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Coprolites (mummified or fossilized feces), belonging to the group of ichnofossils, are
fossilized remains of feces produced by animals. Various types of data from coprolites
provide detailed evidence of the producer’s condition, like diet, intestinal microbiome,
virus infection and parasites diseases. In addition, the palaeoenvironment information
relevant to producers’ ecological niche can be drawn from taphonomy details the
coprolites mirrored. At present, the phylogenetic clues of the producer’s population
can be determined by advanced molecular biotechnologies. With the integration of
multiple methods and techniques, coprolite has been widely accepted as an ideal
material to study the diet, evolution, and palaeoenvironment of producers. In this paper,
we reviewed the history of coprolite research, enumerated and interpreted the data
recovered from coprolites, and explained their research value to palaeocoprology and
evolutionary biology. Finally, we summarized the current directions of coprolite research
and looked into its future prospects.
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INTRODUCTION

Coprolites are fossilized feces of animals that belong to the group of ichnofossils (Callen
and Cameron, 1960; Heizer and Napton, 1969; Bryant, 1974; Reinhard and Bryant, 1992;
Hunt et al., 1994). As excellent biological and environmental archives, coprolites are still
underutilized for obtaining better knowledge regarding their producers’ condition and the
corresponding palaeoenvironment. The macroscopic and microscopic components of coprolites
provide significant types of information. Macroscopic inclusions of coprolites, such as animal
bones, hair and feathers could provide broad indications for the diets of producers, including
digestive efficiency, feeding strategies and their trophic levels in the food chain. Meanwhile, the
microscopic components of coprolites, such as pollen, bacteria, fungi, and archaea are essential
for qualitative analyses of ancient gastrointestinal microbiomes, as well as quantitative analysis
of the vegetation in the palaeoenvironment. Pathogenic flora and parasites in coprolites will be
constructive in understanding virus infection and parasite diseases of producers. In particular, the
DNA and RNA fragments sustaining in coprolites have become an additional genetic information
source for the phylogenetic analysis of the producers, especially for extinct organisms.

Starting from the description of coprolites, we illustrate the progress of coprolites research for
reproducing a complete lifelike scene of the producers in the palaeoenviroment, then summarize
the technical points and difficulties of coprolite research at present, and conclude with a summary
of the prospects of coprolites research.
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THE DISCOVERY OF COPROLITES

According to the palaeontological and archeological literature,
the term coprolite was first coined by the British geologist
William Buckland in 1829 and applied to describe mineralized
dinosaur feces in the Lyme Regis (Buckland, 1829). The
term “coprolite” consists of two Greek words, Kopros and
Litos, which represent feces/excreta and stone/rock, respectively
(Reinhard and Bryant, 1992; Ford and O’Connor, 2002). In
addition, the term palaeofaece is also used to refer to coprolite
(Watson and Yarnell, 1966).

THE DEFINITION AND
CHARACTERISTICS OF COPROLITES

Origin of Coprolites
Coprolites are usually produced by mammals, reptiles, annelids,
mollusks, coelenterates, and arthropods. In addition to the wild
areas where animal remains are often found, coprolites are also
excavated from latrines, sewers, and cesspits by the human that
can be traced back to the Quaternary period (Rocha et al.,
2006; Smith, 2013; Sistiaga et al., 2014b; Chessa et al., 2020;
Sabin et al., 2020).

