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The Culex pipiens complex of mosquitoes are significant vectors of several pathogens
resulting in infectious human diseases in North America, including but not limited to
West Nile encephalitis, Rift Valley Fever, and Lymphatic filariasis. Among this complex
are C. pipiens form pipiens and Culex quinquefasciatus. While morphologically similar,
the mosquitoes exhibit unique life histories that suit them uniquely to divergent niches,
wherein C. pipiens can thrive despite the cold winters of the northern United States and
C. quinquefasciatus is able to survive periods of drought typical in the southern states.
Here, Random Forests machine-learning algorithms were employed to model and
explore which environmental parameters best explain mosquito occurrence in historical
trapping data across the continental United States of America, and test correlation
with abundance data. The models explained between 71 and 97% of the presence
or absence of the two mosquitoes based on historical climatic data. The results of this
study will improve vector management programs by explaining which environmental
variables will provide the most accurate predictions of mosquito presence at a given site.

Keywords: random forest, Culex, mosquito, climate, machine learning

INTRODUCTION

Culex pipiens complex mosquitoes are major vectors of several pathogens that cause human diseases
such as West Nile encephalitis, Rift Valley Fever, and Lymphatic filariasis (Meegan et al., 1980;
Monath, 1988; Lai et al., 2000; Diamond, 2009). One of the mosquitoes belonging to this group, the
southern house mosquito Culex quinquefasciatus, is found in warmer regions with its distribution
limited below a latitude of 39◦N in the continental United States America (Alaniz et al., 2019). Its
sister species, the northern house mosquito Culex pipiens form pipiens, are found in the northern
temperate regions of North America. However, the hybrid zone generally exists at latitudes between
30 and 40◦N (Barr, 1957) between these two sister species although some population genetics
studies showed that introgression among the C. pipiens complex species is much more widespread
(Kothera et al., 2009, 2012; Huang et al., 2011). Despite these contradictory results of introgression
in C. pipiens complex, each species exhibits unique life histories adapted to their specific ecological
niches (Cornel et al., 2003; McAbee et al., 2008; Kothera et al., 2012; Kang et al., 2021) and purifying
selection appears to maintain the unique genetic identities wherever the two biotypes are found
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(Fonseca et al., 2004; Arensburger et al., 2010; Amraoui et al.,
2012; Hickner et al., 2013; Kang and Sim, 2013).

Environmental conditions are considered a significant effector
of Culex population structure and shape differences in life history,
including geographical distribution, behavior, reproduction,
host preference, and diapause (overwintering) (Barr, 1957;
Spielman, 1967; Harbach et al., 1984; Clements, 1992). Crucially,
temperature profoundly influences the life cycle of this
mosquitoes complex and is likely a major factor in its geographic
distribution and consequently its ability to disseminate diseases
(Chaves and Kitron, 2011; Chuang et al., 2011). A distinct
temperature-related evolutionary adaptive feature of the C.
pipiens complex is the presence or absence of overwintering
diapause. Diapause is an anticipated, preprogrammed response
of insects to the shortening of days and lower temperatures at
the onset of winter and is characterized by a developmental arrest
resulting in reduced metabolism, enhanced stress tolerance, and
fat hypotrophy (Mori et al., 2007; Sim and Denlinger, 2013;
Kang et al., 2014, 2016; Sim et al., 2015). This reallocation of
resources toward survival is a critical adaptation for the northern
house mosquito, C. pipiens. The absence of the diapausing
phenotype would cull the southern mosquitoes from C. pipiens
populations, yet fails to fully explain the low level of introgression
of C. pipiens into the southern C. quinquefasciatus populations
in North America.

Understanding how the changing climate influences the
distribution of these mosquitoes is essential for management
and control efforts. The interaction between climatic and local
factors makes for complex processes. Multiple processes likely
drive species distribution at different scales, and often simple
models will fail to account for hidden relationships (Wagner
and Fortin, 2005). This is further complicated by the nature
of geospatial data, which often present complex, non-linear,
high dimensional datasets (Cutler et al., 2007). This can present
a problem for traditional methods such as generalized linear
models (De’ath and Fabricius, 2000).

