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Regenerative grazing management (ReGM) seeks to mimic natural grazing dynamics
to restore degraded soils and the ecological processes underpinning sustainable
livestock production while enhancing biodiversity. Regenerative grazing, including
holistic planned grazing and related methods, is an adaptive, rotational stocking
approach in which dense livestock herds are rotated rapidly through multiple paddocks
in short bouts of grazing to defoliate plants evenly and infrequently, interspersed
with long recovery periods to boost regrowth. The concentrated “hoof action” of
herds in ReGM is regarded vital for regenerating soils and ecosystem services.
Evidence (from 58 studies) that ReGM benefits biodiversity is reviewed. Soils
enriched by ReGM have increased microbial bioactivity, higher fungal:bacteria biomass,
greater functional diversity, and richer microarthropods and macrofauna communities.
Vegetation responds inconsistently, with increased, neutral, or decreased total plant
diversity, richness of forage grasses and invasive species under ReGM: grasses tend
to be favored but shrubs and forbs can be depleted by the mechanical action of
hooves. Trampling also reduces numerous arthropods by altering vegetation structure,
but creates favorable habitat and food for a few taxa, such as dung beetles. Similarly,
grazing-induced structural changes benefit some birds (for foraging, nest sites) while
heavy stocking during winter and droughts reduces food for seedeaters and songbirds.
With herding and no fences, wildlife (herbivores and predators) thrives on nutritious
regrowth while having access to large undisturbed areas. It is concluded that ReGM
does not universally promote biodiversity but can be adapted to provide greater
landscape habitat heterogeneity suitable to a wider range of biota.

Keywords: adaptive multi-paddock grazing, holistic planned grazing, livestock density, species richness, wildlife

INTRODUCTION

Regenerative Agriculture is a broad movement that has rapidly gained prominence in the
agricultural community as well as in the popular discourse and academic literature over the
last 5-6 years (Massy, 2017; Lal, 2020; Giller et al., 2021). Though not formally or consistently
defined (Newton et al, 2020), regenerative farming aims to provide more environmentally
benign alternatives to conventional agricultural approaches to meet growing food needs while
addressing critical global problems of stagnating crop yields, diminishing food quality and
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security, and widespread soil degradation and increased
desertification (Rhodes, 2017; LaCanne and Lundgren, 2018).
Restoring soil health and multifunctionality, particularly
microbial activity, nutrient recycling, and carbon and water
retention, is regarded as critical for developing sustainable
and resilient farming systems (Sherwood and Uphoft, 2000;
Schreefel et al., 2020). Sequestering atmospheric carbon into
soils to mitigate climate change as well as nurturing and
promoting biodiversity are also stated goals of regenerative
agriculture (Gosnell et al., 2019; Newton et al., 2020). A variety
of agronomic practices are considered regenerative, including
mainstream and alternative agronomic practices such as
minimum-till or conservation agriculture, cover- and rotational
cropping, integrated crop-livestock and agroforestry systems,
permaculture, organic farming, etc. (Francis et al., 1986;
White, 2020). Domestic livestock can also be employed using
regenerative grazing management (ReGM) to revitalize soils and
grazing ecosystems (Lal, 2020).

Regenerative grazing management (hereafter abbreviated as
ReGM) is an adaptive form of intensive grazing management
(Teague and Kreuter, 2020; Spratt et al., 2021) in which the
timing and distribution (density) of livestock grazing is carefully
planned, managed, and monitored with the aim of improving
rangeland productivity and overall ranching system resilience
(Garnett et al,, 2017; Teague and Barnes, 2017). In essence,
ReGM represents a rebranding of Holistic Planned Grazing
(HPG) developed by Alan Savory in southern Africa more than
half-a-century ago (Savory and Parsons, 1980; Gosnell et al.,
2020) and which is now applied on rangeland in many parts
of the world (Teague and Kreuter, 2020). Holistic Planned
Grazing, and hence ReGM, is characterized by the stocking
of large herds of livestock on multiple small permanent or
temporary paddocks for short periods (less than 1 day to few
days) followed by long periods of recovery rest (many weeks
to months) to mimic the rapid movement of concentrated
ungulate herds being chased across the African landscape by
predators (Savory and Butterfield, 2016). The fundamental
principles of ReGM are to limit the duration of grazing to
avoid regrazing of forage plants and to employ the “herd effect”
to trample down dead plants, break up hard soil crusts, and
incorporate dung, urine, and plant organic matter into soils to
improve soil carbon, increase water infiltration and retention,
and accelerate nutrient flow for grass regrowth (Savory and
Butterfield, 2016; Teague and Barnes, 2017). Other grazing
practices that employ a similar intensive, adaptive rotational
stocking approach to regenerate rangeland or cultivated pastures
include adaptive multi-paddock grazing (AMP), high-density-
short-duration grazing, [ultra] high intensity grazing, mob
grazing, cell grazing, time-controlled grazing, and management
intensive [planned] grazing. Also common to HPG and related
regenerative grazing methods is the consistent claim that they
have a significantly greater potential than conventional, less
intensive, grazing systems to improve rangeland and livestock
condition, productivity, and biodiversity, and slow or even
reverse climate change by the sequestration of large amounts
of carbon into soils, even at much higher stocking rates