Physical Traits of Coprolites
Although the physical traits of fresh feces are often dependent on
the foods the producers ingested (Gilmour and Skinner, 2012),
having undergone abundant chemical and microbial changes
during thousands of years of burial, the physical traits of
coprolites are quite different from those of fresh feces. However,
there is no standard model or method for the morphological
classification of coprolites, except for a few explicit terms, such
as overall shape, outline, size, continuity, pliability, matrix color,
and large inclusions of coprolites. By screening the results of
previous studies (Neumayer, 1904; Häntzschel et al., 1968; Jain,
1983; McAllister, 1985; Jouy-Avantin et al., 2003; Hunt et al.,
2012; Laojumpon et al., 2012; Barrios-de Pedro et al., 2018), the
morphologies of coprolites could be classified as six main types
including discoidal, spiral, round, rod-like, kidney-shaped, and
irregular (Figure 1). Interestingly, spiral coprolites are believed
to be the most distinctive group of coprolites. Since Neumayer
first introduced a systematic terminology for spiral coprolites
based on coprolites from the Early Permian of Texas in 1904
(Neumayer, 1904), more detailed terminologies for describing
spiral coprolites have been proposed (Jain, 1983; McAllister, 1985;
Hunt et al., 2012; Laojumpon et al., 2012). For instance, the
number of spirals visible on the lateral aspect of the coprolites
referred to as spiral counts (McAllister, 1985), the number of
whorls (Jain, 1983), or the number of coils (Laojumpon et al.,
2012). Other studies have also proposed specific morphology
descriptions of coprolites (Jouy-Avantin et al., 2003; Barrios-
de Pedro et al., 2018). Coprolites from the Las Hoyas site
(Barrios-de Pedro et al., 2018), a well-known Early Cretaceous
site located in Spain, were delimited according to a dichotomous-
key method based on three points: (1) the presence/absence of
spiral marks, (2) the morphology of coprolite ends, and (3) the

overall shape, outline, diameter, and constrictions. Subsequently,
12 morphotypes, including spiral, circular, irregular, elongated,
rosary, and so on were distinguished.

Chemical Contents of Coprolites
Due to the process of diagenesis, the chemical inclusions of
coprolites vary from different preserved phases and places.
For example, fresh components such as calcite, aragonite,
quartz limonite, siderite, and pyrite of feces are replaced
by carbonate or phosphate minerals during the formation
of coprolites. Specifically, coprolites from sites protected by
caves and rock shelters exhibit the best preservation (Reinhard
et al., 2019). The petrification caused by the deterioration and
displacement is necessary for fresh feces to transform into
coprolites. However, the mineralization process is usually affected
by the minerals such as calcium in the soil, which is able
to alter the microcrystalline calcium phosphate of coprolites
and result in incorrect determination in the biochemical
investigation of coprolites.

TECHNOLOGICAL ADVANCES OF
COPROLITE RESEARCH

By systematically integrating discrete data provided by the
inclusions, coprolites present valuable information about the
producers and their palaeoenvironments as well as their
correlation. Since the first report on coprolites, studies on
coprolites have gone through three stages. From 1829 to the
1970s, coprolites research expanded from simple morphological
analysis to diet analysis based on chemical experiments
such as immersion, which helped establish a prototype of
palaeocoprology (Callen and Cameron, 1960; Callen, 1963,
1965; Callen and Martin, 1969). From the 1970s to the early
twenty first century, the molecular potential of coprolites
has been examined deeper owing to the development of
various molecular biology methods, such as the extraction
and cloning of aDNA (Poinar et al., 1998, 2001; Hofreiter
et al., 2000). The third stage began in the 2000s, when high-
throughput sequencing, different fields of archeology, molecular
biology, environmental ecology, and geology were weaved
together for coprolite research (Tito et al., 2012; Wood et al.,
2016; Green and Speller, 2017). To date, the subdisciplines
and applications of coprolite researches have incorporated
aspects of morphology, macroscopic content, stable isotope and
biomarker analyses, microbiome analysis/palaeomicrobiology,
ancient DNA, palaeobotany, palaeovirology, and parasitology.
Using coprolites as brushes, inclusions as pigments, we are able to
draw information about the palaeoenvironment and producers at
the time and place.