Random forests is a machine-learned method of pattern
recognition that is very well suited to ecological classification
and regression problems, and a chief use of the Random forests
algorithm is to determine the relative importance of each feature
in explaining a phenomenon (Cutler et al., 2007). Random
forests is an algorithm in which multiple decision trees are
combined (bagging/bootstrap aggregation) to solve classification
or regression problems. This approach can compensate for errors
in unbalanced datasets, which are common in ecological data
(Breiman, 2001). This approach helps overcome the problem
individual decision trees have with overfitting. Random forests
do not need assumptions about the distribution of the data, are
relatively robust when the quality of the data is inconsistent,
are adept at handling outliers, and require no scaling or
transformation of datasets (Ruiz et al., 2010). The algorithm
reduces data into subsets and can handle high-dimensional
datasets. Indeed, the potential of Random forests has already
yielded promising results at a small scale in a landmark study
considering the impacts of rainfall and temperature data on
infection rates of C. pipiens and Culex restuans mosquitoes in
the greater Chicago area by West Nile Virus (Ruiz et al., 2010).

Additionally, machine learning has been gaining popularity in
other entomological studies to explain the abiotic drivers of insect
trap catch (Midgarden and Lira, 2006; Enkerlin et al., 2016;
Bekker et al., 2019).

Here, we test whether a random forest trained on historical
climatic and mosquito collection data can accurately explain
future mosquito trapping occurrence within the continental
United States. We examine various environmental factors,
including minimum, maximum, and mean temperature, rainfall,
elevation, and dew point, to determine the relative importance
of each environmental factor to model accuracy. We explained
above that resilience to the cold is of utmost biological relevance
to these mosquitoes. Here, we investigate whether minimum
temperature can explain mosquito trap events. Further, we
examine whether different combinations of climatic factors can
be combined to improve the accuracy of our model.

MATERIALS AND METHODS

Collection of Data
Mosquito abundance data of the United States comprising all
the parameters were downloaded from Vectorbase1 on Dec 28,
2019 (Supplementary Table 1). The trap data ranged from 2010
to 2019. The collection data from Vectorbase was comprised
of 642,812 C. pipiens and 209,658 C. quinquefasciatus collected
from various locations in the United States. Because entrees in
varied from samples trapped per day and per month, the data
were combined into per year counts per trap site. The data were
rearranged and aggregated to obtain the sum of each mosquito
species collected per year irrespective of the trap used for their
collection. After curation there were 544,040 C. pipiens and
139,054 C. quinquefasciatus for the dataset leading up to 2016
and 98, 772 C. pipiens and 70, 601 C. quinquefasciatus for the
post-2017 dataset. After combining the data per year in the data
leading up to 2016, we had 2,336 zeroes for C. pipiens and 2,009
zeroes for C. quinquefasciatus. For the post-2017 data we have 486
zeroes for C. pipiens and 560 zeros for C. quinquefasciatus. We
included all the trap available trap and scored trap sites collecting
mosquitoes other than C. pipiens and C. quinquefasciatus as
negative trapping events.

In addition to species abundance and year of collection, other
retained parameters were the longitude and latitude of each trap.
Environmental data including minimum, maximum, and mean
temperature, rainfall, elevation, and dew point were retrieved
from the PRISM climate group.2 The available environmental
data was 30-year average for all the parameters.

Collating Mosquito Abundance Data and
Environmental Data
The coordinates of environmental data were matched using
QGIS33 (QGIS, 2020) to align the mosquito abundance
with environmental parameters. Subsequently, the mosquito

1https://www.vectorbase.org/popbio/
2http://www.prism.oregonstate.edu/
3https://qgis.org/en/site/
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abundance was grouped into different environmental zones based
on climate parameters and elevation.

Pattern Visualization and Multivariate
Analysis
All the statistical analyses were performed in R software
version 3.5.1 (R Core Team, 2020). A principal coordinate
analysis (PCoA) was performed to visualize the pattern of
C. pipiens and C. quinquefasciatus occurrence in ordination
space and their relationship with environmental parameters
using Euclidean distance matrix produced using vegdist function
from vegan package. The matrix thus obtained was used
for PCoA calculations using wcmdscale function in vegan
package (Oksanen et al., 2020). The values thus generated
were plotted using ggplot2 (Wickham, 2016). A PERMANOVA
(Permutational Multivariate Analysis of Variance) was conducted
using the “adonis” function in the vegan package of “Euclidean”
distances of environmental parameters (Dixon, 2003; Oksanen
et al., 2020). We conducted the PERMANOVA to determine if the
presence and absence of the C. pipiens and C. quinquefasciatus
groups are separated by environmental factors at multivariate
level. This tested whether the presence and absence of
each species in the various trap locations are influenced
by environmental factors. Further, this analysis determined
whether the centroid of presence and absence are different in
multidimensional scaling. For reference markdown file of C.
pipiens PCoA and PERMANOVA are provided in supplementary
material (Supplementary File 1); and same pipeline was used to
determine PCoA and PERMANOVA for C. quinquefasciatus.