than usually prescribed (Savory, 2013'; Savory and Butterfield,
2016).

Claims about the ubiquitous superiority of ReGM are
controversial, divisive, and strongly contested (see Briske et al.,
2013; Sherren and Kent, 2019; Gosnell et al., 2020), spurring
numerous studies, reviews (Skovlin, 1987; Holechek et al., 2000;
Briske et al.,, 2008; Nordborg, 2016; Hawkins et al., 2022) and
a meta-analysis (Hawkins, 2017). These studies and syntheses
have revealed varied ecosystem and agronomic responses to
ReGM with little compelling empirical evidence that ReGM will
improve grass and animal production and vegetation condition
wherever it is applied. What has seldom been examined, however,
is the assertion that the stimulation of soil and vegetation
productivity by ReGM will also improve the availability and
quality of resources and habitats for multifarious flora and fauna,
thereby promoting multi-taxa biodiversity; only two instances of
soil biodiversity responses were reported in reviews. Biodiversity
(species richness and diversity indices) is included as key
indicator for verifying the success of ReGM (Savory Institute,
2019) and is valued by regenerative ranchers as a fundamental
driver of the ecological and economic sustainability of their
farm (Stinner et al., 1997) but little information is available on
the effects of intensive, infrequent grazing on different biota
(Carter et al., 2014) and what synergies exist and possible trade-
offs will be required to simultaneously achieve high livestock
production and biodiversity conservation (Lawrence, 2019). To
start filling this gap, this review examined 58 studies (see
Supplementary Data Sheet 1—Search strategy) on the positive,
negative, or neutral effects on the diversity of soil microbes,
plants, invertebrates, birds, and mammals done in North
America (26), Africa (17), Australia (10), South America (3),
and New Zealand (2). Studies included temporal changes under
ReGM, comparisons with less intensive rotational, continuous,
or deferred grazing systems, or ungrazed plots or properties or
nature reserves (see study details—Supplementary Table 1). The
effects on biodiversity of dense herds of livestock penned in
moveable corrals used for rehabilitating areas and as a home
base for ReGM were also reviewed. Mechanism whereby different
disturbances exerted by intense grazing (trampling, grazing,
nutrient addition) directly or indirectly affect biodiversity are
summarized followed by a brief consideration of how ReGM
could be improved to better benefit biodiversity.

RESPONSE OF BIOTA TO
REGENERATIVE GRAZING

The number of positive, negative, and neutral responses of
various biota to ReGM is presented in Figure 1.

Herpetofaunal diversity was unaffected by ReGM in Africa
(Fabricius et al., 2003) and Australia (Dorrough et al., 2012; Kay
etal, 2017), and is not discussed further.

1 http://www.ted.com/talks/allan_savory_how_to_green_the_world_s_deserts_
and_reverse_climate_change.htm
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FIGURE 1 | Count of positive, negative, and neutral responses of soil organisms (A), plants (B), large mammals (C), invertebrates (D), and birds (E) to regenerative
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Soil Organisms

Regenerative grazing generally promoted soil microbial activity.
Compared to soils in ungrazed or less intensively grazed areas,
soils under ReGM had larger and more active microbial biomass,
especially of fungi (Beukes and Cowling, 2003; Teague et al., 2011;
Girard-Cartier and Kleppel, 2017; Kleppel, 2019), and similar
(Girard-Cartier and Kleppel, 2017) or higher microbe group
functional diversity (Kleppel, 2019). A higher fungi : bacteria
ratio would enhance the retention and availability of soil water
and nutrients for microbes and plant growth (Teague et al., 2011).
In contrast, Dormaar et al. (1989) recorded lower soil fungal
biomass than in exclosures after more than 10 years of ReGM,
in concert with poorer soil water functionality and reduced
vegetation condition.