Morphological Study
Describing the morphological characteristics of coprolites is the
first step to completing the portrait of the coprolite. Although in
Shillito et al.’s (2011) opinion, the morphological characteristics
of coprolites are formed by the types of foods consumed, the
way of foods moved through the digestive tract, and the health
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FIGURE 1 | Classification of coprolites by morphology. (A) Discoidal; (B) spiral; (C) round; (D) rod-like; (E) kidney-shaped; (F) irregular.

and age of the producers, only in a few cases the producers
can be distinguished by the external appearance of coprolites.
In the early stage, without the ability to identify the internal
components, researchers attributed certain coprolite specimens
to small hominids based on their size and shape (Reinhard
and Bryant, 1992). With the development of technologies to
discriminate the interference from other organisms, the specific
characteristics of coprolites were used to discriminate the
interference from other organisms. Moreover, the appearance
of the coprolites could not only illuminate the information of
the producers but also show the influence of other organisms’
activities on the coprolites during the long burial process,
providing additional information about the palaeoenvironment
at the time. For example, the small scrapes, tracks, and grooves
on coprolites in shallow-marine strata of Åsen indicated a
manipulation by other organisms (presumably coprophagous
organisms) after deposition, which could be evidence of benthic
activity and resource recycling in the Late Cretaceous marine
ecosystem (Eriksson et al., 2011). Although there is still no
convincing consensus on how to describe the appearance of
coprolites, a full morphological record is recommended before
the downstream destructive analysis.

Faunal Study
After characterizing the appearance of coprolites, faunal
macroscopic analyses on coprolite inclusions are helpful to
disclose more detailed features coprolites, especially information
about prey animals of the carnivore coprolites (Horwitz and
Goldberg, 1989; Chin, 2002; Bajdek et al., 2016). With thin-
section analysis and targeted microscopes observation on
carnivorous tetrapod’s coprolite from the Late Permian Vyazniki

site of Russia, bone fragments, hair-like structures, invertebrate
remains, and possible invertebrate eggs were found. Then
depending on the digestive corrosion degrees of bone remains,
the coprolites are proposed coming from therapsid carnivores
and archosauromorphs or other non-therapsid carnivores,
respectively. And the hair-like structures found in one Upper
Permian coprolite suggested that the latest Permian therapsids
probably had hair-like integuments or hair suits. All above
information derived from coprolites portrays a typical carnivore’s
image with therapsids and hair suits at that time (Bajdek et al.,
2016). Meanwhile, much of the palaeoecological information
relies on well-preserved organic remains, which comprise food
residues through the early lithification of the feces, a process
thought to be facilitated by bacterial autolithification and high
phosphate content (Hollocher et al., 2001; Chin et al., 2003;
Qvarnström et al., 2016, 2019c).

Scanning electron microscopy (SEM) coupled with
energy-dispersive X-ray spectroscopy (EDS) and propagation
phase-contrast synchrotron microtomography (PPC-SRµCT)
are powerful techniques that could help study various inclusions
in the entire coprolite by performing non-destructive imaging
in three dimensions (Sanz et al., 2016; Qvarnström et al., 2017,
2019a,b,c; Zatoń et al., 2017; Moreau et al., 2020; Rummy
et al., 2021). By using these techniques, the morphology and
macroscopic inclusions of three coprolites collected from the
early Kimmeridgian (Hypselocyclum Zone) intertidal deposits
were explored. And the scanning results suggested the remains
of ostracods, bivalves, gastropods, and crustaceans as well as
possible bristles from polychaete worms, providing the first
direct evidence of filter-feeding pterosaurs that deliberately
targeted minute organisms (Qvarnström et al., 2019b).
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Analysis of Stable Isotopes and Other
Biomarkers
The isotopic composition of carbon and nitrogen (i.e., 13C/12C
ratio, δ15N, etc.) in animals closely represents the dietary
composition and the trophic level of the producers in the food
chain (DeNiro and Epstein, 1978; Vogel, 1978; Minagawa and
Wada, 1984; van der Merwe, 1986; Sealy et al., 1987; Lee-Thorp
et al., 1989). Stable isotope analyses are expected to provide key
information on primary diet and digestion mechanism, especially
for herbivorous producers (Ghosh et al., 2003; Harrison, 2011;
Sistiaga et al., 2014a). For example, the average 13C/12C ratio of
titanosaurs’ coprolites from the Cretaceous Lameta Formation in
central India suggested a primary C3 plant diet for titanosaurs
(Ghosh et al., 2003). The δ15N value of coprolites indicated that
an active gut fermentation process, which is a common digestive
mechanism of modern large herbivorous mammals, was rare in
titanosaurs (Ghosh et al., 2003).