Random Forest
Proposed by Leo Breiman, random forest builds multiple decision
trees and merges them together to get a more accurate and stable
prediction (Breiman, 2001). This model, in terms of strength
of the individual predictors and their correlations, gives insight
into the ability of the random forest to predict. Tree selection
was made using the random Forest package in R (Liaw and
Wiener, 2002). Mosquito occurrence is difficult to predict using
traditional models utilizing simple formulas to examine simple
relationships. Random Forests, a machine learning method does
not base its predictions on any individual regression formula
but is based on ensemble learning, thus increasing the accuracy
compared to regression models. Random Forests were used to
model the effect of climatic factors on the occurrence of C.
pipiens and C. quinquefasciatus mosquitoes. Random Forests
combine multiple decision trees in an iterative algorithm to
predict presence or absence.

Before running random forest models, an analysis was
performed using the Boruta package (Kursa and Rudnicki, 2010)
to identify the relevant environmental parameters, which best
explained the presence of C. pipiens and C. quinquefasciatus
to avoid overfitting of data. The mosquito data was divided
into three groups – mosquitoes collected before and from the
beginning Jan, 2017; mosquito abundance data before Jan 2017
was bootstrapped into two sets consisting of “Mos-training”
(constituting 75% of data) and “Mos-test” (constituting 25%

of data) data; collectively called “Mos-data” (Supplementary
Table 2). The data comprising the mosquito abundance after
Jan, 2017 is called “Mos-2017” (Supplementary Table 3).
Two random forest models each for C. pipiens and C.
quinquefasciatus were generated using “Mos-training” data using
environmental parameters as independent variables, and was
used to determine decrease in mean accuracy (indicator of
importance of independent factor) and partial dependence plots
for each environmental variableModel thus generated was fitted
to Mos-test data and Mos-2017 data. Subsequently, these models
were used to determine out of bag error (OOB) and their
ability to correctly predict C. pipiens and C. quinquefasciatus
occurrence for the “Mos-training,” “Mos-test,” and “Mos-
2017” data. Once fitted the models were used to predict
presence and absence of each species and inaccurate calls were
determined. We define inaccurate calls as including both when
the mosquitoes were present after a prediction of absence
and vice-versa. Detailed R-script and pipelines for C. pipiens
Boruta analysis (Supplementary File 2), random forest for train
data (Supplementary File 3), test data (Supplementary File
4), and Mos-2017 data (Supplementary File 5) are provided
in Supplementary Material. Same pipeline was used for C.
quinquefasciatus.

RESULTS

Data Curation
After curation and arranging the data in accordance to climate
parameters, 3,619 rows/traps containing a total of 642,812 and
209,658 C. pipiens and C. quinquefasciatus, respectively, were
included for further analysis (Supplementary Table 1). The data
were divided into two parts pre Jan 2017 and post Dec 2016
(Mos-2017). It was done to generate an untouched data set to
determine accuracy of Random Forest. Data prior to Dec 2016
comprised of 2,882 (80% of total traps) of rows (traps) and out of
which 2,336 and 2,009 rows/traps did not catch C. pipiens and C.
quinquefasciatus, respectively. Mos-2017 comprised of 737 (20%
of total traps) traps and out of which 486 and 560 did not trap
catch C. pipiens and C. quinquefasciatus, respectively.

