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Ecological processes are complex, often exhibiting non-linear, interactive,

or hierarchical relationships. Furthermore, models identifying drivers of

phenology are constrained by uncertainty regarding predictors, interactions

across scales, and legacy impacts of prior climate conditions. Nonetheless,

measuring and modeling ecosystem processes such as phenology remains

critical for management of ecological systems and the social systems they

support. We used random forest models to assess which combination of

climate, location, edaphic, vegetation composition, and disturbance variables

best predict several phenological responses in three dominant land cover

types in the U.S. Northwestern Great Plains (NWP). We derived phenological

measures from the 25-year series of AVHRR satellite data and characterized

climatic predictors (i.e., multiple moisture and/or temperature based variables)

over seasonal and annual timeframes within the current year and up

to 4 years prior. We found that antecedent conditions, from seasons

to years before the current, were strongly associated with phenological

measures, apparently mediating the responses of communities to current-

year conditions. For example, at least one measure of antecedent-moisture

availability [precipitation or vapor pressure deficit (VPD)] over multiple years

was a key predictor of all productivity measures. Variables including longer-

term lags or prior year sums, such as multi-year-cumulative moisture

conditions of maximum VPD, were top predictors for start of season.

Productivity measures were also associated with contextual variables such

as soil characteristics and vegetation composition. Phenology is a key

process that profoundly affects organism-environment relationships, spatio-

temporal patterns in ecosystem structure and function, and other ecosystem
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dynamics. Phenology, however, is complex, and is mediated by lagged effects,

interactions, and a diversity of potential drivers; nonetheless, the incorporation

of antecedent conditions and contextual variables can improve models

of phenology.

KEYWORDS

climate variability, legacy impacts, Northwestern Great Plains, random forests,
hysteresis, restoration timing, grassland, shrubland

Introduction

The modeling and management of ecosystems are
challenged by the hierarchical, non-linear, scale- and context-
dependent, and complex dynamics found in the system’s
processes and functions (Scholes, 2017; Newman et al.,
2019; Park et al., 2021). For example, ecological services and
ecosystem function are tightly intertwined with phenology, the
timing and magnitude of seasonal events (Morisette et al., 2009;
Richardson et al., 2013). Predicting the consequences of climate
change and management of ecosystems requires accurate
predictions of phenology to avoid unintended consequences to
human health, agriculture, and biodiversity, as well as impacts
to and interactions with other species in the system (Stevenson
et al., 2015; Renner and Zohner, 2018; Beard et al., 2019).
However, variations in phenological dates and the magnitude
of ecosystem response to climate can be influenced by multiple
factors, making predictions of phenological measures across
space and time complex (e.g., de Jong et al., 2011; Zhang
et al., 2017; Piao et al., 2019; Zhang Q. et al., 2019; Zhang X.
et al., 2019; Felton et al., 2021; Park et al., 2021). Therefore,
to understand ecological systems and their phenology, it is
necessary to disentangle the non-linear and interactive effects
of climate drivers, which may vary across different soil and
vegetation types.

Satellite-based, remote-sensing measurements of vegetation
cycles, which provide insights into land-surface phenology, are
useful for quantifying the seasonality (e.g., start of season,
end of season, and productivity) of the land cover of a
remotely sensed pixel and its responses to different climate
drivers (Morisette et al., 2009; Hanes et al., 2014; Chen et al.,
2020). However, the spatially heterogeneous nature of many
systems (e.g., within a pixel) may lead to unexpected responses,
or signals dominated by dynamics of a subset of the land
cover (Zhang et al., 2017; Park et al., 2021). In addition,
the identified and proposed drivers of land-surface phenology
are numerous, which complicates modeling and prediction.
For example, whereas temperature is the dominant driver of
vegetation productivity at global scales, precipitation has been
shown to be a larger driver of the variation in productivity at
local and regional scales (Jung et al., 2017). At a regional level,

vapor pressure deficit (VPD) during mid to late summer (July
and August) was a better predictor of productivity across the
U.S. Northern Great Plains (Konings et al., 2017) than either
temperature or precipitation alone. Globally, increased VPD
has constrained increases in productivity (Yuan et al., 2019),
and is an important driver of stomatal conductance and plant
responses (Konings and Gentine, 2017; Konings et al., 2017;
Zhang Q. et al., 2019; Fu et al., 2022). The factors that most
strongly govern phenological aspects vary across space, and
among different vegetation communities (Xia et al., 2015; Fu
et al., 2017; Maurer et al., 2020; Wood et al., 2021). Furthermore,
climatic controls on phenology are complex, may interact, and
can be non-linear (Ponce-Campos et al., 2013; Knapp et al.,
2015; Al-Yaari et al., 2020; Gao et al., 2020; Maurer et al., 2020),
and ecosystems may respond to far more than just current
conditions as they develop.

Phenological measures often respond to conditions both
prior to and during the growing season (Bianchi et al., 2019;
Liu et al., 2019; Ren et al., 2020). The length of the lag or
legacy effect can be relatively short or can extend to multiple
years through mechanisms including energy storage, resource
allocation (e.g., fecundity/inclusive fitness), and community-
level structural and compositional change (Sala et al., 2012;
Ogle et al., 2015; Bandieri et al., 2020). For example, in some
land-cover types, predictions of current-year productivity can
be improved by including precipitation from the prior year
(Webb et al., 1978; Oesterheld et al., 2001; Ogle et al., 2015).
Legacy effects are stronger in some community types than
others, perhaps due to different phenological strategies and
rooting depths (Yahdjian and Sala, 2006; Reichmann et al.,
2013; Liu et al., 2019) or differential adaptation to pulse
dynamics (Felton et al., 2019). The strength of influence can
reflect the intensity of the legacy conditions (Yahdjian and
Sala, 2006; Felton et al., 2019), e.g., the magnitude of prior
drought. Among phenological phenomena, legacy effects are
commonly assessed by including conditions from both the
current and prior year in models, and are primarily studied
for season-long productivity; however, impacts from legacy
factors, such as within-community compositional changes and
plant strategies (e.g., root:shoot allocation, and critical periods
for reproduction) may also influence phenological timing.
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Therefore, an assessment of legacy impacts on date-based
phenological measures remains a research frontier.