In addition, molecular biomarker (such as 5β-stanols) analysis
highlighted a significant potential in palaeocoprology to identify
the specific diet of producers, for instance, omnivorous,
carnivorous or herbivorous diet (Lin et al., 1978; Knights et al.,
1983; Bull et al., 2005; Baeten et al., 2011; Gill and Bull, 2012). The
steroidal biomarker analysis of a 14,000 years old putative human
coprolite from Paisley Cave, which yielded the predominant
presence of 5β-stigmastanol, and therefore reversely supported
that the putative human coprolite was from a herbivore, and the
presence of palaeoindian mitochondrial DNA in coprolites was
inferred to be contamination (Sistiaga et al., 2014a). Beyond that,
bile acids, testosterone, and estrogen levels also help to identify
the producers (Rhode, 2003; Zhang et al., 2020; Porru et al., 2021).

However, studies have shown that microbial activities around
ancient specimens could change the isotopic signal and confound
archeological results (Reinhard and Bryant, 1992), suggesting
that they may affect the results of palaeocoprology research.
Meanwhile, stable isotope and other biomarker analyses in
palaeocoprology may be feeble when there is no clear knowledge
of the stable isotope ecology and biophysiology of extinct animals
and ancient animals.

Microbiome Analysis/Palaeomicrobiology
DNA of micro-eukaryotes, bacteria, and archaea, acquired from
coprolites can be purified and sequenced to roughly reconstruct
the oral and gut microflora of producers. Meanwhile, by
combining the microbial information derived from coprolites
with the results of anatomical adaptations, gut contents, and
feeding traces, a general picture about the producers’ feeding
and predating behavior, gut microbiota, group structure, and
other characteristics can be derived (Tito et al., 2012; Santiago-
Rodriguez et al., 2013; Appelt et al., 2014; Cano et al., 2014;
Dentzien-Dias et al., 2017). Pre-Columbia coprolites from two
cultures, Huecoid and Saladoid, were evaluated for their bacterial,
fungal, and archaeal content (Santiago-Rodriguez et al., 2013).
The results showed that Proteobacteria, Bacteroidetes, and
methanogens were present in the coprolite specimens from
both cultures. However, Basidiomycetes were the most notable
fungi in Huecoid samples and Ascomycetes predominated in
Saladoid samples, which suggested a difference in the dietary

habits, possibly resulting from the cultural difference. The
mineralization process of coprolites can also be explained by
the bacterial content of coprolites. By examining coprolites from
herbivorous dinosaurs (Hollocher et al., 2001), it was revealed
that bacteria within the capillaries induced initial coprolites
mineralization and generated barriers that protected organic
residues from subsequent destruction.

Due to the full exposure to the environment, it is not easy to
distinguish whether the microbiota is from the internal matrix of
coprolite or the surrounding environment. Therefore, an optimal
metagenomic analyses workflow aiming at coprolites is needed.
Comfortingly, various improvements have been carried out, such
as coproID, which uses a combination of host and microbial DNA
to identify the producers of coprolites (Borry et al., 2020).

