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Knowledge of ecological responses to changes in the environment is vital to
design appropriate measures for conserving biodiversity. Experimental studies are
the standard to identify ecological cause-effect relationships, but their results do not
necessarily translate to field situations. Deriving ecological cause-effect relationships
from observational field data is, however, challenging due to potential confounding
influences of unmeasured variables. Here, we present a causal discovery algorithm
designed to reveal ecological relationships in rivers and streams from observational data.
Our algorithm (a) takes into account the spatial structure of the river network, (b) reveals
the complete network of ecological relationships, and (c) shows the directions of these
relationships. We apply our algorithm to data collected in the US state of Ohio to better
understand causes of reductions in fish and invertebrate community integrity. We found
that nitrogen is a key variable underlying fish and invertebrate community integrity in
Ohio, likely negatively impacting both. We also found that fish and community integrity
are each linked to one physical habitat quality variable. Our algorithm further revealed a
split between physical habitat quality and water quality variables, indicating that causal
relations between these groups of variables are likely absent. Our approach is able to
reveal networks of ecological relationships in rivers and streams based on observational
data, without the need to formulate a priori hypotheses. This is an asset particularly
for diagnostic assessments of the ecological state and potential causes of biodiversity
impairment in rivers and streams.

Keywords: biodiversity, causal discovery, causal relationships, Fast Causal Inference, rivers, IBI, ICI, Ohio

INTRODUCTION

Global biodiversity has been strongly declining for many years (Butchart et al., 2010), which
calls for appropriate and effective conservation measures (Pereira et al., 2010). However, despite
considerable efforts, it has proven difficult to halt biodiversity decline (Mace et al., 2018). A good
understanding of ecological responses to environmental change is key in designing effective
conservation strategies. Experiments offer the opportunity to test specific ecological responses
and relationships in randomized controlled trials. In these trials, organisms or sites are randomly
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assigned to a specific treatment or control group, which provides
a solid basis for causal inference (Midolo et al., 2019). Knowledge
obtained in controlled experiments is, however, often not directly
transferable to the field situation, where additional processes are
at play (Larsen et al., 2019). At the same time, controlled trials
are usually impossible to conduct in large ecosystems for ethical,
financial, and practical reasons (Kerr et al., 2007).

Because of these inherent limitations of controlled
experiments, and facilitated by the growing availability of
monitoring data, ecologists are increasingly exploring the
potential of using observational data for ecological inference
(Sagarin and Pauchard, 2010). While these data are relatively
easy to collect across large regions, their analysis is typically
challenging, for example, due to unmeasured variables that
may result in spurious correlations (Larsen et al., 2019).
Structural equation modeling (SEM) is a popular approach
to test specific hypotheses based on observational data and
explicitly allows for the modeling of latent or hidden variables
(Bollen, 2005). This makes SEM a powerful tool to test and
compare hypotheses that include relationships between multiple
variables. SEM has a long and successful history in ecology
(Grace and Pugesek, 1997; Grace and Keeley, 2006), but at the
same time has its limitations. SEM typically requires detailed
theoretical knowledge of a system to formulate a number of
candidate models (Fan et al., 2016). This makes SEM ill-suited
for analyzing complex ecological systems across large geographic
extents. Causal discovery algorithms provide a means to search
for invariant relationships (Spirtes et al., 2001), i.e., those
relationships that have to be included in structural equation
models to properly model the dependencies and independencies
in the observed data. Instead of requiring the user to specify
a set of candidate models, causal discovery algorithms are
exploratory and consider all possible direct and indirect
relationships over a given set of variables. Constraint-based
causal discovery algorithms are considered to be particularly
promising because of their ability to handle hidden variables
(Glymour et al., 2019). These algorithms are commonly used
in health care studies (Sokolova et al., 2015; Młyńczak and
Krysztofiak, 2018) and gain traction in Earth system sciences
(Runge et al., 2019), but, despite the huge potential, are virtually
unused in ecology.