The U.S. Northwestern Great Plains (NWP) constitute
an excellent region to study phenology, given that they
contain a wide range of values for abiotic and biotic factors
including climate, vegetation communities, and soils (USDA
Natural Resources Conservation Service, 2006). For example,
the area has large variability in productivity across years
(Petrie et al., 2016); is experiencing changing seasonality (Ren
et al., 2020); and has spatial and land cover variability in
phenological drivers (Wood et al., 2021). The region also
has experienced unique changes to climate in the last few
decades (Bromley et al., 2020), and has ongoing land-use
changes (Auch et al., 2011; Stoy et al., 2018). Disagreements
regarding predictions of future productivity and composition,
as well as unknowns about the drivers of phenology across the
NWP (Reeves et al., 2014; Ficklin and Novick, 2017; Wonkka
et al., 2019) indicate that improved models can help reduce
uncertainty.

We sought to improve phenological interpretation by
more precisely identifying the key drivers and temporal
windows of phenological events across the NWP. To most
effectively highlight abiotic and biotic drivers of phenology,
our study builds on prior work by explicitly including lagged
climate drivers in analyzing the year-to-year variability of
phenology of the NWP, and by exploring the influences
of highly correlated variables and non-linear dynamics.
We specifically sought to compare relative influences of
hypothesized climate drivers of land-surface phenology
such as temperature, precipitation, growing-degree days,
and VPD over current and prior time periods while also
incorporating indices of location, soils, disturbance, and land-
cover heterogeneity as additional predictors. Our objectives
are to (1) examine multiple potential drivers of phenological
measures across each of several land cover types to better
understand the relative roles of climate, soils, and pixel
composition; (2) determine the role of legacy effects across
land cover types and phenological measures; and (3) identify
relationships, interactions, thresholds, and non-linear responses
among key variables.

Materials and methods

Study area

Our study area matches prior work on phenological
measures in the NWP (Wood et al., 2021). In brief, the area
(Figure 1) includes the U.S. portions of the Northwestern
Great and Glaciated Plains Level 3 ecoregions, as well
as similar transitional areas from the Middle Rockies
(intermontane grasslands) and Wyoming Basins (semi-
arid grass-shrub ecotone) ecoregions (Omernik, 1987).

Land cover in the region includes barren and shrubland
systems in the west, changing to mixed-grass and tallgrass
prairie farther east as annual average precipitation increases.
Temperature and precipitation also covary predictably with
elevation, leading to forested areas in higher elevations
(e.g., along the Rocky Mountain front on the western
edge, and in mountain ranges to the east including the
Black Hills and Bighorn Mountains). The region includes
agriculture primarily in its northern and eastern portions,
and along major rivers. The lower-elevation grasslands
and shrublands receive a range of 33–56 cm (study area
median = 41.9 cm, standard deviation (SD) = 14.1 cm) of
precipitation annually, while at higher elevations, annual
precipitation can exceed 160 cm (USDA Natural Resources
Conservation Service, 2006; Daly et al., 2008; PRISM Climate
Group, 2021). Mean monthly temperatures over the periods
of 1991–2020 were predominantly below freezing in winter
months and warm in summer months, ranging from a
median over the 30-year period of −6.4◦C (SD = 2.7◦C) in
January to 21.2◦C (SD = 2.6◦C) in July (Daly et al., 2008;
PRISM Climate Group, 2021).

Data collection

Phenological data come from a 25-year dataset derived from
the Advanced Very High Resolution Radiometer (AVHRR)
satellite covering the years 1989–2014 (USGS EROS, 2015).
The USGS approach to process AVHRR data used normalized
difference vegetation index (NDVI) composites of daily, 1-
km-resolution values, smoothed the time series, and then
identified phenological measures using a delayed moving-
average algorithm (Reed et al., 1994; Swets, 1999; Eidenshink,
2006). We followed data-selection and preparation procedures
from Wood et al. (2021). In brief, due to orbital degradation
at the end of life for several of the remote-sensing platforms
carrying the AVHHR sensor, we removed data from 1992,
1993, 1994, 1999, and 2002 to minimize any concerns from
correlations between the solar zenith angle and phenological
measures (Ji and Brown, 2017). We selected three phenological
measures, including the start of the growing season, maximum
NDVI (a surrogate for vegetation productivity at the peak
of the growing season; hereafter, peak productivity), and
time-integrated NDVI (a surrogate for vegetative productivity
across the entire growing season; hereafter, season-long
productivity).

We selected possible independent variables from prior
phenological studies and then identified datasets to characterize
values or factors. Our predictors (see Supplementary Table 1
for a full list) included land cover type defined by the
National Land Cover database (Wickham et al., 2014; Yang
et al., 2018), similar ecological location as defined by
major land resource area or watershed using the 4th level
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FIGURE 1

The U.S. Northwestern Plains, as defined by Level 3 Ecoregions (Omernik, 1987) and land cover from 2013 as mapped in the National Land
Cover Database (Wickham et al., 2014). The study area includes the Northwestern Great and Glaciated Plains (Level 3) Ecoregions, plus portions
of the Wyoming Basins and Middle Rocky Mountains.