Ancient DNA
Ancient DNA (aDNA), the genetic material isolated from ancient
organisms, has various sources in coprolites, including producers,
faunal organisms that producers preyed on, and the organisms
activated in the place where coprolites were buried. It is difficult
to perform the aDNA studies at the beginning because inhibitors
may hamper the PCR reaction, such as lignin and Maillard
reaction products found in coprolites (Poinar et al., 1998). In
1996, ancient human DNA was recovered for the first time from
four coprolites at two sites in western North America (Sutton
et al., 1996). For years, various protocols were sprung up to
effectively against inhibitors and extract aDNA successfully, and
the combination of soil DNA extraction method and aDNA
extraction method has been proved as an optimal approach to
extract aDNA from coprolites (Karpinski et al., 2017; Hagan et al.,
2020). With the development of high-throughput sequencing
and metagenomic analyses, aDNA analyses of coprolites have
been dramatically enhanced and broadened to provide more
information about the producers. Using a modified PowerSoil
DNA isolation kit, researchers performed metagenomic analyses
on a fourteenth century human coprolite and found seventeen
bacterial species representing the environment and organisms
known to be gut inhabitants in Belgium (Appelt et al., 2014).

Even more, well-preserved coprolites are able to provide
sufficient authigenic DNA to carry out mitogenomic phylogenesis
and evolution of the producers (Speller et al., 2010; Palacio
et al., 2017). A nearly complete mammoth mitochondrial genome
(81.6%) at an average coverage depth of 8.1 × from a coprolite
at Bechan Cave was reconstructed, which proved the utility of
aDNA in coprolites (Karpinski et al., 2017). In another study
(Palacio et al., 2017), large amounts of bovine aDNA were
obtained and assembled to a complete mitochondrial genome
from a cave hyena’s coprolite. And the result showed the
mitochondrial genome sequence from the coprolite was belonged
to the clade of ancient bison specimens and closely related to
the extant European bison, proving Bison schoetensacki as a sister
species of Bison bonasus.

Palaeobotanical Analyses
Meanwhile, coprolites contain abundant botanical remains,
including pollen, seeds and fibrous materials, which could be
informative to generate a regional map of plant distribution in
specific environments and to recover the trophic structure of
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the producers. In general, palaeobotanical analyses in this area
are set up to specify the plant remains in coprolites. Pollen
spectra from animal feces have been supposed the optimal
analog of local vegetation compared to sediments dominated
by wind-pollinated pollen species (Carrión, 2002). In the mid-
1960s, pollen analysis was first applied to human coprolites
(Martin and Sharrock, 1964). In the 1970s, the classification
method combining phytophagous diet and environmental pollen
was established (Bryant, 1974; Williams-Dean, 1978; Scott,
1979; Clary, 1983; Reinhard and Bryant, 1992). Thereafter,
optical microscopes and other microhistological techniques on
macrobotanical remains such as plant leaves, seeds, and stems
as well as pollens, were used in palaeobotanical analyses of
coprolites (Bryant, 1977; Greig, 1981; Akeret and Rentzel,
2001; Carrión et al., 2001, 2007; Baeten et al., 2011; Kühn
et al., 2013; Wood and Wilmshurst, 2013; Welker et al.,
2014; Velázquez et al., 2015; Tosto et al., 2016; Taylor et al.,
2020). Along with ecological niche models (ENMs) (Peterson
et al., 2011), which identify the relationships between species
presence records and biotic conditions at certain sites, pollen
analysis of coprolites can be used to predict habitat suitability
of producers under past climatic conditions. By combining
pollen analysis, macrofossil analysis and aDNA analysis on the
coprolites from the extinct Balearic mountain goat Myotragus
balearicus (M. balearicus), it was concluded that M. balearicus
was probably a browser that ate mostly Buxus balearica
(B. balearica) (Welker et al., 2014). Accompanied with ENMs,
authors supposed that the extinction of M. balearicus was
related to the decline and regional extinction of B. balearica
(Welker et al., 2014).