Here, we present a causal discovery algorithm designed to
model the ecological relationships in streams, building upon the
Fast Causal Inference (FCI) algorithm (Spirtes et al., 2001). The
key innovation of our approach is that it takes into account
the longitudinal hydrological connectivity that is characteristic
of river networks. More specifically, we connect the variables
measured at a given location to the conditions measured
upstream in the river network. This approach does not only
account for spatial correlations but also provides additional
information for revealing ecological relationships. We apply our
new approach to identify causes of reductions in the ecological
integrity of fish and invertebrate assemblages in rivers in the
US state of Ohio, based on a high-quality dataset consisting
of measurements carried out according to a systematic and
standardized protocol (Kapo et al., 2014). Further, this dataset has
been analyzed in multiple previous studies (Pilière et al., 2014;

Zijp et al., 2017), which offers opportunities to compare our
findings with results reported previously.

MATERIALS AND METHODS

Model Approach
Fast Causal Inference Algorithm
Our approach is based on the Fast Causal Inference (FCI)
algorithm (Spirtes et al., 2001). The FCI algorithm is a constraint-
based causal discovery algorithm that takes observational data
as input and returns a causal graph as output (Figure 1). The
algorithm assumes that the observational data are generated by
an underlying model that can be represented by a directed acyclic
graph, where acyclic means that the graph does not contain any
causal cycles. It consists of two phases: the skeleton phase and
the orientation phase. We explain the two phases based on an
illustrative example representing a hypothetical study analyzing
the relationship between the performance of two plant species,
two parasite species and one butterfly species. For simplicity,
we assume that the ground truth causal structure is as shown
in Figure 1A. Note that water influences both plant species,
yet is not included in our dataset, so it represents a hidden or
latent variable.

The starting point of the skeleton phase is a network in which
each variable—in the graph also called a node—is connected
by an edge with all other nodes (Figure 1B). The algorithm
then consecutively tests for independence between variables by
applying (conditional) independence tests. Two variables are
conditionally independent if one variable is irrelevant for the
other variable, given that a set of additional variables is taken
into account. The algorithm performs the independence tests
for pairs of variables, first taking into account no additional
variables. The number of additional variables is then increased
systematically. If two variables are found to be (conditionally)
independent, the edge between the nodes is immediately removed
from the network. This procedure is repeated until no further
tests are possible. The end result (called the skeleton) is a
network in which two nodes are connected if, and only if,
it is impossible to separate them by conditioning upon other
variables in the network. In the example, the algorithm finds
that parasite 1 and parasite 2 are independent, leading to the
removal of the edge between them. Likewise, the algorithm finds
that parasite 1 is independent of both plant 2 and the butterfly
and that parasite 2 is independent of plant 1. The algorithm then
starts to take into account additional variables and finds that
parasite 2 and plant 1 become independent of the butterfly if
it takes into account plant 2. After that, the algorithm cannot
find any more conditional independences and end up with the
skeleton (Figure 1C).

The orientation phase determines the directions of the
connections in the skeleton according to a set of orientation
rules. Zhang (2008) showed that a set of 13 orientation rules is
sufficient to find all available orientations from observational data
and proved that the resulting orientations are valid given that
the conditional independence tests are correct. At the start of the
orientation phase, none of the edges is oriented, as expressed by
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FIGURE 1 | Schematic illustration of the Fast Causal Inference (FCI) algorithm for a system consisting of five measured variables—the performance of two parasite
species, two plant species and one butterfly species—and one hidden variable—water. (A) The true underlying causal network in which water has a causal influence
on both plant species, the first parasite species influences the first plant species, the second parasite species influences the second plant species, and the second
plant species has a causal effect on the butterfly species. (B) The starting network of the skeleton phase in which each node is connected to each other node.
(C) The output of the skeleton phase, called the skeleton, in which nodes are connected to other nodes if and only if they cannot be separated by taking into
account other variables in the model. (D) The result after the v-structure orientation rule. (E) The final output of the FCI algorithm after the orientation phase.