hydrologic unit code (MLRA, HUC; Seaber et al., 1987;
USDA Natural Resources Conservation Service, 2006), soil
characteristics derived from SSURGO (Soil Survey Staff, 2017),
and fire perimeters (Welty et al., 2017). Soil and location
data did not vary through time; they were held constant
for each pixel. However, land cover type/composition and
fire (if a pixel fell within a recorded fire perimeter or
not) were calculated for each year or through time, or as
available for land cover. The 2016 National Land Cover
Database is a Landsat-based classification of cover at 30-
m resolution for the U.S. for 2001, 2004, 2006, 2008, 2011,
2013, and 2016. There are sixteen classes, including water/ice,
urban/developed, agricultural, and natural land-cover classes.
We combined the four urban and the two wetland classes
together, as they are not the focus of our study in the
largely semi-arid and rural NWP (Stoy et al., 2018). We
also combined pasture and crop together as managed land
cover types. We then aggregated 30-m pixels to identify the
primary (modal) land-cover class and the proportion of each
classification within each 1-km AVHRR pixel for each year
in the land-cover database. If available, we used the land-
cover classification for the current year, and if unavailable,

we used data from 2001 or the most recent prior year
to produce primary and proportional land cover layers for
each year of the study period. Our analysis focused on
pixels where shrub, grassland, and evergreen forests were the
primary land cover type, and we included the proportion of
8 possible within pixel land-cover types (barren, deciduous
forest, evergreen forest, shrub, grassland, urban, wetland,
and agriculture) as predictors of phenological events in our
analyses.

Climate variables included annual, water-year, and seasonal
time periods from the current and prior years (i.e., a 1-, 2-,
3-, or 4-year lag). We included precipitation, temperature,
VPD, and growing degree-days from the Parameter-elevation
Relationships on Independent Slopes Model (PRISM) data,
version AN81d (∼800-m resolution; Daly et al., 2008).
We aggregated these daily data into specific time periods
(Supplementary Table 1), taking the mean for daily mean
temperature, VPD maximum (VPDmax), and VPD minimum
(VPDmin) over 3-month periods (seasons: winter, January–
March; spring, April–June; summer, July–September; and fall,
October–December), a 6-month period (growing season: spring
plus summer), the water year (prior fall, plus current-year
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winter, spring, and summer), or calendar year (current-year
winter, spring, summer, and fall). To calculate precipitation, we
summed daily values over the seasonal and annual time periods.
We calculated growing degree-days (GDD) over the same time
period using daily mean temperature with a base of 0◦C:

GDD =
∑1

n

{
0, If < 0 ◦C

xn, If > 0 ◦C
(1)

For VPDmax, we also calculated the number of days in the
calendar year in which the daily value exceeded the sum of
the long-term mean plus either one- or two-times the standard
deviation of the distribution for a pixel. We then created lagged
variables, using data from 1, 2, 3, or 4 calendar years prior to
the current year for each seasonal and yearly measure. Finally,
to assess cumulative effects of weather across different durations
of time, we calculated the multiyear (mean or sum) conditions
of the prior 2, 3, or 4 years (i.e., not including the current year).

Data analysis

Phenological measures have uncertain drivers, along with
interactions and high correlation among potential variables.
Therefore, we used machine learning, namely random forests
(Breiman, 2001) as a tool to broadly survey many possible
drivers and reduce our collection of potential variables (Genuer
et al., 2010). Advantages of machine learning over linear models
include decreased sensitivity to highly correlated predictor
variables, identification of complex interactions between
variables, and improved performance for predictions (e.g.,
Cutler et al., 2007; Oliveira et al., 2012; Villoslada et al., 2020),
and as a result they are increasingly used to address ecological
problems (Cutler et al., 2007). Machine learning approaches
have also been applied to remote sensing based studies of
vegetation classification (e.g., Long et al., 2013; Jones et al.,
2018) and phenology (e.g., Wessels et al., 2011; Gómez et al.,
2016; Czernecki et al., 2018; Wang et al., 2021), and applications
are expanding into areas traditionally approached using general
linear regression modeling (e.g., Picardi et al., 2020). In
addition, although random-forests analyses require subjectivity
in variable selection (Cutler et al., 2007), advances in variable-
selection techniques and visualization methods for impacts of
included variables (Genuer et al., 2010; Hapfelmeier and Ulm,
2013) provides more rigor and improves interpretation of the
potential effects of selected variables.

To prepare phenological events and potential drivers, we
sampled each AVHRR pixel in ArcGIS (ESRI, Redlands, CA),
and organized rows into individual records, i.e., pixel/year
combinations. Each row in our dataset corresponded to 1 year
at each pixel with the associated, soil, geographic, climate, and
disturbance-potential variables, including antecedent climate,
for a possible 262 predictor variables. We split the full dataset by
land cover, using the modal land cover in the year of record (i.e.,

a given AVHRR pixel could be in different categories or have
different sub-pixel makeups across years).

We split each dataset into a testing and training set in
R 4.0.3 (R Core Team, 2020) and then used the ranger
(Wright and Ziegler, 2017) implementation of random forests,
within the Variable Selection Using Random Forest (VSURF)
approach (Genuer et al., 2010, 2015) to analyze a three-step
process for each phenology measure within each primary land
cover type (see Supplementary Table 2). The three steps in
VSURF are the threshold, interpretation, and prediction steps,
each of which uses a different approach to select variables,
as ranked by importance scores. The threshold step removes
variables based on the standard deviation of mean importance
scores, and the interpretation and prediction steps remove
variables based on two approaches incorporating the out-of-
bag error to select variables, wherein the interpretation step
is meant to be inclusive, and the prediction step is intended
to reduce redundancy in variables (Genuer et al., 2010). The
ultimate objective is to identify variables that contribute to the
dependent variable and produce a parsimonious model with
good predictive ability. The final set of variables is restricted
to those with meaningful improvement to model performance,
therefore, all variables included in the final model are strongly
associated with the given phenological measure for that land-
cover type.

