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Watershed land-use changes have been identified as major threats to lake fauna,
subsequently affecting ecosystem functioning. In this study, the functional-based
approach was used to examine the effects of land use and environmental changes
on phytoplankton communities in four selected lakes in Northeast China. We also
identified the sensitive functional traits as indicators of environmental stressors. The
integration of RLQ analysis with the fourth-corner approach significantly identified five
of 18 functional trait categories, including flagella, filamentous, unicellular, mixotrophic,
and chlorophyll c, as potential indicators to changes in watershed land-use intensity
and environmental gradients. Significant relationships between traits and land use and
water quality highlighted the consequential indirect impact of extensive agricultural and
urban development on phytoplankton via allochthonous nutrient inputs and various
contaminants. In addition, the functional richness of phytoplankton assemblages
generally increased along with surface area and forests, but decreased along with
intensive agricultural and urban land use, implying that functional homogenization may
cause a reduction in ecosystem productivity and reliability to land-use intensity. Given the
superior performance of the functional-based approach, our findings also highlighted the
importance of the application of both the biological traits and functional diversity index
in monitoring programs for lake ecosystems.

Keywords: algae, community structure, eutrophication, functional-based approach, human disturbance

INTRODUCTION

Agriculture and urbanization have drastically transformed complex natural ecosystems into
simplified managed ecosystems in many locations (Flynn et al., 2009; Hooke and Martín-Duque,
2012). By changing contaminant, sediment, nutrient, and organic matter loading (Williamson
et al., 2008), land-use changes have far-reaching consequences for aquatic ecosystems (Foster
et al., 2003). Lakes can be sensitive to land-use changes because they often occupy low points
in landscapes, effectively accumulating effects across watersheds (Arbuckle and Downing, 2001;
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Stachelek et al., 2020). For example, intensive and extensive
agricultural practices, and specifically the application of
fertilizer or manure within watersheds, are strongly responsible
for lake eutrophication (Bennett et al., 2001; Carpenter,
2005), in conjunction with the proliferation of harmful
algal blooms, decrease in dissolved oxygen (DO) levels,
and loss of aquatic biodiversity (Carpenter et al., 1998),
while watershed urban development is associated with
several environmental consequences, including nutrient
pollution, and sewage, pathogen and other contaminants (Bai
et al., 2018). The strong linkage between lake ecosystems
and their watershed (Williamson et al., 2008) highlights
the effects of watershed land use exerted on lake habitats
and biota and their consequential indirect impact on
ecosystem functioning.

Several studies described the decline in species diversity
as a consequence of habitat degradation due to watershed
development (Lenat and Crawford, 1994; Dodson et al., 2005;
Xu et al., 2019). Changes in the structure and composition of
regional habitats may lead to local extinction through changes
in nutrient loading and runoff of pollutants from surrounding
areas (Ricciardi and Rasmussen, 1999; Meador and Goldstein,
2003). Moreover, as watershed land-use types are likely to
influence greenhouse gas emissions that can affect the regional
climate (Smith et al., 2008), community structure is expected
to respond significantly to differences in thermal conditions
(Dell et al., 2011). Species should be shaped by environments
based on their niches, which are better conceptualized by their
morphological, behavioral, or life-history traits that impact their
fitness via growth, reproduction, and survival, rather than their
taxonomical identity (McGill et al., 2006). Thus, functional
trait-based approaches can be informative for understanding
the biotic communities in response to environmental gradients
(Mouillot et al., 2013).

Phytoplankton, the foundation of aquatic food webs, are
a highly diverse group of eukaryotes and cyanobacteria. As
phytoplankton in aquatic systems have fast growth rates
and short-generation times (Sommer, 1989), they are highly
influenced by a multitude of factors, including nutrients,
temperature, light, carbon dioxide (CO2), and grazers (Sarnelle,
1992; Elliott et al., 2006; Burson et al., 2018), and they are
known to be sensitive and predictive to environmental changes.
Ecological studies investigating the effects of environmental
gradients often assess phytoplankton community changes based
on taxonomy-based approaches such as species composition,
biomass, or diversity. Some evidence suggests that urban and
agricultural land use within a watershed, indirectly representing
increased nutrient inputs and various contaminants (Carpenter
et al., 1998; Nielsen et al., 2012; Beaver et al., 2014), may influence
the composition of phytoplankton assemblages by favoring the
growth of cyanobacteria toward the agricultural and artificial
land-use types (Sánchez et al., 2021). Phytoplankton biomass
and production in the lakes surrounded by urban areas or
agricultural land tend to be increased by anthropogenic nutrient
enrichment (Peng et al., 2021). Despite substantial progress in
the understanding of the changes in phytoplankton communities
due to watershed land-use changes, studies using trait-based

approaches and exploring the consequential functional outcomes
following land-use change are still scarce.