circle marks at both ends of all edges in the skeleton (Figure 1C).
The algorithm then applies the rules hierarchically, such that
each rule starts from the results of the preceding rule(s). Each
rule searches the entire skeleton for specific edge structures and
combines these structures with the results of the previously
carried out conditional independence tests. For example, the
first orientation rule, known as the v-structure rule, searches
for triples of nodes {a, b, c} where b is connected to both a
and c, but a and c are not directly connected, as revealed by
the conditional independence test. If this structure is found
and, additionally, node b was not needed to make a and c
independent, then it follows that b cannot be a cause of a or c.
This enables the algorithm to orient two arrowheads in the
network as a –> b <– c. In our example, the algorithm would
find the triple {parasite 1, plant 1, plant 2}, where parasite 1 and
plant 2 are independent without taking into account plant 1.
As a result, the triple is oriented as parasite 1 o–> plant 1 <–o
plant 2. Likewise, the algorithm finds another v-structure in
the triple {parasite 1, plant 1, plant 2}, where the orientation
rule leads to the structure plant 1 <–> plant 2 <–o parasite 2
(Figure 1D). Building upon the results of the first orientation
rule, the second orientation rule searches for similar triples {a,
b, c} with an arrowhead at b on the edge to a, but not on
the edge to c, for which it can be shown that node b must be
a cause of c. We consequently can orient the connections as
a –> b –> c in the network. In our example, the algorithm
would find the triple {parasite 2, plant 2, butterfly}, which can
be oriented as parasite 2 o–> plant 2 –> butterfly (Figure 1E).
After that, no more orientation rules apply in this example, but
in general there are 13 orientation rules, as described by Zhang
(2008). Per rule, orientations are made immediately and each
rule is applied to all possible connections until it does not trigger

anymore. Remaining circle marks indicate that from the data it
was impossible to determine whether an edge mark should be an
arrowhead or a tail. In Table 1, we list the types of connections
that can be found during the orientation phase.

The algorithm will produce meaningful results even in the
presence of latent (hidden) variables, which is crucial as most
likely not all relevant variables are included in the observational
data. In our example, water is such a hidden variable. Comparing
the true underlying model in the example (Figure 1A) with
the output (Figure 1E), we see that the algorithm successfully
detected the causal relationship between plant 2 and the butterfly,
despite the presence of the hidden variable. Further, the algorithm
found a bidirected edge between plant 1 and plant 2, indicating
the presence of the hidden variable and its influence on
plant 1 and plant 2.

In the FCI algorithm and similar causal discovery algorithms,
the conditional independence test can be selected such that it
fits the characteristics of the data and the presumed shape of

TABLE 1 | Possible relationships between two variables (here represented by A
and B) and their interpretation in a causal graph.

Connected A –> B A is a cause of B.

A <–> B A and B are caused by a variable that is not included in
the network.

A o–> B Either A is a cause of B or A and B are caused by a
variable that is not included in the network.

A o–o B Either A is a cause of B or B is a cause of A or A and B
are caused by a variable that is not included in the
network.

Not
connected

A B A and B have no direct relationship and A and B are not
caused by a variable that is not included in the network.

Frontiers in Ecology and Evolution | www.frontiersin.org 3 January 2022 | Volume 9 | Article 782554

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-782554 January 25, 2022 Time: 12:34 # 4

Mielke et al. Causal Discovery in Freshwater Ecosystems

the relationships between variables. Commonly, variables are
assumed to have linear relationships and additive Gaussian
errors, which is particularly easy to test by calculating partial
correlations (Lawrance, 1976). While this type of test is
computationally efficient, not all ecological relationships fulfill
these assumptions. Therefore, in this study, we use the Kernel
Conditional Independence Test (KCIT) presented in Zhang
et al. (2012). In contrast to correlation-based conditional
independence tests, the KCIT is able to detect both linear
and non-linear relationships between variables and is hence
more suited for ecological applications. The KCIT does not
assume a functional form and as such can detect any type
of relationship.

Adapted Algorithm
We start from a set of variables measured at different locations in
a river network. The FCI algorithm is able to correctly identify
connections and orientations only given that the measured
data are independent and identically distributed (Spirtes et al.,
2001). Because this assumption is violated in data such as
ecological data sampled from a river network, we adapted the
FCI algorithm (Mielke et al., 2020). In our adapted algorithm,
we first divide the variables into four categories (Figure 2): (i)
elements that are being transported downstream (e.g., chemical
substances) hence are characterized by an upstream-downstream
connection; (ii) instream characteristics that are not being
transported downstream (e.g., physical habitat quality); (iii)
biotic variables; and (iv) aspects describing the position of a site
within the larger river network (e.g., physiographical variables
and latitude/longitude). Here, we call the sets water quality
(W), physical habitat quality (P), biotic variables (B), and out-
of-stream (O), respectively. For the water quality variables, we
assume that the Markov assumption holds, i.e., the measurements
at each location are independent of all measurements further up

the river network, given the measurements at locations directly
upstream (Figure 2).