We then created final random-forest models with the
training datasets using the variables identified from the
VSURF process for each combination of land cover type and
phenological measure (see Supplementary Table 2). We used
the final models to predict phenological measures from the
testing dataset and calculated mean square error to assess model
performance. We used the variable importance scores from
the final random forest models to show the rank and relative
contributions of final variables in the land cover/phenological
measure combinations. We then used the final model to
visualize relationships between three sets of two variables using
partial-dependence plots, comparing the top-ranked current-
year variable to three of the final model variables from the
VSURF selection process to show illustrative combinations. We
use the points (x, y, and z values) generated from the partial-
dependence calculation over the range of the two selected
variables to create a surface for display and overlaid a contour
map derived from a kernel density algorithm to show the
distribution of the two-variable combination over the surface.
Analyses were conducted on the USGS High Performance
Computer Yeti.1 We used the R packages ranger (Wright
and Ziegler, 2017), VSURF (Genuer et al., 2015), and pdp
(Greenwell, 2017) for analysis and the packages akima (Akima
and Gebhardt, 2020), RColorBrewer (Neuwirth, 2014), and
plot3D (Soetaert, 2017) for display.

1 https://doi.org/10.5066/F7D798MJ
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TABLE 1 Model performance using Random Forests analyses for identification of the most predictive climate, soil, and disturbance variables on
three phenology measures, across three dominant, natural land-cover types.

Land cover type
Phenological measure

Final variable count R2 Out of bag error Training MSE* Testing MSE*

Shrub

Start of season 11 0.62 252.5 157.0 252.2

Peak productivity 14 0.89 22.2 14.8 22.3

Season-long productivity 16 0.89 31.8 20.1 31.7

Grassland

Start of season 11 0.61 155.0 115.7 153.3

Peak productivity 12 0.85 20.4 15.9 20.4

Season-long productivity 16 0.90 24.6 18.9 24.7

Evergreen forest

Start of season 13 0.68 145.5 91.5 150.3

Peak productivity 10 0.74 18.2 12.2 18.2

Season-long productivity 12 0.77 45.1 30.4 45.1

* –Units for MSE for start of season are measured in days2 , for peak productivity as NDVI, and for season long productivity as NDVI2 .

Results

Overview

The multi-step VSURF process greatly reduced the number
of potential explanatory variables for each phenological measure
and land cover combination while maintaining performance
for most models (Table 1). Final models each included 10–16
predictors (see Table 1 and Supplementary Tables 3–5 for a
full list of final variables for each land cover type). In general,
overall model accuracy was higher for peak and season-long
productivity (R2 of 0.74–0.90) than for start-of-season dates (R2

0.61–0.68) (Table 1). Testing error was similar to training errors
in most models, indicating that the final models, produced by
variable selection, generally do not overfit and do generalize
well.

Overall, we found evidence suggesting that antecedent
conditions—over periods ranging from a few months to
multiple years—are often associated with current-year
timing and magnitude of phenological events (Figure 2
and Supplementary Tables 3–5). Interestingly, the proportion
of variables in the start of season models from the prior
year or water year was larger than for models of the two
productivity measures. Productivity measures tended to
have a split between potential drivers in the current year
(including the prior fall alone or as part of a water-year
time period) or variables spanning multiple years (albeit
with substantial variability, across response variables).
Contextualizing variables (e.g., watershed, MLRA, pixel
composition, and soil characteristics) often were included in
the top set of predictors (Figure 3), especially for evergreen
forests, where (a) more such variables were included, and
(b) contextual variables were in the final models for all
three phenological measures. In addition, in comparing the

two productivity measures, VPD, temperature, and GDD
were more commonly found in final models with season-
long productivity compared to peak productivity, for which
precipitation and context tended to appear more frequently
(Figure 3).

Phenological events and antecedent
conditions

Variables in the final random-forest models represent
complicated dynamics including interactions and non-linear
responses. We highlight some commonalities across land cover
types and key findings below, using partial dependence plots
to illustrate the relationships between two variables while
holding all other predictors constant. For example, winter
precipitation (and in some cases, also GDD) was included
in the final models for the date of the start of season for
shrubland (Figure 4), grassland (Figure 5), and evergreen
forest land cover types (Figure 6). Across these types, very
low winter precipitation tended to produce earlier starts to
the growing season, but this phenomenon also was associated
with conditions in the prior water year and/or fall. Specifically,
higher precipitation in the fall of the prior year (i.e., 3–6
months before the growing season in the focal year) delayed
the start date whereas a higher mean VPDmax in the prior
water year advanced the start date in the shrub land cover
type (Figure 4). In addition, variables representing longer-
term climate conditions were also top predictors. For example,
in shrub land cover, higher VPDmax over the prior three
water years led to earlier dates for the start of season
(Figure 4).

The final set of variables from maximum productivity
and season-long productivity models varied across land cover
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FIGURE 2

Stacked bar plots indicating the temporal windows of predictor
variables derived from a random forest variable selection
approach used to identify a set of drivers strongly associated
with phenological measures for a given land cover type. The
temporal periods represent current, prior, and longer-term (i.e.,
multiple-year variables, or years/seasons 2 or more years prior
to the current year) windows. Results are presented for three
phenological measure for three predominant land cover types in
the U.S. Northwestern Plains. WY, Water Year; Evergreen,
Evergreen Forest.

types, but some commonalities were evident. Water-year
precipitation had the highest importance score in maximum
productivity models in the shrubland (Supplementary Table 3)
and grassland (Supplementary Table 4) types, which constitute
most of the study area. Its influence was combined with
soil characteristics [e.g., cation exchange capacity (CEC), silt
content, or both], pixel composition (proportion of other land
cover types present in the pixel), location (MLRA or HUC),

FIGURE 3

Stacked bar plots indicating proportions of predictor variables
derived from a random forest variable selection approach used
to identify a set of drivers strongly associated with phenological
measures for a given land cover type. Variable types represent
different climate predictors (e.g., VPD, GDD) or contextual
factors (e.g., soil characteristics or location). Results are
presented for three phenological measure for three
predominant land cover types in the U.S. Northwestern Plains.
Evergreen, Evergreen Forest; Precip, Precipitation; Temp,
Temperature; GDD, Growing Degree Days; VPD, Vapor Pressure
Deficit; Context, contextual variables (i.e., soil, pixel
composition, and location variables).