In this study, we evaluate how environmental stress gradients,
representing a range of land uses and trophic conditions, affect
phytoplankton functional traits and the diversity of lakes in
northeast China. We used RLQ and fourth-corner analyses
to assess the bivariate relationships between environmental
stress gradients and species traits. The aims of this study
were to: (1) examine the patterns of species composition and
trait distribution of phytoplankton in the selected lakes in
relation to environmental changes and (2) identify the sensitive
functional traits as indicators of environmental stressors. We
hypothesized that the phytoplankton communities in lakes vary
along a land use and environmental gradient. The assumed
variation in communities could be promoted by environmental
filtering for specific traits. In addition, we hypothesized with
increasing agricultural and urban land-use pressure and nutrient
enrichment, there would be a corresponding decrease in
functional diversity of phytoplankton communities.

MATERIALS AND METHODS

Study Area
The study was conducted in four natural lakes in northeast China:
the Chagan, Jingpo, Longhupao, and Wudalianchi (Figure 1), all
belonging to the Songhua River Basin. The region is characterized
by a temperate continental monsoon climate, with a mean
annual temperature of 2.8◦C and average annual precipitation
of 531.1 mm. During the last several decades, the region has
undergone massive changes in land cover and a large amount of
land has formed sparse grassland and reed land which has become
a place for local farmers to graze (Liu et al., 2005). Lake Chagan
and Longhupao belong to the lowland part of the Songhua River
Basin with loamy soils as the dominant geological features, while
Lake Wudalianchi and Jingpo are lava-dammed lakes with sandy
and loamy soils. The selected lakes varied in both development
in their catchments and represented different morphometric and
water quality conditions (Table 1).

Land Use and Environmental Gradients
The land-use variables comprised proportions of the forest,
grassland, wetland, and agricultural and urban areas within lake
watersheds. These were determined at the whole topographic
catchment scale. The Geographic Information System (GIS)
program ArcGIS (version 10.7) was used to analyze the
percentage of different land cover types. Environmental gradients
were described in terms of lake morphology and water quality.
Lake morphological variables comprised surface area and
maximum depth. The surface area was drawn with ArcGIS
software based on physical barriers and topographical features.
Maximum water depth was obtained from Jing et al. (2014).
Water quality variables comprised DO, water temperature, and
pH that were measured in site at the subsurface (∼0.5 m) using
the YSI Professional Plus Multi-meter (YSI Incorporation, Yellow
Springs, OH, United States) and variables related to trophic
status including total nitrogen (TN), total phosphorus (TP), and
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FIGURE 1 | Location of the four selected lakes in Northeast China.

chemical oxygen demand (COD). TN and TP were analyzed
using the persulfate digestion method and COD was determined
with open reflux method (American Public Health Association
[APHA], 1992).

Functional Trait Selection
Phytoplankton were collected from the four lakes seasonally
in May (spring), August (summer), November (autumn)
2019, and February (winter) 2020. Composite water samples
combining euphotic depth-integrated subsamples were collected
for phytoplankton at 12 locations in each lake. Phytoplankton
counts and cell volume estimates were performed using the
inverted microscope method (Utermöhl, 1958). Phytoplankton
was identified at the species or genus level according to Hu and
Wei (2006). A total of 18 functional traits (Table 2) that are
considered crucial for reproduction, resource acquisition, and
predator avoidance (Weithoff, 2003; Litchman and Klausmeier,

2008) were assigned for each of the 279 phytoplankton species.
Cell size and greatest axial linear dimension (GALD) (µm) were
obtained by averaging measurements from at least 10 individuals
for each taxa. Other traits were compiled based on scientific
literature, web search, and expert knowledge (Jones, 2000;
Weithoff, 2003; Hu and Wei, 2006; Litchman and Klausmeier,
2008; Klais et al., 2017; Loewen et al., 2021).