Before applying the core part of our algorithm, we calculate
for each water quality variable Wj measured at location ki
the upstream value of that variable across all the locations
directly upstream. We call this set of variables U. Our
algorithm includes three further important adjustments to the
standard FCI algorithm. First, unnecessary independence tests
are removed from the skeleton phase, i.e., we do not test
for independence of pairs of downstream and upstream water
quality variables, which are dependent by definition. Further,
we exclude connections that are impossible or unlikely given
the characteristics of the system, i.e., we exclude directed
relationships from downstream to upstream locations, from
water quality to out-of-stream variables, and from the biotic
variables (B) to the environmental variables (W and P). Lastly,
we do not perform any tests for pairs of upstream variables,
but instead, impose the structure that we found for the
downstream variables. These constraints ensure that we maintain
the inherent logic of the dataset and reduce the computation time
of the algorithm.

In our adapted FCI algorithm, we further incorporate two
common FCI modifications: the conservative modification
(Ramsey et al., 2012) and the stable modification
(Colombo and Maathuis, 2012). The conservative modification
helps to avoid incorrect orientations by performing additional
tests. If there are conflicts between test results, which can
occur if there is too little information in the data, edges are
not oriented. The stable modification makes the algorithm
independent of the order of the independence tests. In its base
form, the FCI algorithm removes connections immediately
after an independence is found. As a consequence, tests that are
carried out later are influenced by the results of previous tests.
With the stable modification, connections are removed only

FIGURE 2 | Exemplary schematic of a generative model of ecological relationships in flowing freshwater ecosystems, including the different groups of variables
(water quality, physical habitat quality, biotic, out of stream, and upstream water quality) and their relationships. In this example, each group of variables contains two
variables, indicated by their subscript, apart from the biotic variable group which consists of a single variable. The variable set U consists of the variables in the set W
measured at the locations upstream.
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before the number of variables that are taken into account in the
tests is increased.

In Mielke et al. (2020), we tested and compared the
performance of our modified algorithm with the performance of
the FCI algorithm on a simulated dataset with known ground
truth. In this comparison, we found that our approach produced
fewer false positives (i.e., edges that were not part of the ground
truth). It also detected a larger proportion of the edge orientations
and with higher accuracy.

Case Study Data
To test our approach on real-world data, we applied our causal
discovery algorithm to identify potential causes of impairment
of the ecological integrity of fish and invertebrate assemblages in
rivers in Ohio, based on a dataset covering 1,826 biomonitoring
sites sampled between 2000 and 2007 (Kapo et al., 2014; Zijp
et al., 2017). We used the version of the dataset as curated and
described by Zijp et al. (2017). The dataset includes presence-
absence data and abundance data of fish (available for all 1,826
sites) and invertebrates (available for 595 of the sites) as well as
two composite metrics of community integrity. We focused on
these aggregated metrics as these collate a multitude of measured
variables into overarching indicators of the ecological status of
the communities, which can be used to support water quality

protection, assessment, and management practices. The integrity
of the fish community is captured by the Index of Biotic Integrity
(IBI). The IBI is constructed by comparing the fish community
at a given site to an undisturbed reference community, located
in a river of similar size and in a similar region. Reference
communities are obtained from sites with minimal human
influence based on expert judgment. The IBI is composed of 12
sub-metrics indicative of various aspects of community integrity,
including the total number of species, number of individuals, and
the proportion of top predators, with each sub-metric getting a
score of 1, 3, or 5. A low score represents a high deviation from
the reference site (Fausch et al., 1984). Similarly, the Invertebrate
Community Index (ICI) combines 10 sub-metrics including the
total number of taxa and the percentage of tolerant organisms in
comparison to a reference community. For the ICI, the possible
scores for each sub-metric are 0, 2, 4, or 6 (Ohio Environmental
Protection Agency, 1989). The IBI ranges from 12 to 60 whereas
the ICI ranges from 0 to 60.