VPD (wherein higher spring and growing season VPDmax

decreased productivity), and legacy and cumulative moisture
availability (precipitation and/or various VPD measures) in
the final models (see Figures 4–6). However, the final model
for maximum productivity in evergreen forests had contextual
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variables (sand and silt composition) as the top two predictor
variables; additional contextual variables such as watershed and
subpixel makeup also appeared in the final model. For all
three land cover types, cumulative precipitation over the past
2, 3, or 4 years was a final selected variable in maximum-
productivity models. For season-long productivity, the highest
importance score for shrubland and grassland land cover types
remained water-year precipitation, whereas the prior year’s
fall precipitation was most important for evergreen forests.
Season-long productivity tended to be influenced by other
climate variables from the current year (yearly and/or seasonal
temperature, GDD, VPD, and precipitation), whereas location
and soil variables appeared less frequently as top predictors
(though they were present in some models). Legacy effects
were for specific prior periods or more-recent periods (notably,
the prior year’s fall and winter preceding the current year’s
growing season), except in shrublands (wherein the prior 4
years’ VPD exceedance and water-year precipitation were most
predictive).

Discussion

Our results demonstrated that drivers of phenological events
in the NWP and the magnitudes of their influence are diverse,
scale- and context-dependent, and interact with other factors.
Although these findings are in overall agreement with other
studies (Xia et al., 2015; Piao et al., 2019; Ren et al., 2020;
Park et al., 2021) we found that phenology across our study
domain exhibits unique features that we elaborate upon here.
Although there is ample evidence for short-term lags and
memory effects (i.e., the accumulation of temperature over
weeks to months) contributing to current measured processes
or ecosystem states (e.g., Oesterheld et al., 2001; Sala et al.,
2012; Reichmann et al., 2013; Clark et al., 2014; Fu et al.,
2017; Griffin-Nolan et al., 2018; Kannenberg et al., 2020; Ren
et al., 2020), we demonstrated longer-term influences on several
phenology measures throughout the NWP, across multiple land-
cover types. Our findings can be used to enable more-accurate
predictions of phenology and responses to increased variability
from climate change. For example, we found climate conditions
over multiple prior years influenced the amount of current-year
productivity (i.e., via an interaction with current-year climate
conditions). Accounting for variables such as precipitation,
VPD, and GDD over multiple prior years can be used in current-
year (e.g., Hartman et al., 2020; Reeves et al., 2020; Jones et al.,
2021) and future production forecasts (e.g., Reeves et al., 2014;
Wonkka et al., 2019). Improved forecasting allows for more-
robust allocation decisions (e.g., stocking rates and herd sizes)
that balance ecological and social objectives. In addition, legacy
conditions over longer terms and from within the past year
influenced start-of-season dates, again combined with current-
year climate. In evaluating options such as seeding dates for

restoration, accounting for legacy conditions can contribute
to identifying when an effective time period may be to act.
Furthermore, assessment of the effectiveness of management
actions may need to account for multi-year conditions, to better
understand results and inform future activities. For example,
expected changes from modified management practices may
have been limited not because of ineffective actions, but
instead because of cumulative conditions over the monitoring
period.

Antecedent conditions

Legacy climate effects exist in grasslands (Wang et al.,
2001; Sala et al., 2012; Griffin-Nolan et al., 2018) and forested
systems (Kannenberg et al., 2019), and the strength of their
influence can be tied to the magnitude of prior events (Yahdjian
and Sala, 2006; Kannenberg et al., 2020). We found that
cumulative precipitation over the past four water years was
a key predictor of current-year maximum productivity and
season-long productivity in shrublands, effectively boosting
or limiting the impact of the current year’s precipitation
(Figure 4). Legacy impacts in grass and shrub land-cover types
are mixed, with larger effects typically documented on grasses
than on shrubs (Yahdjian and Sala, 2006; Reichmann et al.,
2013). Grass cover often declines during drought (Rondeau
et al., 2018), and although many communities may show
resilience to drought, grasslands are one of the most sensitive
communities (Ponce-Campos et al., 2013). C4 grasses are
expected to perform better than C3 species during drought
conditions given their higher water-use efficiency (Smart et al.,
2007; Griffin-Nolan et al., 2018), although the timing of
precipitation within the year also plays a role (Knapp et al.,
2020). Consequences of drier years include reduced tiller density
(Reichmann et al., 2013), decreased species richness (with
larger impacts to annuals and forbs than perennials), and
recovery that can take several years (Tilman and El Haddi, 1992;
Samson et al., 2004).

Evergreen forests also responded to cumulative multi-year
precipitation, although the effects were less clear (Figure 6).
More-mesic systems tend to be less sensitive to drought because
they are often limited by multiple factors (Ponce-Campos
et al., 2013), and because forests have complicated drivers
of productivity (Lubenow and Reinhardt, 2020). In addition,
longer-term cumulative lags were not restricted to productivity
measures for the forest land-cover type.

In shrublands, an earlier start to spring was associated
with higher mean VPDmax of the past three water years
(Figure 4). Changes over multiple years may be due to within-
vegetation-community shifts in the dominance of perennial vs.
annual and herbaceous vs. woody species. Perennial herbaceous
species within a land cover type may increase over a wetter
time period, (i.e., from increased PPT or reduced VPD
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FIGURE 4

Results from the final random forest models for areas of the U.S. Northwestern Plains having primarily shrub land cover pixels. For each
phenological measure, three partial-dependence plots show the relationship between selected pairs of variables. Contour lines show the
natural logarithm of the kernel density (i.e., the distribution of the two variables in the dataset). Seasonal and yearly variables represent either (A)
the mean over the time period for temperature (◦C, Temp.) and vapor pressure deficit (hPa, VPD), (B) the cumulative sum for precipitation (mm,
Precip.), or (C) exceedance of vapor pressure deficit (days over 1 or 2 times the SD of the long-term distribution) and growing degree-days (◦C,
GDD). Max, Maximum; SD, standard deviation.

over multiple years) and the later spring start of perennial
herbaceous species would lead to a later date for start of
season for the land cover type. To our knowledge, our findings
include longer-term legacy influences than those previously
reported, and our partial dependence analyses also demonstrate
potential feedbacks and interactions between legacy and current
conditions.