Statistical Analysis
To demonstrate the location of different algal groups in
relation to their functional traits, principal component analysis
(PCA) was conducted on trait matrix of species. Species in the
PCA plot were phylogenetically grouped in major taxonomic
groups (phyla): chlorophytes, chrysophytes, cryptophytes,
cyanobacteria, diatoms, dinoflagellates, and euglenophytes.

Two complementary multivariate analyses, the RLQ
analysis (Dolédec et al., 1996) and the fourth-corner approach
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TABLE 1 | Information on watershed land use and environmental gradient
parameters in four selected lakes.

Variables Lake Lake Lake Lake

Chagan Longhupao Jingpo Wudalianchi

Surface area (km2) 366.8 128.4 84.6 20.7

Maximum depth (m) 3.5 3.5 48 12

Agricultural area (%) 46.51 28.55 25.22 54.92

Urban area (%) 2.63 1.20 0.96 1.21

Forest (%) 0.04 0.13 67.43 20.41

Grassland (%) 28.80 49.25 4.07 14.33

Wetland (%) 1.54 1.36 0.90 0.00

Water temperature (◦C) 14.9 14.7 14.1 11.8

Dissolved oxygen (mg/L) 8.96 10.38 9.43 10.17

pH 9.18 8.58 8.35 8.60

Total phosphorus (mg/L) 0.229 0.289 0.147 0.162

Total nitrogen (mg/L) 1.617 1.003 2.124 1.783

Chemical oxygen demand (mg/L) 8.189 5.889 7.420 7.650

TABLE 2 | Phytoplankton functional traits used in this study.

Traits Abbreviation

Cell size < 100 µm3 Small

Cell size 100–1,000 µm3 Medium

Cell size > 100 µm3 Large

Greatest axial linear dimension > 35 µm GALD > 35 µm

Unicellular life form Unicellular

Colonial life form Colonial

Filamentous life form Filamentous

Coenobium life form Coenobium

Mucilaginous-producing Mucilage

Nitrogen fixation N-fixation

Silica requirement Si-requirement

Chlorophyll b-containing Chlorophyll b

Chlorophyll c-containing Chlorophyll c

Phycobilins-producing Phycobilins

Mixotrophy Mixotrophy

Toxin-producing Toxin

Flagellar motility Flagella

Buoyancy-regulating Buoyancy

(Dray and Legendre, 2008; Dray et al., 2014), were conducted to
investigate the covariation between environmental characteristics
and functional traits. RLQ (R, sites by environmental variables;
L, sites by species abundance data; Q, species by traits) analysis
performs a double inertia analysis between the Q and R through
L ordination (Dolédec et al., 1996). Thus, it is possible to
identify the effects of land use and environmental gradients on
the traits based on the phytoplankton community structure.
As suggested by Dray and Legendre (2008), we combined
two permutation models for both the analyses tested the null
hypotheses that “species assemblages are randomly attributed to
sites, irrespective of the site characteristics” (model 2) and that
“species are distributed according to their preferences for site
conditions, but irrespective of their traits” (model 4). Finally,
the fourth-corner approach was used to evaluate the specifically

predictive role of functional traits in watershed land-use intensity
and environmental gradients.

We calculated three multidimensional functional diversity
indexes: functional richness (FRic), functional evenness (FEve),
and functional divergence (FDiv). Increases in these three index
values indicate that more niche space is occupied by species,
a more evenly abundance distribution in niche space, and a
larger divergence in the abundance distribution in niche space,
respectively (Mason et al., 2005). The relationships between
functional diversity index and land use and environmental
gradients were examined using Pearson correlation.

All the analyses and graphics were performed in R version
4.0.3 (R Core Team, 2020) with the ade4 (Dray and Dufour,
2007), vegan (Oksanen et al., 2020), FD (Laliberté and Legendre,
2010), corrplot (Wei and Simko, 2021), and ggfortify (Tang et al.,
2016) packages.