Influence of Various Factors on Culex
pipiens and Culex quinquefasciatus
A principal coordinate analysis of C. pipiens separates its
presence and absence on the first axis, although the C. pipiens
indicates two populations, one is likely to be driven by all
the temperature parameters and dewpoint, and other only by
elevation (Figure 1A). Culex quinquefasciatus occurrence is also
separated on the first axis and shows presence of two populations
one of which appears to be driven by temperatures and dewpoint
and second population shows an orientation opposite to the C.
pipiens population that was driven by elevation (Figure 1B). All
the environmental parameters contribute toward the occurrence
of C. pipiens and C. quinquefasciatus (C. pipiens-PERMANOVA:
environmental parameters, p = 0.001; C. quinquefasciatus-
PERMANOVA: environmental parameters, p = 0.001).
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FIGURE 1 | Principal component analysis (PCoA) between incidence of (A) Culex pipiens, (B) Culex quinquefasciatus with overlaying environmental parameters.

Variable Importance
The Boruta algorithm was first implemented to choose the
influencing variables that can be used as predictors for the
random forest and to avoid overfitting. The Boruta analysis
determined that all the environmental parameters are important
in determining the C. pipiens and C. quinquefasciatus occurrence
(Supplementary Figures 1, 2). Then, using Boruta selected
variables, a random forest model was executed to determine
the most important variable associated with the occurrence
of C. pipiens and C. quinquefasciatus. Random forest analysis
shows that precipitation was the most important environmental
variable affecting the occurrence of C. pipiens (Mean decrease
in accuracy = 72%) and C. quinquefasciatus (Mean decrease in
accuracy = 38.3%) followed by elevation (Figures 2A,B). Mean
and maximum temperatures were the least importance variable
affecting the occurrence of C. pipiens and C. quinquefasciatus
(Figures 2A,B).

Species Prediction
Environmental parameters demonstrated a very high accuracy
(ca. 98%) in predicting the C. pipiens in “Mos-train” and “Mos-
test” data. However, this decreases to 78% when the “Mos-2017”
data was used (Table 1 and Figure 3A). These results indicate
that random forest can utilize environmental parameters to
explain C. pipiens occurrence, though absence is more accurately
predicted than presence (Table 1). Accuracy of prediction of
C. quinquefasciatus occurrence using environmental parameters
was high with an OOB of ca. 6% (Table 1 and Figure 3B) for
“Mos-train” data, and there was an increase in OOB to 10 and 8%
when a random forest model was used for “Mos-test” and “Mos-
2017” data. Overall, the prediction accuracy decreased when
“Mos-2017” data was used (Table 1). Similarly, the accuracy in
detecting the presence of C. pipiens and C. quinquefasciatus was
lower than to detect their absence.

Partial Dependence Plots
All three temperature parameters (minimum, maximum, and
average temperature) have a clear impact on C. pipiens

occurrence, which is in line with the PCoA plots, indicating
a minimum temperature of 11◦C is required for C. pipiens
presence (Figures 4, 5). Culex quinquefasciatus also shows an
explicit inverse dependency on temperature, and after crossing a
threshold temperature value mosquito was absent from the trap.
The temperature threshold for presence of C. quinquefasciatus
was 17 and 24◦C, mean and maximum temperature, respectively
(Figures 6, 7).

Actual Versus Prediction
We then looked at how well our models predict occurrence
and where most of the inaccurate calls (incorrect prediction
of presence or absence) were concentrated for each variable.
When environmental condition was used as a predictor, most
of the inaccurate calls were associated at the values for which C.
pipiens were absence and presence overlap, and a similar trend of
concentrated inaccurate calls was observed where presence and
absence of C. quinquefasciatus overlap, though, more inaccurate
calls were presence compared to absence (Supplementary
Figures 3–8).

DISCUSSION

Observed and Predicted Patterns
This study examined the relationships between Culex pipiens,
the northern house mosquito, and the southern house mosquito
Culex quinquefasciatus, and environmental factors, and other
mosquitoes. Although these two species can hybridize their
divergent life-history traits and unique ecological niches
maintain distinctly geographically separate populations in
the continental United States. Diapause is an alternative
developmental program that results in a suite of profound
changes within the mosquito in response to seasonal variations
of photoperiod. Among these adaptations are a delay of
reproductive development, increased lipid storage, and resistance
to desiccation and cold temperature. The ability of C. pipiens to
diapause and the lack of the trait in C. quinquefasciatus is thought
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FIGURE 2 | Graphs depicting most important environmental parameters to predict (A) C. pipiens and (B) C. quinquefasciatus.

to contribute to both the temporal and geographic segregation of
these populations.