Improved soil health under ReGM had positive or neutral
effects on soil micro- and macrofauna. Teutscherovd et al. (2021)
found that a single year of ReGM increased overall macrofaunal
diversity and the abundance of earthworms, beetles, and other
invertebrates such as ants, spiders, woodlice, and earwigs, which
enhanced soil structure through bioturbation. In turn, improved
soil structure (e.g., greater porosity) and chemistry (e.g., more
organic matter) under intensive stocking benefited soil-dwelling
and epigeic arthropods (Tom et al., 2006; Moulin et al., 2016) but
not nematodes and protozoa (Teague et al., 2011).

Plants

The influence of ReGM on the diversity of plant species varied
widely in direction and magnitude. Species richness and diversity
was unaffected by ReGM in sown pastures (Scott, 2001), semi-
arid grassland (Weigel et al., 1989; Hillenbrand et al., 2019; Oliva
et al., 2021), semi-arid shrubland (Beukes and Cowling, 2000),

and mesic (>650 mm a~! MAP) grassland (Jacobo et al., 2006;
Dorrough et al., 2012; Chamane et al., 2017a; Kurtz et al., 2018).
Reduction in species richness under ReGM ranged from 10%
(Hall et al., 2014) to over 80% (Scott-Shaw and Morris, 2015),
with grasses (Allington and Vallone, 2011), forbs (Lawrence,
2019) and shrubs (McManus et al., 2018) negatively affected
by intense grazing and trampling, especially during droughts
(Souther et al., 2020). Regenerative grazing increased plant
species (Earl et al, 2003) and life-form diversity (Barnes and
Howell, 2013) over time compared to ungrazed areas (Paine
and Ribic, 2002; Girard-Cartier and Kleppel, 2017) as well as
to rangeland grazed continuously (Lalampaa, 2016; Odadi et al.,
2017; Rantso et al., 2021; Wang et al., 2021) or rotationally at a
lower intensity (Laliberté and Tylianakis, 2012).

In general, ReGM promoted the diversity and abundance
of perennial, productive forage grasses (Stinner et al., 1997;
Chamane et al, 2017a; Huruba et al, 2018) over perennial
forbs (Loeser et al., 2007; Morris and Scott-Shaw, 2019),
and exotic over native species (Ruthven, 2007), although
intense stocking can be employed to target invasive weeds
(Girard-Cartier and Kleppel, 2015).

Increased plant species richness under ReGM may not be
agronomically or ecologically desirable if unpalatable and less
productive forage grasses and non-native ruderal species are
favored (e.g., Chamane et al., 2017a; Souther et al., 2020).

Invertebrates

The response of insects and arachnids to ReGM varies between
taxa, season, and habitat quality (Lindsay and Cunningham,
2009; Barton et al., 2016). For example, various insect (e.g., ants,
crickets, beetles, flies; grasshoppers, parasitoid hymenopterans)
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and arachnids were less abundant and speciose under ReGM but
Hemiptera benefited from reduced vegetation cover (Fabricius
et al, 2003; Debano, 2006; Lawrence et al., 2015). Fire ants
invaded intensively grazed sites but did not reduce arthropod
diversity (Schmid and Lundgren, 2020). Regenerative grazing
increased habitat heterogeneity and food for dung beetles
(Wagner et al., 2020) but destroyed spider webs and the grass
structure upon which they are built; ground-dwelling arachnids
were unaffected (Sebata, 2020). Invertebrates thrived where the
biomass and cover of shrubs increased because of restricted
grazing in riparian paddocks, resulting in higher inputs of
invertebrate food into streams for trout, doubling their mass
(Saunders and Fausch, 2007).

Birds

Regenerative grazing indirectly affects bird populations by
modifying habitat structure and food availability. Ground-
foraging birds such as quail can more successfully forage, and
thus flourish, where ReGM reduces standing herbage, litter, and
cover (Schulz and Guthery, 1988; Wilkins and Swank, 1992).
In contrast, intense grazing reduced food reserves and cover
for overwintering birds, especially during drought, decreasing
their numbers and diversity (Bock and Bock, 1999). Timing is
important: heavy stocking in the dormant season when food is
scare reduced songbird diversity and species richness (Sliwinski
et al., 2020). Applying a [shifting] range of grazing intensities
across the landscape to diversify vegetation structure, including
trees for birds (Dorrough et al., 2012), is key for promoting avian
diversity (Davis et al., 2020) but ReGM as well as other grazing
systems do not create sufficient habitat heterogeneity to suite a
wide variety of birds species (Sliwinski et al., 2019).