RESULTS

The first two axes of the PCA performed on phytoplankton
functional traits explained 26.11 and 20.07% of the variation,
respectively (Figure 2). Of the four general trait groups, the
first was dominated by species that are small to medium sized
and chlorophyll b-producing and form colonies or coenobiums
(i.e., chlorophytes); the second comprised filamentous and toxin-
producing species with the ability of buoyancy regulation and
nitrogen fixation (i.e., cyanobacteria); the third consist of large-
sized species that are unicellular, chlorophyll c-producing, and
require silica (i.e., diatoms); the fourth contained species that
are mixotrophic and flagellate (i.e., dinoflagellates, crypto-,
and euglenophytes).

The RLQ analysis revealed that land use and environmental
gradients influence the distribution of phytoplankton species
with specific traits (model 2, p < 0.001) and that the composition
of phytoplankton assemblages is dependent on the land use
and environmental gradients of studied lakes and influenced
by species traits (model 4, p = 0.028). The first two RLQ axes
accounted for 97.44% of the variation in relationships between
land use and environmental gradients and functional traits.
The first RLQ axis was positively correlated with urban and
agricultural land use, surface area, pH, and TN. Grassland,
wetland, DO, and TP loaded positively onto the second RLQ
axis, while forest cover, maximum depth, and water temperature
loaded negatively onto the second RLQ axis (Figure 3A). The
traits filamentous, phycobilins, toxin-producing, and nitrogen
fixation occurred in cyanobacteria and the traits chlorophyll
b-producing, medium sized, and coenobium generally occurred
in chlorophytes positively correlated with the first RLQ axis,
whereas the traits unicellular, mixotrophic, and chlorophyll
c-producing negatively correlated with the first RLQ axis. The
traits flagella, large sized, and the silica requirement were
negatively related to the second RLQ axis (Figure 3B).

The fourth-corner analysis provided the significant
interactions between individual traits and land use and
environmental gradients. Of the 18 traits examined in this
study, five were deemed indicators of morphological, land
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FIGURE 2 | Results of principal component analysis performed on the functional traits of phytoplankton species.

use, and environmental variables (Figure 4). Filamentous
taxa possessed flagella were significantly positively associated
with surface area, maximum depth, and urban areas, whereas
unicellular, mixotrophic, chlorophyll c-containing taxa were
significantly negatively associated with surface area, agricultural,
and urban land use.

Functional richness of phytoplankton assemblages generally
increased along with surface area and forests, but decreased
along with intensive agricultural and urban land use (Figure 5).
There were no relationships between FEve and morphological
and environmental variables. FDiv was positively correlated with
wetland and higher TP, but negatively with agricultural land
use (Figure 5).

DISCUSSION

Lakes provide for a wide range of valuable ecosystem services,
including provisioning, regulation, and maintenance, as well
as cultural services for instance, by improving human well-
being (Reynaud and Lanzanova, 2017; Custódio et al., 2020).
To this end, conventional approaches to lake restoration and
preservation have typically focused on the mechanisms and
factors regulating species assemblages. The observable functional
differentiation of the traits of phytoplankton community revealed
that of the stress gradients studied, human land-use activities had
a consistent and strong influence upon phytoplankton functional
structure via their consequences for nutrient loading. In
addition, land-use transformations due to extensive agricultural
and urban development cause a reduction of the FRic in
phytoplankton assemblages.

Our results indicate significant relationships between traits
and environmental stress variables, which provide a framework
to link phytoplankton communities of lakes to environmental
filtering. More specifically, increased agricultural and urban
areas around lakes associated with changes in physicochemical
properties, such as the increase in nitrogen, pH, or decrease of
DO generally favored filamentous and toxin-producing algae as
opposed to mixotrophic algae. These results are in agreement
with other studies, which found that agricultural or urban land
use could increase nutrient inputs from the watershed and in turn
influence phytoplankton functional traits (Phillips et al., 1978;
Carpenter and Waite, 2000; Bosch et al., 2009; Loewen et al.,
2021). However, different anthropogenic land-use types have
changing effects on lake N and P stoichiometry, with agricultural
runoffs generally having a higher nitrogen-to-phosphorus ratio
than those from urban areas or grasslands (Carpenter et al., 1998).
In this study, agricultural lands were positively associated with
TN, but negatively associated with trait nitrogen fixation. These
results suggest a reduction of N:P ratio under generally eutrophic
conditions that may favor the dominance by nitrogen-fixing
cyanobacteria due to their competitive advantage under nitrogen-
limited conditions (Smith, 1983; Sharpley and Withers, 1994).
We also found that increased phosphorus inputs from grassland
and wetland were positively associated with toxic cyanobacterial
species, providing further support for the role of phosphorus
load in fueling toxic cyanobacterial blooms (Bormans et al.,
2016). As the water sources of Lake Chagan and Longhupao pass
through manured grassland and a large number of wetlands were
transferred to irrigation ditches for rice fields (Liu et al., 2021),
a higher level of phosphorus loading to lakes and low N:P ratios
can be expected.
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FIGURE 3 | RLQ analysis revealing the correlations between land use and environmental gradient variables (R table 101 × 13) and functional traits (Q table
279 × 18), constrained by species abundance (L table 101 × 279): (A) Coefficients for the land use and environmental gradient variables and (B) coefficients for the
functional traits.