Strength of Predictors
Separation of C. pipiens and C. quinquefasciatus within Euclidian
space show temperatures to be the greatest environmental
factors contributing to past trappings of both species, with

TABLE 1 | Accuracy in predicting Culex pipiens and Culex quinquefasciatus using
environmental parameters as predictors.

Mos-training Mos-test Mos-2017

Culex pipiens

Accuracy 0.9798 0.9817 0.7826

Sensitivity 0.9818 0.9845 0.8745

Specificity 0.9712 0.9692 0.6040

Pos pred value 0.9931 0.9930 0.8111

Neg pred value 0.9268 0.9333 0.7123

Culex quinquefasciatus

Accuracy 0.9388 0.897 0.9239

Sensitivity 0.9551 0.9218 0.9176

Specificity 0.8974 0.8430 0.9258

Pos pred value 0.9594 0.9275 0.9740

Neg pred value 0.8873 0.8319 0.7879

Accuracy: Successful prediction of instances of species presence and absence.
Sensitivity: Actual and predicted instances of species absence/Total instances of
actual species absence.
Specificity: Actual and predicted instances of species presence/Total instances of
actual species presence.
Pos pred value: Actual and predicted instances of species absence/Total instances
of predicted species absence.
Neg pred value: Actual and predicted instances of species presence/Total
instances of predicted species presence.

some further within-population separation with differences in
precipitation and elevation (Figures 1A,B). As the trap sites
and the environmental factors were static, the shape of the
population stayed consistent between the two ordinations,
but we found a clear separation between the two taxa.
Interestingly, our random forest shows that the variables of
the greatest importance in explaining the presence of C.
pipiens were precipitation, and elevation for C. quinquefasciatus
(Figures 2A,B). It is important to note that these plots
are not indicators of absence or presence but rather the
ability of these measures to account for past mosquito
abundance. As such, sharp increases of predictive strength
at either end of the x-axes likely indicate the limits of
tolerance for these insects at environmental extremes. Valleys
between two high accuracy peaks likely reflect environmental
gradients between conditions where the mosquitoes optimal
and stressed environments. As our partial dependence plots of
the environmental factors (Figures 4, 6) show similar trends
in association between precipitation and temperatures, minimal
differences in the importance of the two taxa factors were
unsurprising. Therefore, we created interaction plots of each
mosquito and environmental factor that account for these
interactions between the environmental factors (Figures 5, 7).
The similar shapes of multiple factors give further evidence
of the relationship between the factors, and these relationship
of environmental variables must be considered when utilizing
the model to evaluate the historic occurrence of mosquitos
at individual sites In order to statistically test the importance
of each factor in impacting occurrence, we performed a
generalized linear model with binomial transformations. This
test confirmed that all environmental parameters utilized in our
models significantly influence the C. pipiens (p < 0.001) and C.
quinquefasciatus (p < 0.001) occurrence.
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FIGURE 3 | Graphs depicting out of bag (OOB) error of a random forest model for (A) C. pipiens and (B) C. quinquefasciatus occurrence with environmental
parameters as predictor.

FIGURE 4 | Partial dependence plots of environmental parameters showing their association with C. pipiens occurrence. Y-axis is partial dependence to accurately
predict C. pipiens occurrence.

Random forest analyses indicate that the predictive strengths
(mean decrease in accuracy) of the abiotic factors were
generally high. The sensitivity, or the proportion of correctly
predicted species, remained high for absence in both mosquitoes.

C. quinquefasciatus demonstrated high sensitivity to presence,
but that of C. pipiens was quite low. Generally, predicting the
absence should be more accurate than presence. This is because
organisms must actively exert effort to spread and maintain
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FIGURE 5 | Partial dependence plots of paired environment parameters showing their association with C. pipiens occurrence. Intensity of color is proportional to
partial dependence of C. pipiens occurrence on various climate factors.

FIGURE 6 | Partial dependence plots of environmental parameters showing their association with C. quinquefasciatus occurrence. Y-axis is partial dependence to
accurately predict C. quinquefasciatus occurrence.

populations, and stochastic events are more likely to result in the
loss of said populations. The disparity in sensitivity of the two
mosquitoes may be due to differences in life-history strategies.