Mammals

The abundance, diversity of mammalian herbivores is increased
at nutrient hotspots created by overnight corralling (Huruba
et al., 2021a,b) and on the wider rangeland managed under
ReGM because of improved grass and browse quality (Lalampaa
et al., 2016; Odadi et al., 2017; Crawford et al., 2019). Similarly,
applying ReGM by herding (from temporary corrals) rather
than by fencing, combined with a cessation of lethal predator
control led to a remarkable increase over 4 years in mammalian
species richness (by 24%), particularly herbivores (4+33%), and

the abundance and distribution range of wildlife in a semi-arid
shrubland in South Africa (Schurch et al., 2021).

The only study on small mammals revealed no general effect
of ReGM on rodent diversity but that some species were sensitive
to intensive grazing in particular habitats (Lemos, 2014).

HOW REGM BENEFITS AND HARMS
BIODIVERSITY

The three central tenets of ReGM practices regarded essential
for enhanced ecosystem function and profitable livestock
production—(1) the “hoof” effect on soils and vegetation, (2)
even grazing for a short duration with long recovery rests, and (3)
recycling and redistribution of nutrients through animal excreta
(Savory and Butterfield, 2016)—can indirectly or directly favor
or harm biodiversity (Table 1). The same type of disturbance
can have contrasting effects on different taxa and even on
species within taxa.

Excessive trampling, especially by cattle, generally degrades
soil structure and function, although the effects are contingent on
numerous site-specific factors such as soil texture and moisture,
terrain, and vegetation cover (Trimble and Mendel, 1995; Bilotta
et al., 2007; Byrnes et al., 2018). The contrasting reported
improvements in soil health under ReGM that indirectly benefit
soil biota (see Soil Organisms) could owe to the limited duration
of trampling that soils experience, the breaking of impermeable
hardened soil caps, and the incorporation of organic material
from plants and animal excreta into the topsoil (Mwendera et al.,
1997; Teague and Kreuter, 2020; Mor-Mussery et al.,, 2021).
Trampling can also create suitable seedbeds (Huruba et al., 2018)
and open the sward for ground-foraging birds (see Birds).

Plants exposed to trampling can be severely and extensively
impacted; for example, fewer than 10% of forb species escaped
mechanical damage to their above-ground tissues under ReGM
(Chamane et al., 2017b). Tall plants, particularly soft-leaved forbs
with elevated growing points are most vulnerable to trampling
injury (Sun and Liddle, 1993; Morris and Scott-Shaw, 2019),
which reduces their vigor and potential persistence (Morris,
2021). Grass canopies reduced or modified by trampling offer
inferior habitat for arthropods, birds, and mammals that require
tall swards for nesting or shelter (Fuhlendorf et al, 2006;
Schieltz and Rubenstein, 2016; Oyarzabal and Guimaraes, 2021)

TABLE 1 | A summary of the positive and negative effects of regenerative grazing practices on biodiversity.

Regenerates

Degenerates

Intense trampling
and fauna.

e Lower cover for ground foraging birds.

e Improved seedbed for germination.

Intense, infrequent grazing e More even use of forage plants.

e Long recovery periods for plants and other biota.
e Minimal spatial disturbance for fauna.

Nutrient recycling and

distribution and plants.

e Increased organic matter and water for soil microbes

e Increased nutrients and food for microbes, soil fauna,

o Modified sward structure and reduced cover for
breeding and shelter for arthropods and birds.

e Mechanical damage to forbs.

e Direct hoof impact on biological soil crusts.

o Reduced seasonal food availability for birds,
especially during drought.

e Reduced cover for shelter and breeding for
arthropods, birds, and wildlife.

e Increased soil fertility for plant dominants and
non-native plant invaders.
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and herbivores can also inadvertently ingest instars and adult
arthropods (Van Noordwijk et al., 2012; Wang and Tang, 2019).
Hooves directly impact and reduce the cover of biological soil
crusts (Eldridge, 1998).

In ReGM system, the long uninterrupted periods afforded
plants and animals to recover from defoliation and trampling
probably contribute more to the observed neutral and positive
responses of individuals and populations than the restricted
periods of stocking of small paddocks or areas employed to
minimize selective grazing of palatable forage plants and to
prevent regrazing of grass (Ferraro and Oesterheld, 2002; Barton
et al, 2016; Porensky et al, 2021). Importantly, confining
livestock to a small proportion of the grazing area at any one time
minimizes the spatial extent and duration of their disturbance of
other animals on the property (Schurch et al., 2021).