Our results also showed that land use and environmental
gradients could potentially influence resource acquisition traits
of phytoplankton. Mixotrophy, which is an important trait
related to nutrient acquisition (Litchman and Klausmeier, 2008),
is advantageous under low nutrient conditions (Troost et al.,
2005). Mixotrophic taxa increased in lakes with relatively
low land-use intensity and nutrient conditions, suggesting a
competitive advantage of these taxa under low nutrient supply.
In addition, differences in pigment composition allow differences
in spectral utilization patterns that can provide opportunities
for species coexistence under light limitation (Stomp et al.,
2004). Experimental studies with chlorophyll c-containing
species Stephanodiscus hantzschii have shown negative effects
of light intensity on chlorophyll c, especially under high

nutrient conditions (Marzetz et al., 2020). We observed the
opposite pattern with high chlorophyll c-containing species
under nitrogen-limitation conditions. This might be due to
decreasing light availability in deeper lakes with more forested
dominated watershed, which favors the growth of chlorophyll
c-containing species, as has been found in other north-temperate
lakes (Loewen et al., 2021).

We revealed significant morphological factors (maximum
depth and surface area) constraining the composition of
phytoplankton communities. Our results indicate deeper water
favoring flagellated algae. These results further demonstrate
that the physical factors related to lake morphology influence
functional strategies to survive in terms of functional traits
related to motility (Wentzky et al., 2020). For instance, lake
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FIGURE 4 | Results of the fourth-corner analysis revealing the correlation between phytoplankton traits and land use and environmental gradient variables in the
selected lakes. Red cells indicate significant positive correlations (p < 0.05) and blue cells indicate significant negative correlations (p < 0.05).

depth exerts a strong influence on the stability of the water
column (e.g., mixing and thermal stratification) and thus on the
light and oxygen condition and the internal nutrient loading
from sediment into the hypolimnion (O’Brien et al., 2003;

FIGURE 5 | Pearson correlation matrix for the functional diversity indices and
morphometric and environmental descriptors. Non-significant correlations
(p > 0.05) are represented by the crossed-out points.

Yang et al., 2016). The flagellates possess active motility that
enable them to alter position within the water column to
alleviate any spatial limitation or segregation of resources
and select optimum conditions (Salmaso and Padisák, 2007;
Litchman and Klausmeier, 2008; Wentzky et al., 2020). Deep
lakes where turbulence and internal nutrient loading were
relatively low that may give a competitive advantage of flagellated
algae to overcome nutrient deficiency and sedimentation losses
by adjusting the position in the water column. In contrast,
the negative association between maximum depth and traits
nitrogen fixation and toxin production is possible because the
increasing internal phosphorus loading with decreasing N:P
ratios in shallow lakes is the main driver of the nitrogen-
fixing cyanobacterial blooms (Smith, 1983; Sharpley and Withers,
1994). We also observed links between water temperature and
algal traits in deep lakes. In this study, the higher water
temperature may increase the prevalence of flagellated algae.
Similar to water depth, the water temperature could influence
the vertical distribution of oxygen and upward mixing of
nutrients (Straile et al., 2003) and thus mediate physiological
processes and behavioral responses of phytoplankton. The other
morphological factor that was positively associated with the
filamentous nitrogen-fixing algae is lake surface area. As larger
lakes in this study are common in urban areas and have
relatively shallow sloped basins and high phosphorus loadings,
their phosphorus-rich conditions and conducive environment
for germination of akinetes may promote the proliferation of
nitrogen-fixing cyanobacteria (Kovács et al., 2012).