C. pipiens can enter diapause, an alternative developmental
program in which their metabolic resources are diverted away
from reproduction to survival, in anticipation of harsh winter
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FIGURE 7 | Partial dependence plots of paired environment parameters showing their association with C. quinquefasciatus occurrence. Intensity of color is
proportional to partial dependence of C. quinquefasciatus occurrence on various climate factors.

conditions. In contrast, it is thought that C. quinquefasciatus are
unable to cope with the rigors of winter and hard frosts act as
latitudinal barriers to persistent northern colonization (Kothera
et al., 2009). While these mosquitoes may hybridize, the unique
populations are suggestive of selective pressure maintaining pure
populations (Kothera et al., 2009). With this in mind, one
would assume C. pipiens would face less difficulty migrating past
the southern boundaries of their historic northern distribution,
yet they retain a predominantly northern distribution. It is
unknown whether this separation is due to reproductive barriers
or purifying selection against another trait, but we chose to
investigate whether this phenomenon was associated with broad-
scale climatic data. However, we do note that a landmark study
found the presence of both mosquitoes and a true hybridization
zone in Mexico City (Diaz-Badillo et al., 2011). Interestingly, they
found that the densities of the hybrids were higher during the
rainy seasons, but it is difficult to determine whether this was
driven by directly by changes in the environment or indirectly
by increasing populations of C. pipiens and C. quinquefasciatus,
which would also be influenced by the precipitation. They suggest
the spread of West Nile virus to be a driver of hybridization, and
it would be interesting to see how the inclusion of the virus data
would impact the RF predictions in future analyses.

The importance of precipitation as a major factor in our
analyses is unsurprising. Changes in precipitation often coincide
with the time of year in both hot and cold climates. Medical
entomologists have long associated large increases in mosquito
abundance after periods of increased rains associated with wet
seasons. This is evident in the partial precipitation plots. C.
pipiens predictive power seems to be strongest at the high and

low precipitation extremes (Figure 4), while C. quinquefasciatus
seems to be most predictable at moderate levels between the
two extremes (Figure 6). This is likely due to the absence being
more accurate at explaining the occurrence of C. pipiens using
precipitation data, whereas presence data is the more accurate
for C. quinquefasciatus data. Whether the increase in accuracy
provided by each factor is absence or presence data, these trends
persist to a certain degree to other environmental parameters.

Problems
In total, 98.17 and 72.77% of observed variances were
explained in our random forest models for C. pipiens and
C. quinquefasciatus, respectively. Perhaps this unexplained
variability is a result of our use of annual mean data and
does not account for monthly or seasonal flux. For example,
the importance of minimum temperatures may be reduced by
how rarely freezing temperatures are a factor. Alternatively, we
acknowledge that it is difficult to discriminate between the two
taxa morphologically, and these results may be skewed toward
an intrinsic bias classifying mosquitoes found above 39◦ north
latitude, the established upper limit of the hybrid zone, as C.
pipiens (Joyce et al., 2018).

Recent studies have indicated that consideration of spatial
dependency may improve the quality of random forest models
(Georganos et al., 2019). The models described herein did not
consider geospatial dependency as a factor, and future studies
may be improved by their inclusion. Further, we note that our
random forests could have problems coping with data values that
fall outside of the training set. Such issues could be caused by
migrations caused by anthropogenic and climatic changes in the
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environment, interactions with other animals or trapping bias.
We choose 2017 as the cutoff for our training dataset to maximize
the data available to build the random forest models. However,
we acknowledge that this reduces the test data set. We emphasize
that these model explanations are best used to determine which
environmental factors are most likely to be of use to surveillance
efforts in the continental United States, the region which they
were trained. However, it will be interesting to see how robust
the models are to the inclusion of new data as it is collected.

CONCLUSION

This study shows the potential of Random Forest and its strong
explanatory capability in stratifying the environmental factors
related to mosquito occurrence. Although it was not able to
explain the density of local populations with high accuracy and
the dynamics of populations at specific times, perhaps a more
sophisticated predictive model for the mosquito population may
be achieved if more detailed information of local mosquito
populations is collected and climate data according to time
fluctuations are supplemented. One may compare the accuracy of
each of the six environmental factors at any given site by plotting
each on the given partial dependence plots and choose the
combination of factors that may lend the most robust explanatory
accuracy to future trap events.
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