However, it is important to distinguish whether the pollen
was ingested intentionally by producers or carried from the
environment by the wind and insects, which would result in
misleading interpretation about pollen in coprolites. On account
of this, taking the concentration and relative proportion of
grains as an indicator to identify the intentional ingestion of
pollen was recommended. To be specific, a high frequency of
pollen from specific taxa implies intentional ingestion of specific
flowers, seeds or foliage rather than a wind- and insect-pollinated
origination (Shillito et al., 2011).

Palaeovirology and Palaeoparasitology
Based on good preservation conditions, well-preserved remains
of pathogens and intestinal parasites in archaeological materials,
the health status of the organisms can be constructed, such
as gastrointestinal infection. As far as we know now, the
first evidence of a prehistoric parasite, a whipworm (Trichuris
trichiura) egg, came from the study on the colonic contents
of an Inca mummy (Pizzi and Schenone, 1954). Thereafter,
palaeovirological and palaeoparasitological studies on coprolites
have been widely performed to reveal the history of the
host-parasite relationship, zoonosis, and phylogenetic changes
in enteric protozoa (Taglioretti et al., 2015). Microscopic
examination and enzyme-linked immunosorbent assays (ELISA)
are common tools used in parasitological research on coprolites
(Morrow and Reinhard, 2016; Nunes et al., 2017). Remnants of
intestinal protozoans and helminths, such as the uninucleated

cysts of Entamoeba sp., and the presence of Cryptosporidium sp.
in the coprolites of M. balearicus, allowed further clarification
of the reason for the extinction of M. balearicus (Nunes
et al., 2017). The viral aDNA obtained from the coprolites
of two pre-Columbian indigenous cultures were used to
deduce different ancient diet-related information. The results
confirmed that rodents such as Isolobodon portoricensis (hutía)
and Heteropsomys insulans (spiny rat) were normal dietary
components of the two pre-Columbians (Turvey et al., 2007;
Rivera-Perez et al., 2015). Despite the dietary habits, parasites
in coprolite contain clues about where parasites originated from
and how they transmitted. Taenia spp. are frequently found in
human coprolites from areas where beef is commonly eaten,
but rarely found in pre-Columbian New World sites where
beef is not available, suggesting the first human infections
with this parasite is probably caused by beef (Gonçalves et al.,
2003). However, it should be noted that the virus and parasite
found exactly in human-derived coprolites retain two possible
sources, one is the consumption of infected animals from the
mouth, another is the infection by soil, water around the
infected animals. Five sets of factors affect the preservation
of parasite eggs: abiotic, contextual, anthropogenic, organismal,
and ecological. Among these, the abiotic factor acts as the key
role which refers to temperature, soil, pH, humidity, and other
non-living parameters (Morrow et al., 2016). Therefore, the
environmental and the man-made conditions mentioned above
are decisive in the palaeovirological and parasitological studies
on coprolites. Correspondingly, a deep metagenomic sequencing
is recommended to distinguish the exact origination of virus and
parasite in coprolites (Shillito et al., 2011).

APPLICATIONS OF COPROLITES
ANALYSES

With the integration of multiple methods and techniques,
coprolite has been widely accepted as an ideal material to study
the diet, evolution, and palaeoenvironment of producers.

To Describe the Taphonomic Features
and Sedimentological Properties
The taphonomic features of coprolites, including arrangement
direction and distribution density, could be used to interpret
sedimentological properties in the specified stratum, as
well as the defecation speed, posture, and other behavioral
habits concerning producers. If the coprolites group shows
a regular linear arrangement and uniform distribution, it
can be inferred that the producers were making a regular
directional movement during defecation, which usually
reflects a comfortable and normal state of the producers at
that time. Abundant coprolites found at the Las Hoyas site
were verified as taphonomically autochthonous because their
taphonomic features were consistent with the feces produced
and deposited in an aquatic ecosystem (Barrios-de Pedro
et al., 2018). Upon integration with multiple biochemical
data and morphological types, the ecosystem information
surrounding the producers can be uncovered more clearly
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and macroscopically. A study of coprolites from the Pisdura
in India showed the advantages of combining morphological
methods with chemical and palaeobotanical methods (Khosla
et al., 2015). In detail, the SEM with macerated fractions of
Pisdura coprolites revealed that seven ostracod taxa and the
different plant remains were included in coprolites, such as a
probable Gabonisporites vigourouxii globular spore. And optical
emission spectroscopy showed a high level of calcium phosphate
in coprolites. Combined with a variety of lithotypes indicating
fluctuating lake levels, it is revealed that the coprolites were
buried under Fluvio-lacustrine positional conditions and the
producers were omnivores.