In addition to the biotic integrity metrics, the monitoring
dataset contains information on physiography, physical habitat
quality, and water quality (Table 2). For physiography, we
considered the drainage area as well as longitude and latitude,
for two reasons: (i) to check whether our approach is successful
in accounting for spatial correlations in the system and (ii)

TABLE 2 | Variables included in our models.

Variable Description/Unit Min. Q1 Median Q3 Max.

Out of stream

Drainage Area (DrArea) km2 0.0 5.2 11.4 43.4 7995.0

Longitude (Long) Degree −84.8 −83.5 −82.7 −81.8 −80.6

Latitude (Lat) Degree 38.7 39.6 40.2 40.9 41.8

Physical habitat quality

Channel quality Scores for degree to which a stream bends, the development of riffle pool
complexes, human-made channel modifications and the stability of the channel)

4.0 10.6 14.0 16.0 20.0

Instream cover Scores for type and amount of instream cover 1.0 10.0 13.5 15.0 21.0

Map gradient Average gradient along the stream- 2.0 6.0 8.0 10.0 10.0

Pool quality Scores for maximum depth of pool or glide, type of current (e.g., fast, slow, or
intermittent) and morphology (comparison of pool and riffle)

−1.0 5.0 7.5 10.0 12.0

Riffle quality Scores for riffle depth, riffle substrate stability, and embeddedness −1.0 1.0 3.0 4.5 8.0

Riparian zone Scores for floodplain width, floodplain quality, and extent of bank erosion- 1.0 4.5 6.0 7.0 10.0

Substrate quality Type (e.g., bedrock, gravel or sludge) and quality of the substrate (scores for
parent material, embeddedness, extensiveness and for the extent to which the
substrate is covered by silt)

−1.5 11.0 14.0 16.0 23.0

Water quality

Chemical oxygen demand (COD) mg/L 5 14 22 31 267

Specific conductance (SpeCon) µS/cm 101 475 643 783 4,119

Hardness (CaC03) mg/L 32 190 265 334 1,434

Nitrogen concentration (N) mg/L 0.10 0.27 0.45 0.69 24.95

Phosphorus concentration (P) mg/L 0.01 0.03 0.06 0.14 74.43

Total dissolved solids (TDS) mg/L 74 334 445 580 5,410

Total suspended solids (TSS) mg/L 3 9 21 48 5,880

Mixture toxic pressure (msPAF-EC50) Fraction 0.002 0.009 0.014 0.030 0.723

Biotic integrity

IBI − 12 33 42 48 60

ICI − 0 36 44 50 60

Statistics are computed based on data from 1,826 biomonitoring sites, except for the ICI which is computed based on a subset of 595 sites.
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as proxies of unmeasured variables, i.e., to examine whether
we are missing relevant variables. If spatial correlations are
well accounted for and the relevant variables underlying
ecological community integrity are included, we would expect
that longitude and latitude have no or only a few connections
to the other variables in the network. Physical habitat quality
is represented by the seven metrics that together constitute
the so-called Qualitative Habitat Evaluation Index (QHEI;
Ohio Environmental Protection Agency, 2006). The QHEI is
an ordinal expert-based metric, with high scores indicating
good habitat quality. As water quality variables we included
chemical oxygen demand, conductivity, hardness, nitrogen
concentration, phosphorus concentration, total dissolved solids,
total suspended solids, and mixture toxic pressure. The
latter is based on concentrations of chemical pollutants and
50%-effect concentrations, derived from ecotoxicity test data
sets. The toxic pressure was derived from concentrations of
industrial products, household products, synthetic estrogens, and
pharmaceuticals (Posthuma and de Zwart, 2006) and is expressed
as msPAF-EC50, a metric associated with ecological impacts
(Posthuma et al., 2020).

