporal stability of Varroa 
clusters in this region. This region possesses one of the higher 
honey bee colony densities in Ontario (Sobkowich et al., 2021) 
which could explain the higher-than-expected rates of Varroa, as 
population density has been suggested to play a role in Varroa 
transmission (Rosenkranz et al., 2010). An increase in regional 
colony density would inherently result in an increase of susceptible 
colonies and an increased occurrence of robbing, drifting, and 
other intra-colony bee interaction events which have all been 
suggested as viable means of mite transmission (Peck et al., 2016; 
Peck and Seeley, 2019; Kulhanek et al., 2021). However, conflicting 
to this is the lack of observed clusters in the Niagara peninsula 
(southeastern most region of Southern Ontario), which possesses 
the highest colony density in the province (Sobkowich et al., 2021).

No clusters of Varroa infested colonies were identified in the 
Niagara region in the 5 study years, which could provide evidence 
against the hypothesis linking population density to Varroa 
prevalence. Similarly, the regression analysis showed a mild 
negative correlation between Varroa rate and colony density, 
which is contrary to what would be expected in support of this 
hypothesis. However, the colony density values used are based 
upon self-reports from colony registration and therefore may 
be representative of stationary colonies or overwinter locations 
but not the locations in which colonies spend the majority of 
the season.

Potential bias might exist since a large proportion of honey 
bee colonies in Niagara belong to large-scale commercial 
operations, offering mobile pollination services to other provinces 
throughout the beekeeping season. Colonies are screened for 
Varroa before being moved for pollination services, and therefore 
there may be an inflation of low Varroa count observations, and a 
simultaneous overestimation of colony density, as commercial 
operations treat their colonies before the inspection to ensure a 
satisfactory result for travel. This is largely but not always the case. 
Additionally, blueberry pollination in Eastern Canada, occurring 
each spring is a large draw for commercial beekeepers in Ontario 
offering pollination services. Given the known population 
dynamics of Varroa mites, screening for mites in the spring is 
likely to produce a bias towards low counts (Fanelli and Tizzani, 
2020). Many beekeepers intending to mobilize their bees in the 
spring may choose to operate in Niagara due to the more southern 
location to build colony strength earlier in the season compared 

to cooler climates elsewhere. Therefore, the hypothesis of a 
relationship between Varroa prevalence and colony density cannot 
be rejected considering the nature of the current data (i.e., based 
on registration locations rather than foraging locations 
of colonies).

Natural land had been hypothesized to increase the odds of 
varroosis due to transmission of mites from feral colonies (Peck 
et al., 2016), but was not found to be associated with Varroa rate 
in the regression analysis. Chemurot et al. (2016), in Uganda, 
proposed a relationship between colony placement in farmland 
and Varroa prevalence which was also not observed in the current 
study. None of the land-use covariates examined in this study 
showed sufficient evidence of an association with Varroa rate, 
suggesting that other factors have stronger effects on Varroa 
prevalence such as beekeeping management practices, including 
control measures, abiotic factors that fluctuate over time such as 
weather, or biotic factors such as mite and bee behaviours. Time-
dependent factors, such as temperature or precipitation, were not 
accounted for in this analysis but may lend themselves well to 
time-series modelling approaches.

The isopleth map of Varroa rates (Figure  6) illustrates an 
overall low rate for Southern Ontario with sporadic high-rate 
areas throughout the province. Notably, the high-rate area south 
of Bancroft (Figure 6) exists in an area of low sampling as seen in 
Figure 1 and therefore may be an overprediction of the true rate. 
The North-western quadrant of the study area exhibited several 
clusters over the 5-year study period (Figure  2) when using 
varroosis case locations based on the 3-mite threshold. This 
pattern is similarly illustrated by the kriged map where the Varroa 
rate is shown to be greater overall compared to the rest of the 
study area (Figure 6). In the region south of Peterborough, a high 
rate was estimated by spatial modelling, which contrasts to the 
findings seen through cluster detection as no cluster of varroosis 
cases were observed in this area. This contradiction is likely the 
result of a repeat of high Varroa count samples each year, but not 
multiple high Varroa count samples in a single given season. 
Furthermore, the difference in the data structure used in this 
study (i.e., binary case and control data used for cluster detection 
and Varroa rates for spatial modelling) could have led to 
differences in data analysis results. This problem has been termed 
the modifiable areal unit problem and is a common source of bias 
in geostatistical studies such as the present work (Waller and 
Gotway, 2004).