In aquatic systems, land-use changes are major driving forces
of biodiversity loss (Allan, 2004). Increasing environmental
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stress gradient in our study, representing intensive urbanization
or agricultural practices generally reduce FRic. Several studies
have previously identified the significant effect of environmental
disturbance upon freshwater biodiversity, and land-use changes
have been identified as further significant factors influencing lake
ecosystems (Arbuckle and Downing, 2001; Light and Marchetti,
2007; Nielsen et al., 2012; McGoff et al., 2013). Watershed land-
use development has often been cited as having a negative
effect upon the biodiversity of lakes (Dudgeon et al., 2006; van
Soesbergen et al., 2019). Functional diversity has been shown with
potential applications for predicting environmental disturbance.
In this study, FRic of phytoplankton communities decreased
with increasing land-use intensity. Similar patterns of functional
changes of community in response to environmental disturbance
have been reported, for instance, a reduction in functional
diversity of aquatic insects in southeastern Brazil (Castro et al.,
2018), and of fishes in Malaysia (Wilkinson et al., 2018), and
of benthic diatoms in Italy (Falasco et al., 2021). Potentially
higher functional diversity represented much higher levels of
productivity and reliability (Dìaz and Cabido, 2001; Vallina et al.,
2017). Our result of a significant decline in FRic with increasing
land-use intensity suggests that homogenization may cause a
reduction in ecosystem productivity and reliability to human
disturbance. Given the importance of functional diversity to
productivity and reliability (Mason et al., 2013; Gherardi and Sala,
2015), we suggest that management at the watershed and local
scales such as mitigating grazing and cultivation practices can
help to ensure a stronger determinant of ecosystem processes in
face of anthropogenic disturbances.

Functional richness represents the amount of functional space
occupied by a species assemblage (Mouchet et al., 2010). We
suggest that the significant decrease in FRic along the agricultural
and urban land-use gradients may imply a low degree of
niche differentiation among species, reflecting the occupation
by species with similar traits inhabiting the area, in response
to extensive habitat degradation due to increased intensity of
land use. Although increasing nutrient loadings from watershed
are likely to favor cyanobacteria bloom (Doubek et al., 2015;
Richardson et al., 2019), the results suggest that increasing land-
use intensity is to the detriment of FRic, indicating that the
functional community structure of phytoplankton is susceptible
to agriculture and urbanization-driven disturbances. In this
study, a possible explanation for a reduced functional diversity
along the environmental stress gradient is eutrophication and
anthropogenic contamination by agriculture and urbanization.
For example, eutrophication of lakes is characterized by a
potential deficit of oxygen, blooms of cyanobacteria, decrease
water transparency, and deterioration of water quality (Carpenter
et al., 1998). Other detrimental consequences of converting
natural land covers include pesticides and other toxic chemicals
from agricultural and urban areas. For instance, urban runoffs are
widely recognized as transport vectors of salts, pharmaceuticals,
and trace metals such as cadmium, copper, and lead (Müller
et al., 2020), while agricultural runoffs are widely recognized
as transport vectors of pesticides and phosphorus and nitrogen
in forms of fertilizers and manure (Carpenter et al., 1998;
Munz et al., 2017). These contaminants will lead to the
loss of biodiversity directly through simple toxicity effects

on physiological, developmental, and reproductive processes
(Burant et al., 2018) or indirectly by altering the environmental
conditions (Yang et al., 2022).

CONCLUSION

In this study, we considered the effect of land-use changes
and environmental gradients upon the functional response of
phytoplankton assemblages. The integration of RLQ analysis
with the fourth-corner approach significantly identified
functional traits as potential indicators to aquatic environments.
Furthermore, anthropogenic disturbance such as agricultural
and urban land use can modify phytoplankton traits which
consequentially decreased functional diversity of phytoplankton
assemblages. Moreover, declines in FRic representing functional
homogenization may cause a reduction in ecosystem productivity
and reliability. Given the superior performance of functional-
based approach, our findings also highlighted the importance
of the application of both the biological traits and functional
diversity index in monitoring programs for lake ecosystems.
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