We also identified legacy impacts occurring over shorter
timescales. For example, fall and winter conditions from
the prior 1–2 years were important variables in models
predicting start of season in shrub land-cover (Figure 4 and
Supplementary Table 3). Specifically, higher VPDmax two falls
prior was the highest ranked predictor, and higher precipitation
in the prior fall and lower VPDmax in the prior year led to

a later start of season. The date of the start of season has
been found to reflect temperatures from the prior fall and
current spring (Cook et al., 2012). Furthermore, conditions in
the prior year may change root:shoot allocations, lead to shifts
in annuals vs. perennial species, and can have implications
for flowering timing (Tilman and El Haddi, 1992; Samson
et al., 2004; Mulder and Diggle, 2019; Zhang B. et al., 2019).
Within-year time lags (e.g., conditions from a season earlier
than the event in question) are also more commonly identified
in phenological studies than are lags from prior years (Wang
et al., 2011; Fu et al., 2017; Liu et al., 2019; Lian et al.,
2020). Analyses examining the collection of impacts from
climate measures over the growing season have also identified
tradeoffs, limiting factors, and implications for changes of
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FIGURE 5

Results from the final random forest models for areas of the U.S. Northwestern Plains having primarily grassland land cover pixels. For each
phenological measure, three partial-dependence plots show the relationship between selected pairs of variables. Contour lines show the
natural logarithm of the kernel density (i.e., the distribution of the two variables in the dataset). Seasonal and yearly variables represent either (A)
the mean over the time period for temperature (◦C, Temp.) and vapor pressure deficit (hPa, VPD), (B) the cumulative sum for precipitation (mm,
Precip.), or (C) exceedance of vapor pressure deficit (days over 1 or 2 times the SD of the long-term distribution) and growing degree-days (◦C,
GDD). Max, Maximum; SD, standard deviation.

phenological measures (e.g., Hu et al., 2010; Wang et al.,
2011; Lian et al., 2020; Maurer et al., 2020; Potter, 2020;
Ren et al., 2020).

Differences and commonalities in
associations

Differences in top predictors across our three focal
vegetation land cover types and across our phenological
measures likely reflect divergent limiting factors. Growth
periods can be limited by temperature or water availability,
individually or in combination (Cowles et al., 2018; Chen
et al., 2019; Piao et al., 2019; Reed et al., 2019; Yang
et al., 2021). Precipitation tends to be more tightly tied to
productivity in drier regions than in more-mesic areas, where
other factors may play a larger role (Webb et al., 1978;
Maurer et al., 2020). Differences in vegetation structure also

lead to differences in the response of phenology to climate
drivers. We found a higher proportion of VPD variables
being important predictors of season-long productivity in
grasslands compared to in woody (evergreen and shrub)
cover types, in which precipitation was a more frequent top
predictor. Evergreen trees and shrubs [such as sagebrush
(Artemisia tridentata), the dominant shrub in the region]
must maintain plant functions year-round, whereas grasses can
senesce during dry and cold seasons. In general, temperature
and/or VPD variables tended to rank higher in season-
long productivity models (in the top few importance scores)
than in peak productivity models. The drivers and controls
for peak productivity differ from season-long productivity
(Butterfield et al., 2020; Gao et al., 2020; Wood et al., 2021),
and our results indicate that season-long productivity reflects
key water-year (i.e., prior fall variables often appear in the
top set of predictors) and temperature predictors (i.e., GDD
and VPD variables), whereas peak productivity more strongly
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FIGURE 6

Results from the final random forest models for areas of the U.S. Northwestern Plains having primarily evergreen forest land cover pixels. For
each phenological measure, three partial-dependence plots show the relationship between selected pairs of variables. Contour lines show the
natural logarithm of the kernel density (i.e., the distribution of the two variables in the dataset). Seasonal and yearly variables represent either (A)
the mean over the time period for temperature (◦C, Temp.) and vapor pressure deficit (hPa, VPD), (B) the cumulative sum for precipitation (mm,
Precip.) or (C) exceedance of vapor pressure deficit (days over 1 or 2 times the SD of the long-term distribution) and growing degree-days (◦C,
GDD). Max, Maximum; SD, standard deviation.

reflects current-year weather variables and contextual variables
(Figures 2, 3).

Start of season tended to have both temperature and
precipitation variables as top predicted drivers, within the
spring and prior fall seasons. Whereas we found land cover
types had complicated connections between temperature and
precipitation, one clear pattern was that earlier start of season
dates in evergreen forests relate to increased spring growing
degree-days and drier immediately preceding winters (but
with nuances and interactions with current and prior-year
conditions). Although increased precipitation prior to the start
of the growing season is tied to earlier start dates in many parts
of the globe, if winter precipitation falls as snow, as is often the
case in the NWP, it actually may cause a delayed start (Potter,
2020; Ren et al., 2020). The timing and rate of melting snow

is tied to temperature, and whereas higher temperatures may
lead to early growing season starts, the increased early season
evapotranspiration and VPD from higher temperatures can lead
to decreased season-long productivity.

Influences of contextual drivers

Land-cover heterogeneity, measured as the proportion
of land cover type within each AVHRR pixel, frequently
influenced either peak or season-long productivity. Primary
production, normally tied to moisture availability, differs across
vegetation communities (Webb et al., 1978) and can vary
within small extents due to topography, structural differences,
and physiology. Although one might expect heterogeneity in
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phenological responses from different subpixel makeups should
affect date-based measures (Zhang et al., 2017), in our research,
proportions of land-cover types within a pixel were not top
predictors of start of season measures. The variability explained
by climate drivers likely exceeded that from sub-pixel land cover
types at regional scales.