To Disclose the Dietary, Sanitary Culture,
and Husbandry Development
The inclusion of data from coprolites generally provides a unique
perspective on the diet of producers, such as dietary, sanitary
culture, and husbandry development. By combining pollen and
aDNA analyses on coprolites from New Zealand purebred dogs,
Wood et al. (2016) revealed their predominant diet of marine
fish and plant matter, which overlapped with the typical diets
of early local indigenous people in New Zealand. Remains
of fish heads found in dogs’ coprolites raised a presumption
that the fish heads were thrown to dogs by humans who ate
fish bodies only (Tolar and Galik, 2019), which suggested a
close relationship between the dogs and humans at 1,000–
750 years ago. The 16S/18S rDNA and shotgun metagenomics
sequencing of pre-Columbian coprolite assemblies from two
different sites, the Huecoid and Saladoid, indicated distinctly
different microbiota, viromes, and diets of people from two
sites, which further supported the Huecoid and Saladoid were
distinct cultures with their own set of characteristics (Cano
et al., 2014; Rivera-Perez, 2017). A comparative study on the
microbiome data from coprolites to modern environmental
microbiome including soil, compost as well as the gut, oral and
skin of the nearby habitants have been deployed previously. The
results showed a striking compositional similarity between the
coprolites microbiome and rural communities, which implied
a huge change in response to the lifestyle change from
rural to modern cosmopolitan cultures (Tito et al., 2012). By
combining palaeoparasitological and palaeobotanical analyses on
fourteen human coprolites from three transiting chronological
periods in Lluta Valley, de Souza et al. (2018) recovered an
increasing frequency, diversity and number of parasites eggs
in coprolites with civilization development, which supported
an increasing severe sanitary condition and sanitary concepts
improvements of the local people with the Inca expansion in
the Lluta Valley. Moreover, thin-section analyses on coprolites-
containing samples were also expected to illustrate the animal
feeding and husbandry regimes at the respective site. The plant
macro- and micro- remains analyses against Lycopodium spore
tablets were deployed on coprolites-containing samples from
two late Neolithic sites in Germany, and the results showed
different plant remains at different layers, providing evidence
for distinct animal husbandry systems for these two sites
(Kühn et al., 2013).

To Trace the Evolutionary History of
Producers
Currently, the archaeological analyses and aDNA interpretation
on the bone and dental calculus remains are able to provide plenty
of morphological and genetic information on the evolutionary
history of organisms. Nevertheless, the various data extracted
from the coprolites, in particular those of microbiome, pollen,
aDNA, parasites, etc. show how the producers have evolved
and what intestinal characteristics were retained or emerged in
the long, having great power regarding the understanding of
evolution. Based on the analyses of pollen and macrofossils of
coprolites from the extinct Balearic mountain goat Myotragus
balearicus, it has been suggested that the extinction of
M. balearicus was highly related to the decline and regional
extinction of the plant species B. balearica, which formed a major
component of its diet (Welker et al., 2014). By comparative
analysis on aDNA from turkey’s bones and coprolites, a unique
domesticated breed in precontact Southwestern America was
identified (Speller et al., 2010). Furthermore, by integrating
high-throughput sequencing on 18S rRNA, microfossil analysis
on pollen and Sanger sequencing on parasites of the avain
coprolites in New Zealand, an extinct mycophagy-diet moa
(Aves, Dinornithiformes) was found parasite-host coextinction
between the moa and several parasite species were deduced,
which caused a broken ecological interaction and impacted the
historical ecosystem processes (Boast et al., 2018).