Application and Evaluation
Because the numbers and locations of the monitoring sites
differ between the fish and invertebrate monitoring data, we
built separate models for IBI and ICI. For each water quality
variable, we calculate the influence from upstream by calculating
a discharge-weighted mean value of the upstream measurements.
We implemented the weighting to reflect that larger tributaries
have more influence on the conditions downstream than smaller
tributaries. We retrieved the upstream-downstream connections
and the discharge data from the HydroSHEDS database (Lehner
et al., 2008). We then removed the locations without any
upstream locations from the subsequent analysis, resulting in
datasets for IBI and ICI with 1,149 and 526 observations,
respectively. Because the water quality variables showed right-
skewed distributions (Table 2), we applied a log transformation
before applying our algorithm. To evaluate the reliability of the
connections and orientations, we performed block bootstrapping
(Lahiri, 1999). First, we divided the measurement area into
overlapping blocks of equal size. We then drew random blocks
with replacement and added all measurement locations in the
selected blocks to our bootstrap sample. We sampled blocks
until, for both the IBI dataset and the ICI dataset, the dataset
size equaled or exceeded the number of observations in the
ICI dataset (526 observations). We kept the size of the datasets
consistent between IBI and ICI to be able to compare the models.
To determine the size of the bootstrapping blocks, we examined
correlations between locations as a function of distance. We
found that at a distance of 50 km, correlations were negligible
(Supplementary Figure 1) and we used a side length of the blocks
of 35 km to cover that distance.

We built 100 networks for both the IBI dataset and the ICI
dataset using a significance level of 95% for the conditional
independence tests. We limited our conditional independence
tests to conditioning sets of size 3 as these tests are known to
be unreliable for large conditioning sets (Bromberg et al., 2009).

We decided to include a connection in the final network if
it was part of at least 65% of all networks (Meinshausen and
Bühlmann, 2010). Likewise, for an orientation to appear in
the final network, it had to be oriented in the same way
in at least 65% of all networks. Our algorithm does not
distinguish between positive and negative relationships. To give
an indication of the direction of the relationships involving the
biotic endpoint variables, we calculated partial correlations after
having established the networks, conditioning on the neighboring
variables in the final networks. The entire workflow is illustrated
in Supplementary Figure 2.

We conducted our analysis in R, version 4.0.3 (R Core
Team, 2020). Our code is available at https://github.com/KoMiel/
currentFCIapplication. We based our implementation of the
adapted FCI algorithm on the FCI method of the R package pcalg
(Kalisch et al., 2012). For the KCIT, we used the implementation
available in the package RCIT (Strobl et al., 2019).

RESULTS

Our algorithm revealed that the biotic integrity variables IBI
and ICI are directly connected to the concentration of nitrogen
(N) (Figures 3, 4 and Supplementary Tables 1–8). Likewise,
in both models, biotic integrity is directly connected to one of
the physical habitat quality variables. Specifically, IBI is directly
linked to the quality of the river substrate and ICI is directly
linked to the quality of the river channel. We further found a
connection with latitude for IBI but not for ICI. According to the
partial correlation analysis, IBI is negatively related to N (−0.28)
and latitude (−0.30) and positively related to substrate quality
(0.22). For ICI we found a negative relationship with N (−0.33)
and a positive relationship with channel quality (0.19).

We found that the water quality variables and the physical
habitat quality variables are not directly linked, but only

FIGURE 3 | Network of ecological relationships for the freshwater fish
assemblage Index of Biotic Integrity (IBI) in Ohio, showing the relationships
among the IBI (red), the water quality variables (blue), the physical habitat
quality variables (turquoise), and the out-of-stream variables (yellow).
Upstream variables are mainly connected to their downstream partners and
are excluded from the figure to improve readability. The thickness of a
connection indicates how many of the bootstrapping samples it appeared in.
The abbreviations are explained in Table 2. A summary of the bootstrapping
results is provided in Supplementary Tables 1–3, 7.
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FIGURE 4 | Network of ecological relationships for the Invertebrates
Community Index (ICI) in freshwater systems in Ohio, showing the
relationships among the ICI (red), the water quality variables (blue), the
physical habitat quality variables (turquoise), and the out-of-stream variables
(yellow). Upstream variables are mainly connected to their downstream
partners and are excluded from the figure to improve readability. The thickness
of a connection indicates how many of the bootstrapping samples it appeared
in. The abbreviations are explained in Table 2. A summary of the
bootstrapping results is provided in Supplementary Tables 4–6, 8.

indirectly via the drainage area (DrArea). Further, while we
tested for all possible relationships between downstream and
upstream water quality variables (i.e., including combinations
of different variables), we found that upstream water quality
variables are related to their downstream counterparts only,
apart from one connection to latitude. Additionally, we found
relatively few connections between geographic location (latitude
and longitude) and the other variables.