Soil characteristics also appeared in the set of final
selected variables for date- and productivity-based phenological
measure, among all land cover types. Although soil variables
were held constant across our 25-year research window,
differences in composition (silt, sand, and clay), nutrient
availability (CEC), texture, and water capacity influence the
availability of water to plants and the longevity of available water
in the root zone. Consequently, these edaphic characteristics
can mediate phenological responses to climatic conditions,
disturbances, and other factors. Soil water fluxes also can
interact with phenology measures. For example, additional
transpiration can lead to increased water losses with an earlier
spring (Lian et al., 2020) but the rate of loss is dependent on
soil properties and interacts with climate (Gremer et al., 2015;
Or and Lehmann, 2019). In both our research and in other
models, errors in predictions are reduced by emphasizing the
importance of environmental variability beyond climate (e.g.,
Reeves et al., 2014).

Further study and limitations

We identified some unexpected variables in several cover
types for start of season dates. For example, variables in the
final set included yearly growing degree days, and (same year)
fall VPDmax, time periods that include Julian dates well after
spring, the expected period for the start of season. However,
the AVHRR dataset contains some start of season dates falling
late in the year. Because dates in the late summer or fall
(e.g., around Julian date 300) are far from where most start
of season dates are found (closer to 90–120 in our study) the
inclusion of variables explaining later starting days may account
for a large amount of variance in the models. At least three
possibilities exist: (1) dates falling late in the year are presumably
in more moisture-limited areas where NDVI signals did not
exceed baseline levels or thresholds until precipitation occurred
later in the year (Smith et al., 2019); (2) year-long variables
are correlated with variables covering earlier time periods
while also explaining later start dates in some conditions; or
(3) dates falling later in the year are artifacts/errors in the
processing of remote sensing information (e.g., Berman et al.,
2020). Further study could focus more specifically on areas with
uncharacteristic start of season dates and changes in model
performance with the inclusion or omission of the smaller sets of
variables we have included. Furthermore, with the parsimonious
sets of results from this study, more specific examinations
of the interactions and implications of changes in identified

variables can be undertaken. For example, future efforts can take
a closer look at land cover types and phenological measures
either at levels lower on the ecological hierarchy or more
locally through continuous (de Beurs and Henebry, 2007; Clark
et al., 2014) and other emerging analytical approaches, such
as survival analyses (e.g., Templ et al., 2016; Elmendorf et al.,
2019).

Surprisingly, fire never appeared in our sets of top
predictors. However, fire can radically change vegetation
phenology, wherein its effects last for multiple years, depending
on the fire severity and speed of recovery (Miller et al., 2013;
Vermeire and Russell, 2018; Wood et al., 2019; Vanderhoof
et al., 2020; Gemitzi and Koutsias, 2021; Wang et al., 2021).
If fire resulted in a change in land-cover type, pixels would
have shifted vegetation class (such as from forest to grassland)
in our approach. For other fire effects, such as within-type
compositional shifts, impacts to phenology are important but
may need a more specific assessment (e.g., Wang et al., 2021).
In our study, we had relatively few pixels within fire perimeters.
For example, only a few thousand of over a million records in the
evergreen forest land cover type were within fire perimeters. In
addition to fire, grazing can also lead to possible phenological
impacts through changes in composition, productivity, and
sensitivity to precipitation variability (Fuhlendorf and Engle,
2001; Briske et al., 2005; Beever et al., 2008; Batbaatar et al.,
2021). Data for grazing intensity do not exist at the scale
of our study, but this metric should be considered in future
assessments.

Our findings underscore that antecedent conditions from
months to years before the temporal window of the response
variable, as well as non-climate variables, need to be considered
to understand and predict phenological responses to, and
consequences of, future climate and land-use scenarios. For
example, one consequence of multi-year influences on current
year productivity is that systems may take multiple years
to recover annual productivity after drought, especially after
prolonged or severe drought. The NWP may therefore
be at risk due to climate change; a large portion of
the area is projected to leave the region’s current climate
envelope (Wonkka et al., 2019) and to experience increased
future summer drying (Ficklin and Novick, 2017). Our
study can help remove uncertainty from projections by
facilitating understanding of responses of potential vegetation
communities to changes in the trends and variability of future
climates. Furthermore, the implications of the influence of
legacy conditions extend to planning management actions.
Restoration and vegetation-treatment actions often need to
take place during critical time periods, such as spring
green-up, which in turn is influenced by multiple-year
and prior-season conditions. Likewise, when using date- or
phenology-based indicators to assess ecological condition,
the broader climate context (e.g., conditions over multiple
years, prior growing season, and water years) are needed to
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interpret responses. Phenology has important feedbacks with
climate and is a key ecosystem process (Richardson et al., 2013;
Beard et al., 2019), and through identifying key drivers over
novel temporal windows of duration and lag, this study enables
improved incorporation of ecosystem processes into models of
the natural world.

Data availability statement

The data used in this submission have already been
published and are primarily publicly available from the sources
cited in the article/Supplementary material and Wood et al.
(2022). Further inquiries can be directed to the corresponding
author.

Author contributions

DW, PS, and SP conceived and designed the study. DW
and EB collected the data sources. DW performed the analysis
and wrote the original draft of the manuscript. All authors
provided critical review, revisions during the writing process,
and approve this version.

Funding

DW and EB received support from the Bureau of
Land Management Montana-Dakotas State Office (Interagency
Agreement L15PG00230 and L20PG00168). PS support includes
the University of Wisconsin—Madison and the U.S. National
Science Foundation (DEB-1552976 and OIA-1632810). SP
received support from Montana State University.