Despite high stocking densities and grazing pressures, a
uniform defoliation intensity across plant species and vegetation
patches is not easily achieved using ReGM (Venter et al., 2019).
Selective grazing of species and areas can favor less palatable and
more grazing resistant plants, altering vegetation composition
(Anderson and Briske, 1995; Augustine and McNaughton,
1998). Increased paddock subdivision does not alter grazing
selectivity to the degree expected (Gammon and Twiddy, 1990)
nor can it prevent the ingress of unpalatable grasses that are
selectively avoided by livestock even under intense stocking
(Morris and Tainton, 1996).

Controlled rotation of livestock combined with intense
trampling is predicted to distribute their excreta evenly across
the landscape and enrich soils with carbon and nutrients recycled
from plant tissues (Savory and Butterfield, 2016). Microbial and
coprophagous invertebrate populations benefit from the modest
levels of carbon sequestration (see Soils) achievable under ReGM
(Hawkins et al., 2022), and plants are better able to compensate
for defoliation on, fertile, organic-rich soils (Maschinski and
Whitham, 1989; Venter et al., 2021). Nutrients imported by
penned livestock create fertility hotspots (Huruba et al., 2018)
which can kickstart restoration of a species-rich, palatable grass
sward (Sibanda et al, 2016) but the potential for creating
loci for non-native species invasion requires investigation. Also
unknown is whether increased enrichment and grass productivity
under ReGM (Teague and Kreuter, 2020) could eventually
dimmish plant species diversity by favoring dominant over
subordinate grasses and broadleaf species (Harpole et al., 2016).

CONCLUSION AND STRATEGIC
DIRECTIONS

Given the variable responses within and between taxa, it
is concluded that ReGM is not universally beneficial to all
biodiversity, as claimed. The assumption that any bottom-up
stimulation of soil ecosystem processes and plant production
by ReGM will inevitably cascade positively through the whole
rangeland ecosystem to support larger and more diverse
populations of all fauna and fauna is not supported. Furthermore,
some direct and indirect impacts of ReGM, particularly
trampling, can be pernicious and persistent for some biota.

Relentless application of a uniform disturbance comprising
short bouts of intense grazing and trampling across the
whole property could homogenize vegetation communities and
landscapes (Loeser et al., 2007; Sliwinski et al., 2020) reducing
the spatial habitat heterogeneity required to sustain high
biodiversity (Fuhlendorf and Engle, 2001; Benton et al., 2003).
Nonetheless, the multi-paddock, controlled rotational stocking
system employed in ReGM could be adapted (Teague et al., 2013)
to both mitigate negative disturbances on plants and animals
by applying more moderate stocking densities over most of the
property (Joubert et al., 2017; Barzan et al., 2021) while at the
same time creating a more heterogenous grazed landscape with
habitats and living conditions suitable to a broader range of
species and communities.

To engender greater landscape heterogeneity at all scales
(Toombs et al., 2010), stocking density and duration and timing
of grazing would need to be deliberately varied over space and
time to provide a shifting mosaic of disturbance intensities that
includes extremes (Sliwinski et al., 2020; Porensky et al., 2021)
ranging from “overgrazed” bare patches to lightly grazed or
protected paddocks especially in sensitive riparian zones (Paine
and Ribic, 2002; Saunders and Fausch, 2007) and on steep slopes
(Trimble and Mendel, 1995). Also important to include are other
ecosystem management tools often eschewed by regenerative
grazers (Savory and Butterfield, 2016), notably planned burning
and long rests. Fire is essential to maintain the vegetation and of
fire-dependant ecosystems such as mesic grassland and savanna
(Bond, 2019; Gordijn and O’Connor, 2021), and when coupled
with grazing can increase structural heterogeneity (Lituma
et al,, 2022) and contribute toward achieving the dual goals
of biodiversity conservation and profitable cattle production
(Limb et al., 2011; Bowman et al., 2016). Extended rests (of
a year or longer) increase rangeland production (McDonald
et al, 2019) and could create suitable habitat and grassbanks for
particular bird species (Davis et al., 2020) while being restorative
for animal and plant individuals and populations impacted by
intense herbivory (Kirkman and Moore, 1995; Morris, 2021).

A carefully planned strategic approach would be required
when adapting ReGM to better nurture and sustain diverse
biological communities on ranches and in other grazing
areas (Wang and Tang, 2019). The grazing strategy could
consider approaches noted above that could generally promote
biodiversity as well as specific management tactics targeting
species and communities on the property of special conservation
concern (Barry and Huntsinger, 2021).
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