Due to the heterogeneity in the data and the different
underlying datasets, we observed differences between the IBI
and ICI models. Comparing the two models, 17 out of 20 edges
are shared between the two models, and of the corresponding
34 edge marks, 26 are oriented in the same way. Likewise, the
heterogeneity in the data led to variability in the direction of
connections between bootstraps. Of all cause-effect relationships
over all bootstrap models, 10% for the IBI dataset and 14% for the
ICI dataset are relationships that are in conflict with the majority
decision over all bootstraps (Supplementary Tables 1–6). With
our threshold being set at 65%, this should not have a major
influence on our final output.

DISCUSSION

Case Study Results
We developed and applied a novel adaptation of the FCI
causal discovery algorithm to reveal the network of ecological
relationships in freshwater systems in Ohio. The results of our
analysis indicate that the concentration of nitrogen is a key
variable for fish and invertebrate community integrity in Ohio,
likely negatively impacting both. In contrast, we did not find any
direct connection between biotic integrity and the concentration
of phosphorus, indicating that eutrophication impacts on fish
and invertebrate community integrity in Ohio are primarily
governed by nitrogen. This finding is in line with previous

studies that evaluated the impact of nitrogen and phosphorus
on freshwater communities, both in Ohio (Bedoya et al., 2011)
and in other regions (Grizzetti et al., 2017; Lemm et al., 2021).
In contrast, Pilière et al. (2014) found that phosphorus is the
more important predictor of freshwater community integrity in
Ohio. Further, Zijp et al. (2017) found that fish species richness
in Ohio is negatively related to phosphorus rather than nitrogen.
Differences between our results and these previous findings may
reflect that our causal discovery approach considers all potential
relationships between variables as well as the hydrological
connections between data points. Moreover, by considering
confounding variables, our approach has the potential to filter out
spurious correlations in the data. Thus, the previously reported
relationships between phosphorus and ecological integrity could
be either indirect relationships or reflecting the influence of
other (unmeasured) variables. While a missing link between
two variables in our models does not necessarily imply that
a connection does not exist, the connection is too weak to
be detected in the conditional independence tests. Thus, our
results at least indicate that nitrogen is more important than
phosphorous in structuring freshwater fish and invertebrate
assemblages in Ohio.

We further found that fish and invertebrate community
integrity are each linked to a specific physical habitat quality
aspect, i.e., substrate quality for fish and channel quality for
invertebrates. Contrasting to our results, Pilière et al. (2014)
found that riffle quality (fish) and substrate quality (invertebrates)
are the most important habitat quality aspects. For most physical
habitat quality metrics, however, we did not find a direct
connection to the biotic integrity metrics. The lack of a direct
connection may be explained by indirect relationships, for
example, the instream cover of the river may be causally linked
with substrate quality. Interestingly, our algorithm revealed no
direct connections between the components of physical habitat
quality on the one hand and water quality aspects on the other.
We stress that this is a result of the application of our method
rather than an assumption that we started from. This finding
indicates that there are no strong relationships between the
two groups of variables, although human-induced changes in
physical habitat quality and water quality are often correlated
(An et al., 2002).

The direct connection between IBI and latitude suggests that
our dataset may miss a relevant covariate of fish community
integrity. The negative sign of the partial correlation coefficient
suggests that fish community integrity is, on average, lower
in the north than the south of Ohio, which is in line with
earlier findings (Virani and Manolakos, 2005). The reverse is
true for the proportions of agricultural and urban land, which
are typically larger in the north and west (Tayyebi et al., 2015).
Possibly, these land uses affect aspects of water quality or
habitat structure that are not fully captured by the water quality
and physical habitat quality variables included in the dataset,
thus resulting in a connection between IBI and latitude in our
model. We further found in both the IBI and ICI model a
direct connection of longitude and latitude, albeit no causal
relationship. The correlation between longitude and latitude
may reflect that the measurement locations are not randomly
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distributed, but structured along the river network. While our
approach considers the upstream-downstream connectivity of
the river system, it does not explicitly account for the full topology
of the river network. This may result in spatial correlations
not being completely removed. However, there are only few
connections between geographic location and the other variables
in the final models, indicating that our approach removed most
of the spatial correlations from the system.