Acknowledgments

Kathryn Irvine, Lisa Rew, and Lance McNew, as well as
two reviewers, provided constructive comments on an earlier
draft. An earlier version of this manuscript appeared in the
dissertation of DW. Any use of trade, firm, or product names is
for descriptive purposes only and does not imply endorsement
by the U.S. Government.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fevo.2022.1007010/full#supplementary-material

References

Akima, H., and Gebhardt, A. (2020). Akima: Interpolation of irregularly and
regularly spaced data. R package Version 0.6-2.1. Available online at: https://cran.
r-project.org/package=akima

Al-Yaari, A., Wigneron, J. P., Ciais, P., Reichstein, M., Ballantyne, A.,
Ogée, J., et al. (2020). Asymmetric responses of ecosystem productivity
to rainfall anomalies vary inversely with mean annual rainfall over the
conterminous United States. Glob. Change Biol. 26, 6959–6973. doi: 10.1111/gcb.
15345

Auch, R. F., Sayler, K. L., Napton, D. E., Taylor, J. L., and Brooks, M. S. (2011).
Ecoregional differences in late-20th-century land-use and land-cover change in
the US northern great plains. Great Plains Res. 21, 231–243.

Bandieri, L. M., Fernández, R. J., and Bisigato, A. J. (2020). Risks of neglecting
phenology when assessing climatic controls of primary production. Ecosystems 23,
164–174. doi: 10.1007/s10021-019-00393-7

Batbaatar, A., Bork, E. W., Broadbent, T., Alexander, M. J., Cahill, J. F.,
Carlyle, C. N., et al. (2021). Grazing alters the sensitivity of plant productivity
to precipitation in northern temperate grasslands. J. Veg. Sci. 32:e13008. doi:
10.1111/jvs.13008

Beard, K. H., Kelsey, K. C., Leffler, A. J., and Welker, J. M. (2019). The missing
angle: Ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34,
885–888. doi: 10.1016/j.tree.2019.07.019

Beever, E. A., Tausch, R. J., and Thogmartin, W. E. (2008). Multi-scale responses
of vegetation to removal of horse grazing from great basin (USA) mountain ranges.
Plant Ecol. 196, 163–184. doi: 10.1007/s11258-007-9342-5

Berman, E. E., Graves, T. A., Mikle, N. L., Merkle, J. A., Johnston, A. N.,
and Chong, G. W. (2020). Comparative quality and trend of remotely sensed
phenology and productivity metrics across the western United States. Remote Sens.
12:2538. doi: 10.3390/rs12162538

Bianchi, E., Villalba, R., and Solarte, A. (2019). NDVI spatio-temporal patterns
and climatic controls over northern Patagonia. Ecosystems 23, 84–97. doi: 10.1007/
s10021-019-00389-3

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:
1010933404324

Briske, D. D., Fuhlendorf, S. D., and Smeins, F. (2005). State-and-transition
models, thresholds, and rangeland health: A synthesis of ecological concepts and

Frontiers in Ecology and Evolution 13 frontiersin.org

https://doi.org/10.3389/fevo.2022.1007010
https://www.frontiersin.org/articles/10.3389/fevo.2022.1007010/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2022.1007010/full#supplementary-material
https://cran.r-project.org/package=akima
https://cran.r-project.org/package=akima
https://doi.org/10.1111/gcb.15345
https://doi.org/10.1111/gcb.15345
https://doi.org/10.1007/s10021-019-00393-7
https://doi.org/10.1111/jvs.13008
https://doi.org/10.1111/jvs.13008
https://doi.org/10.1016/j.tree.2019.07.019
https://doi.org/10.1007/s11258-007-9342-5
https://doi.org/10.3390/rs12162538
https://doi.org/10.1007/s10021-019-00389-3
https://doi.org/10.1007/s10021-019-00389-3
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1007010 October 6, 2022 Time: 10:30 # 14

Wood et al. 10.3389/fevo.2022.1007010

perspectives. Rangel. Ecol. Manag. 58, 1–10. doi: 10.2111/1551-5028(2005)58<1:
SMTARH>2.0.CO;2

Bromley, G. T., Gerken, T., Prein, A. F., and Stoy, P. C. (2020). Recent trends in
the near-surface climatology of the northern North American great plains. J. Clim.
33, 461–475. doi: 10.1175/JCLI-D-19-0106.1

Butterfield, Z., Buermann, W., and Keppel-Aleks, G. (2020). Satellite
observations reveal seasonal redistribution of northern ecosystem productivity
in response to interannual climate variability. Remote Sens. Environ. 242:111755.
doi: 10.1016/j.rse.2020.111755

Chen, M., Parton, W. J., Hartman, M. D., Del Grosso, S. J., Smith, W. K., Knapp,
A. K., et al. (2019). Assessing precipitation, evapotranspiration, and NDVI as
controls of U.S. great plains plant production. Ecosphere 10:e02889. doi: 10.1002/
ecs2.2889

Chen, X., Wang, W., Chen, J., Zhu, X., Shen, M., Gan, L., et al. (2020). Does
any phenological event defined by remote sensing deserve particular attention? An
examination of spring phenology of winter wheat in northern China. Ecol. Indic.
116:106456. doi: 10.1016/j.ecolind.2020.106456

Clark, J. S., Melillo, J., Mohan, J., and Salk, C. (2014). The seasonal timing
of warming that controls onset of the growing season. Glob. Change Biol. 20,
1136–1145. doi: 10.1111/gcb.12420

Cook, B. I., Wolkovich, E. M., and Parmesan, C. (2012). Divergent responses
to spring and winter warming drive community level flowering trends. Proc. Natl.
Acad. Sci. U.S.A. 109, 9000–9005. doi: 10.1073/pnas.1118364109

Cowles, J., Boldgiv, B., Liancourt, P., Petraitis, P. S., and Casper, B. B. (2018).
Effects of increased temperature on plant communities depend on landscape
location and precipitation. Ecol. Evol. 8, 5267–5278. doi: 10.1002/ece3.3995

Cutler, D. R., Edwards, T. C. Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J.,
et al. (2007). Random forests for classification in ecology. Ecology 88, 2783–2792.
doi: 10.1890/07-0539.1

Czernecki, B., Nowosad, J., and Jabłońska, K. (2018). Machine learning
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