Studies such as this are reliant on large sample sizes, accurately 
recorded, and serving as a representative sample for the target 
population. Inspections are not truly random samples and may 
be biased in some cases towards beekeepers with higher Varroa 
loads or beekeepers better skilled at treating for pests and diseases 
(i.e., commercial operations). In cases where an inspection is 
requested by the beekeeper to address recent issues with their 
colonies, there is a greater likelihood that Varroa may be present, 
as Varroa is recognized as a common pest and is responsible for 
colony weakening and reduced hive activity (Barroso-Arévalo 
et al., 2019). On the other hand, in cases that an inspection was 
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requested for the purpose of verifying the disease-free status of 
colonies to be  sold as queens and nuclei, there may be  a bias 
towards lower levels of Varroa. Routine apiary inspections also 
occur and are expected to be  more representative of the true 
population but are still prone to sampling and measurement bias. 
The reason for colony inspection was not explored in the present 
work but should be explored in future studies.

A limitation of this study is inconsistent sampling locations 
from year to year. In order to sample Ontario beekeepers 
representatively, inspections cannot be guaranteed to occur in the 
same geographical locations every year. For this reason, one 
region may be over-sampled one year and under-sampled in the 
next as inspectors may choose to group inspections by proximity. 
This limitation was the primary reason for the decision to treat the 
annual data as a whole during geospatial modelling rather than 5 
distinct years. This also suggests that there may be years where a 
high-risk cluster exists but is not detected, since sufficient repeat 
sampling did not occur in that region over the year. This could 
explain the absence of clusters in the Peterborough region despite 
a high predicted risk through modelling. The supposed grouping 
of inspections may also explain some of the clusters observed in 
this study, but the consistency and significance of clusters 
observed over 5 years suggest that a true effect may be in place. 
Further studies could address this limitation through the use of a 
continuous cohort of colonies spread across the study area, rather 
than the repeated cross-sectional sampling approach used in this 
study. Furthermore, there are various predispositions and factors 
related to mite infestations that were not able to be  assessed, 
including: biological controls (e.g., brood removal to limit 
opportunities for mite reproduction), cultural controls (e.g., 
beekeeper selection towards hygienic queens and stocks), and 
chemical controls (e.g., administration of Varroa control 
treatments). Data regarding these various factors was not available 
for this study but all would be expected to influence mite counts 
(Harbo and Harris, 2009; Rosenkranz et al., 2010; Vidal-Naquet, 
2018). However, this study focused on population level and 
environmental factors and therefore the omission of these factors 
is deemed acceptable, under the assumption that they are spatially 
independent. Future studies may want to consider these factors if 
collecting primary data.

With advancements in communications and the low cost and 
absence of necessary technical tools to sample bees for Varroa 
mites, the collection of these data lends itself well to a citizen 
science approach (Thomas-Bachli et al., 2020; Khayli et al., 2021). 
With the implementation of citizen science and self-reported 
Varroa mite counts by beekeepers, agencies can achieve a greater 
number of observations per year, and cover a greater spatial area, 
without the need to increase inspector resources. Furthermore, 
this approach frees up inspectors to allow for more strategic 
sampling and respond to inspection requests from operations 
experiencing difficulties. Skepticism exists around the quality of 
self-reported data, but evidence exists to suggest that citizen 
science approaches can produce data that are equal to or greater 
than the quality obtained by professionals (dependent on the 

difficulty of data collection, upon other factors; Kosmala 
et al., 2016).

This study provides evidence for temporally stable clusters of 
varroosis throughout Southern Ontario, which were not explained 
sufficiently by the environmental factors considered in this study 
but suggest that there are environmental (i.e., meteorological) and 
management influences at play. A spatial clustering effect was also 
observed, suggestive of the transmission patterns of Varroa mites 
and the influence that neighbouring yards have on each other’s 
mite counts. The results of this study provide a launch point to 
further assess the spatial patterns of Varroa identified. Intervention 
efforts should focus on areas of Southern Ontario exhibiting 
clusters of excess Varroa, and especially the regions in the 
northwest, where clusters appear over multiple years. The 
predicted risk map identifies areas where Varroa is likely to exist 
at elevated levels and therefore highlights the need for more data 
and investigation to identify the cause of these increased Varroa 
rates. It is recommended that inspections and intervention 
programs focus their efforts on these areas, while citizen science 
efforts could provide data elsewhere in the province, resulting in 
an enhanced province wide Varroa surveillance system.
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