The limited size of our dataset may have restricted
the possibilities to identify the directions of the ecological
relationships. In fact, we could find only a single direct cause-
effect relationship from pool to cover in the IBI model and no
such relationship in the ICI model. To find more orientations,
the study could be repeated with a larger data set. Alternatively,
the FCI algorithm could be applied without the conservative
modification or with a lower decision threshold. This would
lead to more orientations, but potentially also more erroneous
decisions (Ramsey et al., 2012). In future work, our method could
also be applied to individual species or taxa. While aggregated
metrics are useful to support ecological quality assessment and
management practices, taxon-specific causal discovery results
may help to unravel and understand the causes of biotic integrity
impairment, as shown for different approaches in previous
studies (Baker and King, 2010; Berger et al., 2016).

Applicability
We presented a new approach to reveal networks of relationships
between biotic and abiotic variables in river systems. While it
is standard practice in structural equation modeling to compare
only a limited number of candidate models, our method covers
all possible models that satisfy the model assumptions. More
specifically, our model assumptions allow for latent variables,
but we do assume acyclicity, i.e., do not consider feedback
cycles. Considering a large number of candidate models has
both advantages and disadvantages. We consider the approach
particularly advantageous for exploratory analyses of networks
of ecological relationships involving a relatively large number
of variables. Further, it is computationally expensive to test
all possible connections (Malinsky and Danks, 2018). The
computation time depends on the number of conditional
independence tests that have to be carried out. In our approach,
we reduced the number of conditional independence tests by
not doing tests that were unnecessary because of the spatial
structure (hydrological connections) of the system. Regardless,
the number of conditional independence tests increases with the
number of variables included in the network. The computational
cost of each test depends on the amount of data and
the conditional independence test that is used. The Kernel
Conditional Independence Test (KCIT) that we used in this
work is slow, but powerful, due to its ability to detect non-
linear relationships (Zhang et al., 2012). Strobl et al. (2019)
developed approximate kernel-based conditional independence
tests that are significantly faster, in particular for large datasets.
For larger datasets than ours, the approximation could be a good
compromise between accuracy and run time.

As our method is data-driven, different datasets may result in
different networks. In our study, the ICI model was based on

a subset of the measurements that were used to build the IBI
model. Consequently, the final networks display a few differences.
We note, however, that these differences are amplified because
we implemented a threshold to summarize the bootstraps (i.e.,
showing only connections that appeared in at least 65 out of
100 models). As a result, a connection that is predicted to
be present in one model may appear absent from the other
model even though it was present in a considerable proportion
of the models. For example, the connection between substrate
quality and gradient was not included in the final IBI model
despite being present in 27 of the bootstraps. The same is
true for edge marks which are present in one model but not
in the other. Removing the threshold is not an option, as
this would lead to an incomprehensible graph. Overall, the
relationships within the habitat quality variables and the water
quality variables, respectively, are similar in both final models.
Connections that are present in both networks can be interpreted
with more confidence.

After the preprocessing, the data structure is similar to that
of time series, with streams equaling time and locations equaling
points in time. This analogy suggests that the data may also
be analyzed with time series methods such as Granger causality
or CCM (Sugihara et al., 2012). The number of consecutive
measurement locations, however, is highly heterogeneous in our
data which hinders the direct applicability of such methods.

We think that causal discovery methods, modified to
reflect key characteristics of data sets (such as hydrological
relationships), have great potential for application. Our adapted
FCI algorithm is particularly suited for exploratory analyses of
ecological relationships in rivers and diagnostic assessments of
potential causes of ecological impairment. The results obtained
with our algorithm can be used to formulate hypotheses or
to select variables for refined follow-up analyses (Sun et al.,
2015). For example, SEM could be used in a subsequent step to
study and quantify specific pressure-impact relationships in more
detail. Additionally, Pearl’s do-calculus (Pearl, 1994), among
others, could be applied to estimate the effect strength of these
relationships. Quantifying the relationships in our graphs would
also allow using the networks for predictive purposes.
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