To Recover the Palaeoenvironment
Especially for herbivores, identification of inclusions in their
dung can indicate regional vegetation distribution, providing
further information of the ecological interactions among various
organisms and guidance for contemporary conservation and
ecosystem restoration efforts (Carrión et al., 2007; Boast et al.,
2018; Wang et al., 2018; Zhang et al., 2019). Biomarker analysis
and detrended correspondence analysis (DCA) between pollen
and non-pollen palynomorphs (NPPs) were performed on dog
coprolites from a Chinese Neolithic site, Tianluoshan. And the
biomarker analysis suggested the dogs with a plant-rich diet
closely relating to humans while the pollen and NPPs results
indicated three main internal vegetation types, indicating the
vegetation patterns of the main areas affected by human activities
in Tianluoshan (Zhang et al., 2019). For a decade, broader
palaeobotanical analyses were applied to identify stomatal traits
of coprolites to provide evidence of environmental factors in
specific areas in the past. Based on the inseparable relationship
between the stomatal density of plants and CO2 concentration,
the stomatal density and index of epidermal fragments of
B. sempervirens found in the coprolites were examined and
compared with the living related species (Rivera et al., 2014).
The results indicated that ancient B. sempervirens had a higher
stomatal density and index than those of extant B. balearica
and B. sempervirens species, providing palaeobotanical evidence
of a change in atmospheric CO2 concentration since the mid-
Holocene period in the Mediterranean basin (Rivera et al.,
2014). In the study about dog coprolites from the Late Neolithic
pile-dwelling site in Slovenia, abundant birch, goosefoot, turnip,
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water chestnut, and flax were found, suggesting the ecological
conditions around the site as marshy ground with a slow-flowing
river or a lake (Tolar and Galik, 2019).

DISCUSSION

Whilst believed more reliable than other archaeological materials
from the same site and time (Hofreiter et al., 2001; Carrión,
2002), coprolites have received less attention than bones and
dental calculus. Over the years practiced, palaeocoprology has
been proven to be a bond for interdisciplinary fields by gathering
various data from coprolites to understand the dietary structure,
physical condition, genesis evolution, and phylogenetic status of
producers. Accompanying with information about the ecological
process, culture, and social evolution at the time, coprolites
can further mirror every nuance of what has happened to the
producers and environment in general at the time and place.

Due to the continuous microbial activities and deposition
of other substances around coprolites as well as the change
in taphonomic conditions such as temperature, humidity,
and oxygen concentration, the non-contamination downstream
analysis is a great challenge (Appelt et al., 2016). In addition,
an important issue in archaeozoology is the use of extant
animal materials, such as bones, teeth, and feces, as control
samples to interpret the results from the fossil record.
The following problem is that excellent records of a large
number of reference individuals from controlled populations
are difficult to obtain, especially for wild and extinct animals.
Comfortingly, interdisciplinary technologies and tools have been
deployed in the research of palaeocoprology to solve problems
related to diet, evolution, and palaeoecology. In this situation,
future research efforts should focus on the scientific and

normative collection, transportation, preservation of coprolite,
and the establishment of standardized procedures to remove
contamination in subsequent experiments as well as to make a
clear assessment of their negative effects on palaeocoprology, and
eliminate them as much as possible. Another step is expected
to expand collaboration between archaeozoology, biology, and
ecology to build more reliable frames of references, and more
standardized experimental designs and methods. With the
increasing discovery of coprolite-related ancient key sites around
the world, coprolite researches will have greater value in the era
of multi-interdisciplinary collaboration.
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